腐殖质纳米颗粒对镉污染土壤的修复

毕冬雪, 邓亚娟, 孟凡德, 韦婧, 王海龙, 袁国栋. 腐殖质纳米颗粒对镉污染土壤的修复[J]. 环境工程学报, 2018, 12(5): 1295-1302. doi: 10.12030/j.cjee.201711218
引用本文: 毕冬雪, 邓亚娟, 孟凡德, 韦婧, 王海龙, 袁国栋. 腐殖质纳米颗粒对镉污染土壤的修复[J]. 环境工程学报, 2018, 12(5): 1295-1302. doi: 10.12030/j.cjee.201711218
BI Dongxue, DENG Yajuan, MENG Fande, WEI Jing, WANG Hailong, YUAN Guodong. Humic nanoparticles for remediation of Cd- contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1295-1302. doi: 10.12030/j.cjee.201711218
Citation: BI Dongxue, DENG Yajuan, MENG Fande, WEI Jing, WANG Hailong, YUAN Guodong. Humic nanoparticles for remediation of Cd- contaminated soils[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1295-1302. doi: 10.12030/j.cjee.201711218

腐殖质纳米颗粒对镉污染土壤的修复

  • 基金项目:

    国家重点研发计划(2016YFD0200303)

    国家自然科学基金资助项目(41501522)

    山东省重点研发计划(2016CYJS05A01-1)

    东莞市第一批引进创新科研团队(2014607101003)

