有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响

高美云, 刘兴国, 曾宪磊, 陆诗敏. 有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响[J]. 环境工程学报, 2018, 12(1): 49-56. doi: 10.12030/j.cjee.201705137
引用本文: 高美云, 刘兴国, 曾宪磊, 陆诗敏. 有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响[J]. 环境工程学报, 2018, 12(1): 49-56. doi: 10.12030/j.cjee.201705137
GAO Meiyun, LIU Xingguo, ZENG Xianlei, LU Shimin. Effects of organic carbon for denitrification and anaerobic ammonium oxidation in sediments of aquaculture pond[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 49-56. doi: 10.12030/j.cjee.201705137
Citation: GAO Meiyun, LIU Xingguo, ZENG Xianlei, LU Shimin. Effects of organic carbon for denitrification and anaerobic ammonium oxidation in sediments of aquaculture pond[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 49-56. doi: 10.12030/j.cjee.201705137

有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响

  • 基金项目:

    现代农业产业技术体系建设专项(CARS-46)

    国家自然科学基金资助项目(31372570)

    948节水高效全循环池塘养殖关键技术合作研究(2016-X32)

Effects of organic carbon for denitrification and anaerobic ammonium oxidation in sediments of aquaculture pond

  • Fund Project:
  • 摘要: 养殖沉积物中反硝化作用对于缓解氮污染有重要的作用,沉积物中的反硝化和厌氧氨氧化菌可将化合态氮转变为氮气,从而有效降低污染,有机碳在该过程中有着重要的作用。为了解有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响,采取理化分析和分子生物学分析等方法,以养殖池塘沉积物为基质、人工配水为营养液,添加不同浓度的淀粉,分析120 h内底物亚硝氮(NO-2-N)、硝氮(NO-3-N)、氨氮(NH+4-N)和TOC浓度,并对反硝化、厌氧氨氧化菌群丰度变化和反硝化菌多样性进行分析。结果表明:淀粉浓度在150 mg·L-1时,NO-2-N和NO-3-N的去除率最高,分别达到98.90%和99.86%;NH+4-N去除率在淀粉浓度为50 mg·L-1时最高,为35.98%。随着淀粉浓度的增加,反硝化菌的丰度明显增加,但有机碳对厌氧氨氧化菌群具有抑制作用。当淀粉浓度为150 mg·L-1时,反硝化菌的丰度最大、多样性水平最高、物种数目最大,反硝化细菌优势菌属为未分类的变形菌属和β-变形菌属。
  • 加载中
  • [1] BEVERIDGE M C M,PHILLIPS M J,CLARKE R M.A quantitative and qualitative assessment of wastes from aquatic animal production[M]//BRUNE D E,TOMASSO J R.Aquaculture and Water Quality.Baton Rouge, LA: The World Aquaculture Society,1991:506-533
    [2] 孙作登,王云中,高克忠,等.浅谈污染水体的生物生态修复技术[J].齐鲁渔业,2017(4):52-55
    [3] 韦利.对虾养殖后期亚硝酸盐高的危害处理[J].植物医生,2017,0(1):43-44
    [4] 吴堃,钟志伟,陈勇贵,等.气候变化和饵料投喂管理与凡纳滨对虾养殖池塘氨氮、亚硝氮和硝氮的关系[J].中山大学学报(自然科学版),2017,56(1):102-114
    [5] 翟海佳.不同模式养殖池塘沉积物微生物群落结构分析[D].宁波:宁波大学,2012
    [6] CHAMCHOI N,NITISORAVUT S,SCHMIDT J E.Inactivation of Anammox communities under concurrent operation of anaerobic ammonium oxidation(Anammox) and denitrification[J].Bioresource Technology,2008,99(9):3331-3336
    [7] ISAKA K, SUWA Y, KIMURA Y, et al.Anaerobic ammonium oxidation(Anammox) irreversibly inhibited by methanol[J].Applied Microbiology and Biotechnology,2008,81(2):379-385
    [8] 操沈彬,王淑莹,吴程程,等.有机物对厌氧氨氧化系统的冲击影响[J].中国环境科学,2013,33(12):2164-2169
    [9] RATTRAY J E,GEENEVASEN J A J,VAN NIFTRIK L A, et al.Carbon isotope-labelling experiments indicate that ladderane lipids of anammox bacteria are synthesized by a previously undescribed, novel pathway[J].FEMS Microbiology Letters,2009,292(1):115-122
    [10] 吕永涛,陈祯,吴红亚,等.有机物浓度对厌氧氨氧化脱氮性能影响试验研究[J].环境工程学报,2009,3(7):1189-1192
    [11] 刘常敬,李泽兵,郑照明,等.厌氧氨氧化耦合异养反硝化的脱氮性能及污泥性状[J].环境工程学报,2014,8(8):3137-3142
    [12] VANDEGRAAF A A,DEBRUJN P,ROBERTSON L A,et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidied bed reacter[J].Microbiology,1997,143(7):2415-2421
    [13] THROBACK I N,JOHANSSON M,ROSENQUIST M,et al.Silver(Ag+) reduces denitrification and induces enrichment of novel NirK genotypes in soil[J].FEMS Microbiology Letters,2007,270(2):189-194
    [14] DANG H Y,CHEN R P,WANG L,et,al.Environmental factors shape sediments anammox bacterial communities in hypernutrified Jiaozhou Bay,China[J].Applied and Environmental Microbiology,2010,76(21):7036-7047
    [15] XU Q,ZHANG F,XU Z Q, et al.An analysis of the characteristics and the “dilution effect” of Simpson index and Shannon-Wiener index[J].Pratacultural Science,2011,28(4):527-531
    [16] 崔婷婷.基于16S rDNA-RFLP技术对圈养成年大熊猫秋季肠道菌群多样性的研究[D].雅安: 四川农业大学,2011
    [17] 李文龙,杨碧印,陈益清,等.不同外加碳源反硝化滤池的深度脱氮特性研究[J].水处理技术,2015,1(11):82-85
    [18] 李亚峰,王欣,高颖.有机物、亚硝酸盐和pH值对反硝化脱氮除磷的影响[J].沈阳建筑大学学报(自然科学版),2013,29(3):531-537
    [19] 李建,潘康成.不同碳源对反硝化细菌生长的影响[J].中国兽药杂志,2012,46(6):11-13
    [20] 刘金苓,钟玉鸣,谢志儒,等.厌氧氨氧化微生物在有机碳源条件下的代谢特性[J].环境科学学报,2009,29(10):2041-2047
    [21] 杨洋,左剑恶,沈平,等.温度、pH值和有机物对厌氧氨氧化污泥活性的影响[J].环境科学,2006,27(4):691-695
    [22] 宋亚娜,林智敏,林艳.氮肥对稻田土壤反硝化细菌群落结构和丰度的影响[J].中国生态农业学报,2012,20(1):7-12
    [23] SRINANDAN C S,SHAH M,PATEL B,et al.Assessment of denitrifying bacterial composition in activated sludge[J].Bioresource Technology,2011,102(20):9481-9489
    [24] 陈瑾,廖明军,何绪刚,等.池塘表层底泥反硝化菌丰度与环境因子的相关性分析[J].淡水渔业,2014,44(4):90-95
    [25] BRAKER G, ZHOU J, WU L, et al.Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities[J].Applied and Environmental Microbiology,2000,66(5):2096-2104
    [26] KRISHNANI K K.Detection and diversity of nitrifying and denitrifying functional genes in coastal aquaculture[J].Aquaculture,2010,302(1/2):57-70
    [27] BRAKER G, FESEFELDT A, WITZEL K P.Development of PCR primer systems for amplification of nitrite reductase genes(NirK and Nirs) to detect denitrifying bacteria in environmental samples[J].Applied and Environmental Microbiology,1998,64(10):3769-3775
    [28] ZHENG Y,HOU L,LIU M,et al.Diversity, abundance, and distribution of nirS-harboring denitrifiers in intertidal sediments of the Yangtze estuary[J].Microbial Ecology,2015,70(1):30-40
  • 加载中
计量
  • 文章访问数:  2713
  • HTML全文浏览数:  2391
  • PDF下载数:  435
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响

