地质聚合物固化稳定化重金属复合污染土壤

廖希雯, 陈杰, 范天凤, 黎珊, 陈玉萍, 魏世强. 地质聚合物固化稳定化重金属复合污染土壤[J]. 环境工程学报, 2018, 12(7): 2056-2065. doi: 10.12030/j.cjee.201712077
引用本文: 廖希雯, 陈杰, 范天凤, 黎珊, 陈玉萍, 魏世强. 地质聚合物固化稳定化重金属复合污染土壤[J]. 环境工程学报, 2018, 12(7): 2056-2065. doi: 10.12030/j.cjee.201712077
LIAO Xiwen, CHEN Jie, FAN Tianfeng, LI Shan, CHEN Yuping, WEI Shiqiang. Soil of heavy metal composite pollution by geological polymer stabilization[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2056-2065. doi: 10.12030/j.cjee.201712077
Citation: LIAO Xiwen, CHEN Jie, FAN Tianfeng, LI Shan, CHEN Yuping, WEI Shiqiang. Soil of heavy metal composite pollution by geological polymer stabilization[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2056-2065. doi: 10.12030/j.cjee.201712077

地质聚合物固化稳定化重金属复合污染土壤

  • 基金项目:

    重庆市科学技术委员会重点研发计划项目(cstc2017shms-zdyf0036)

    西南大学科技创新基金资助项目(20162402001)

Soil of heavy metal composite pollution by geological polymer stabilization

  • Fund Project:
  • 摘要: 以污染土壤部分替代偏高岭土,在碱激发剂的作用下制备地质聚合物稳定化处理Pb、As、Cd复合污染土壤,研究了其稳定化效果及处理后固化体中重金属的赋存形态。结果表明:污染土壤部分替代高岭土降低了固化体抗压强度,从力学性能上看,土壤掺量低于50%时,能满足建筑材料的强度要求(>10 MPa),掺量为60%仅能满足固废填埋要求(>5 MPa),土壤掺量?70%均不能满足要求。随着土壤掺量增加,对土壤中重金属的稳定化效果也逐渐降低,当土壤Pb、As和Cd浓度分别为600、80和22 mg·L-1(HJ 350-2007B)时,土壤掺量在20%~50%,固化体中3种元素浸出浓度均低于浸出标准;当土壤掺量达到60%时,Pb的浸出浓度不能满足标准要求,当土壤掺量增加至70%,固化体中Pb、Cd浸出浓度均超标。固定土壤掺量为30%,随着污染土壤中重金属含量的增加,浸出浓度也增加:土壤中3种重金属浓度为HJ 350-2007B时经过30 d的稳定化处理,浸出浓度满足标准要求;而当浓度达到HJ 350-2007B的2倍时,Pb浸出浓度超标;达到HJ 350-2007B的3倍时,3种Pb、As和Cd均超出浸出标准。固化体中Pb、As、Cd的形态研究表明,外源重金属进入土壤后多以活性较高的形态存在,经过固化稳定后活性态占比降低、残渣态占比增加。
  • 加载中
  • [1] 王艳.我国重金属污染事件频发若干问题的再思考:以广西龙江镉污染事件为例[J].郑州轻工业学院学报(社会科学版),2014,15(6):36-40
    [2] 宋云, 尉黎, 王海见. 我国重金属污染土壤修复技术的发展现状及选择策略[J]. 环境保护,2014,42(9):32-36
    [3] HABERT G, LACAILLERIE J B D D, ROUSSEL N.An environmental evaluation of geopolymer based concrete production: Reviewing current research trends[J].Journal of Cleaner Production,2011,19(11):1229-1238 10.1016/j.jclepro.2011.03.012
    [4] 葛圆圆. 偏高岭土地质聚合物基重金属离子吸附剂的制备及其性能研究[D].南宁:广西大学,2015
    [5] CHENG T W, LEE M L, KO M S, et al.The heavy metal adsorption characteristics on metakaolin-based geopolymer[J].Applied Clay Science,2012,56(1):90-96 10.1016/j.clay.2011.11.027
    [6] 徐建中, 唐然肖, 周云龙,等. 用粉煤灰和制革废水污泥等制备地聚合物材料[J]. 建筑材料学报,2007,10(1):105-109
    [7] NIKOLIC V, KOMLJENOVIC M, MARJANOVIC N, et al.Lead immobilization by geopolymers based on mechanically activated fly ash[J].Ceramics International,2014,40(6):8479-8488 10.1016/j.ceramint.2014.01.059
    [8] 刘浩. 碱激发胶凝材料固化/稳定化铬污染土壤研究[D]. 杭州:浙江大学,2012
    [9] FERNANDEZ-JIMENEZ A, MACPHEE D E, LACHOWSKI E E, et al.Immobilization of cesium in alkaline activated fly ash matrix[J].Journal of Nuclear Materials,2005,346(2/3):185-193 10.1016/j.jnucmat.2005.06.006
    [10] FERNANDEZ-JIMENEZ A, PALOMO A, MACPHEE D E, et al.Fixing arsenic in alkali activated cementitious matrices[J].Journal of the American Ceramic Society,2010,88(5):1122-1126 10.1111/j.1551-2916.2005.00224.x
    [11] JAARSVELD J G S V, DEVENTER J S J V.The effect of metal contaminants on the formation and properties of waste-based geopolymers[J].Cement & Concrete Research,1999,29(8):1189-1200 10.1016/S0008-8846(99)00032-0
    [12] HUANG X, ZHUANG R, MUHAMMAD F, et al.Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.[J].Chemosphere,2017,168:300 10.1016/j.chemosphere.2016.10.067
    [13] 南京农业大学. 土壤农化分析[M]. 南京:农业出版社,1990
    [14] TESSIER A, CAMPBELL P G C, BISSON M.Sequential extraction procedure for the speciation of particulate trace metals[J].Analytical Chemistry,1979,51(7):844-851 10.1021/ac50043a017
    [15] 王俊, 王青清, 魏世强. 腐植酸对土壤砷化学形态及生物可给性的影响[J]. 农业环境科学学报,2017,36(6):1124-1132 10.11654/jaes.2017-0056
    [16] 张鸿波. 固体废弃物处理[M]. 长春:吉林大学出版社,2013
    [17] ZHANG J, PROVIS J L, FENG D, et al.Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+[J].Journal of Hazardous Materials,2008,157(2/3):587-598 10.1016/j.jhazmat.2008.01.053
    [18] 宋波, 曾炜铨. 外源铅在不同类型土壤的形态转化[J]. 环境工程学报,2016,10(1):410-414
    [19] 林亲铁, 朱伟浩, 陈志良,等. 土壤重金属的形态分析及生物有效性研究进展[J]. 广东工业大学学报,2013,30(2):113-118
    [20] 王青清, 蒋珍茂, 王俊,等. 腐殖酸活性组分及其比例对紫色潮土中铅形态转化和有效性演变动态的影响[J]. 环境科学,2017,38(5):2136-2145 10.13227/j.hjkx.201610008
    [21] 王志楼, 谢学辉, 王慧萍,等. 典型铜尾矿库周边土壤重金属复合污染特征[J]. 生态环境学报, 2010,19(1):113-117
    [22] 王进, 杨明凤, 褚贵新. 外源砷在石灰性土壤中的形态与土壤酶活性研究[J]. 农业机械学报,2016,47(11):179-184
    [23] 金漫彤, 金赞芳, 黄彩菊. 地聚合物固化重金属Pb2+的研究[J]. 环境科学,2011,32(5):1447-1453
  • 加载中
计量
  • 文章访问数:  3027
  • HTML全文浏览数:  2731
  • PDF下载数:  286
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