  • 1. 上海海洋大学水产与生命学院,上海 201306
  • 2. 中国水产科学研究院渔业机械仪器研究所,上海 200092
基金项目:

现代农业产业技术体系建设专项(CARS-46)

国家自然科学基金资助项目(31372570)

948节水高效全循环池塘养殖关键技术合作研究(2016-X32)

摘要: 养殖沉积物中反硝化作用对于缓解氮污染有重要的作用,沉积物中的反硝化和厌氧氨氧化菌可将化合态氮转变为氮气,从而有效降低污染,有机碳在该过程中有着重要的作用。为了解有机碳对养殖池塘沉积物中反硝化、厌氧氨氧化的影响,采取理化分析和分子生物学分析等方法,以养殖池塘沉积物为基质、人工配水为营养液,添加不同浓度的淀粉,分析120 h内底物亚硝氮(NO-2-N)、硝氮(NO-3-N)、氨氮(NH+4-N)和TOC浓度,并对反硝化、厌氧氨氧化菌群丰度变化和反硝化菌多样性进行分析。结果表明:淀粉浓度在150 mg·L-1时,NO-2-N和NO-3-N的去除率最高,分别达到98.90%和99.86%;NH+4-N去除率在淀粉浓度为50 mg·L-1时最高,为35.98%。随着淀粉浓度的增加,反硝化菌的丰度明显增加,但有机碳对厌氧氨氧化菌群具有抑制作用。当淀粉浓度为150 mg·L-1时,反硝化菌的丰度最大、多样性水平最高、物种数目最大,反硝化细菌优势菌属为未分类的变形菌属和β-变形菌属。

English Abstract

参考文献 (28)

目录

/

返回文章
返回