地质聚合物固化稳定化重金属复合污染土壤

  • 1. 西南大学资源环境学院, 重庆 400716
  • 2. 重庆市农业资源与环境研究重点实验室, 重庆 400716
  • 3. 三峡库区生态环境教育部重点实验室,重庆 400716
基金项目:

重庆市科学技术委员会重点研发计划项目(cstc2017shms-zdyf0036)

西南大学科技创新基金资助项目(20162402001)

摘要: 以污染土壤部分替代偏高岭土,在碱激发剂的作用下制备地质聚合物稳定化处理Pb、As、Cd复合污染土壤,研究了其稳定化效果及处理后固化体中重金属的赋存形态。结果表明:污染土壤部分替代高岭土降低了固化体抗压强度,从力学性能上看,土壤掺量低于50%时,能满足建筑材料的强度要求(>10 MPa),掺量为60%仅能满足固废填埋要求(>5 MPa),土壤掺量?70%均不能满足要求。随着土壤掺量增加,对土壤中重金属的稳定化效果也逐渐降低,当土壤Pb、As和Cd浓度分别为600、80和22 mg·L-1(HJ 350-2007B)时,土壤掺量在20%~50%,固化体中3种元素浸出浓度均低于浸出标准;当土壤掺量达到60%时,Pb的浸出浓度不能满足标准要求,当土壤掺量增加至70%,固化体中Pb、Cd浸出浓度均超标。固定土壤掺量为30%,随着污染土壤中重金属含量的增加,浸出浓度也增加:土壤中3种重金属浓度为HJ 350-2007B时经过30 d的稳定化处理,浸出浓度满足标准要求;而当浓度达到HJ 350-2007B的2倍时,Pb浸出浓度超标;达到HJ 350-2007B的3倍时,3种Pb、As和Cd均超出浸出标准。固化体中Pb、As、Cd的形态研究表明,外源重金属进入土壤后多以活性较高的形态存在,经过固化稳定后活性态占比降低、残渣态占比增加。

English Abstract

参考文献 (23)

目录

/

返回文章
返回