Humic nanoparticles for remediation of Cd- contaminated soils

  • Fund Project:
  • 摘要: 外源腐殖质可改变土壤镉(Cd)的含量和状态。以风化煤为原料制备的不溶性胡敏酸为吸附剂,对比研究了其对冶炼厂周边污染土壤及人工模拟污染土壤中Cd的钝化效果。再以泥炭为原料,制备富里酸钾为主的水溶性腐殖酸钾为淋洗剂,用于活化、去除上述2种土壤中的Cd。结果表明,胡敏酸在砂质的人工模拟污染土壤中钝化效果更好,2%的剂量可使土壤中CaCl2提取态Cd的浓度(0.103 mg·L-1)降低19.7%。腐殖酸钾去除土壤Cd的效率随淋洗剂浓度增加而提高,在10 g·L-1的浓度时,单次淋洗可去除高达38.1%的Cd。傅里叶变换红外光谱分析表明,腐殖质与Cd反应后形成了羧酸盐。因此,腐殖质纳米颗粒既可以钝化土壤中的Cd,也可以活化土壤中的Cd,从而达到修复Cd污染土壤的目的。其关键在于根据钝化或活化的目标,选择溶解度适当的腐殖质材料。
  • 加载中
  • [1] 黄益宗, 郝晓伟, 雷鸣, 等. 重金属污染土壤修复技术及其修复实践[J]. 农业环境科学学报, 2013, 32(3): 409-417 10.11654/jaes.2013.03.001
    [2] KHALID S, SHAHID M, NIAZI N K, et al.A comparison of technologies for remediation of heavy metal contaminated soils[J].Journal of Geochemical Exploration, 2017, 182: 247-268 10.1016/j.gexplo.2016.11.021
    [3] MENG F D, YUAN G D, WEI J, et al.Humic substances as a washing agent for Cd-contaminated soils[J].Chemosphere, 2017, 181: 461-467 10.1016/j.chemosphere.2017.04.127
    [4] BOLAN N, KUNHIKRISHNAN A, THANGARAJAN R, et al.Remediation of heavy metal(loid)s contaminated soils:To mobilize or to immobilize?[J].Journal of Hazardous Materials, 2014, 266: 141-166 10.1016/j.jhazmat.2013.12.018
    [5] O’DAY P A, VLASSOPOULOS D.Mineral-based amendments for remediation[J].Elements, 2010, 6(6): 375-381
    [6] YUAN G D, THENG B K G, CHURCHMAN G J, et al.Clays and clay minerals for pollution control[M]//BERGAYA F, LAGALY F.Handbook of Clay Science: Techniques And Applications. 2nd Edition.Amsterdam: Elsevier, 2013: 587-644
    [7] 封文利, 郭朝晖, 史磊, 等. 控源及改良措施对稻田土壤和水稻镉累积的影响[J]. 环境科学, 2018, 39(1): 399-405 10.13227/j.hjkx.201706233
    [8] 冯静, 张增强, 李念, 等. 铅锌厂重金属污染土壤的螯合剂淋洗修复及其应用[J]. 环境工程学报, 2015, 9(11): 5617-5625
    [9] KULIKOWSKA D, GUSIATIN Z M, BULKOWSKA K, et al.Humic substances from sewage sludge compost as washing agent effectively remove Cu and Cd from soil[J].Chemosphere, 2015, 136: 42-49 10.1016/j.chemosphere.2015.03.083
    [10] LUO F, SONG J, XIA W, et al.Characterization of contaminants and evaluation of the suitability for land application of maize and sludge biochars[J].Environmental Science and Pollution Research, 2014, 21(14): 8707-8717 10.1007/s11356-014-2797-8
    [11] 易龙生, 陶冶, 刘阳, 等. 重金属污染土壤修复淋洗剂研究进展[J]. 安全与环境学报, 2012, 12(4): 42-46
    [12] YUAN G D, THENG B K G.Clay-organic interactions in soil environments[M]//HUANG P M, LI Y C, SUMNER M E.Handbook of Soil Sciences: Resource Management And Environmental Impacts. 2nd Edition.Boca Raton: CRC Press, 2011
    [13] TAN K H.Humic Matter in Soil and the Environment: Principles And Controversies[M].Boca Raton: CRC Press, 2014: 119-130
    [14] THENG B K G, YUAN G D.Nanoparticles in the soil environment[J].Elements,2008,4(6):395-399 10.2113/gselements.4.6.395
    [15] DEMELO B A G, MOTTA F L, SANTANA M H A.Humic acids: Structural properties and multiple functionalities for novel technological developments[J].Materials Science and Engineering C, 2016, 62: 967-974 10.1016/j.msec.2015.12.001
    [16] PARK J H, LAMB D, PANEERSELVAM P, et al.Role of organic amendments on enhanced bioremediation of heavy metal (loid) contaminated soils[J].Journal of Hazardous Materials, 2011, 185(2): 549-574 10.1016/j.jhazmat.2010.09.082
    [17] KULIKOWSKA D, GUSIATIN Z M, BULKOWSKA K, et al.Feasibility of using humic substances from compost to remove heavy metals (Cd, Cu, Ni, Pb, Zn) from contaminated soil aged for different periods of time[J].Journal of Hazardous Materials, 2015, 300: 882-891 10.1016/j.jhazmat.2015.08.022
    [18] MENG F D, YUAN G D, WEI J, et al.Leonardite-derived humic substances are great adsorbents for cadmium[J].Environmental Science and Pollution Research, 2017, 24: 23006-23014 10.1007/s11356-017-9947-8
    [19] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000: 478-479
    [20] 赵国玺. 表面活性剂作用原理[M]. 北京: 中国轻工业出版社, 2003: 246-247
    [21] 陈兴丽, 周建斌, 刘建亮, 等. 不同施肥处理对玉米秸秆碳氮比及其矿化特性的影响[J]. 应用生态学报, 2009, 20(2): 314-319
    [22] CLEMENTE R, BERNAL M P.Fractionation of heavy metals and distribution of organic carbon in two contaminated soils amended with humic acids[J].Chemosphere, 2006, 64: 1264-1273 10.1016/j.chemosphere.2005.12.058
    [23] RIBEIRO J S, OK S S, GARRIGUES S, et al.FTIR tentative characterization of humic acids extracted from organic materials[J].Spectroscopy Letters, 2001, 34(2): 179-190 10.1081/SL-100002007
    [24] WANG S, SONG X Y, WANG N, et al.Characteristics of soil humic substances as determined by conventional and synchrotron Fourier transform infrared spectroscopy[J].Journal of Applied Spectroscopy, 2014,81(5):843-849 10.1007/s10812-014-0014-7
    [25] POSPí?ILOVá L, KOMíNKOVá M, ZíTKA O, et al.Fate of humic acids isolated from natural humic substances[J].Acta Agriculturae Scandinavica, 2015, 65(6): 517-528
    [26] PUEYO M, LOPEZ-SANCHEZ J F, RAURET G.Assessment of CaCl2, NaNO3 and NH4NO3 extraction procedures for the study of Cd, Cu, Pb and Zn extractability in contaminated soils[J].Analytica Chimica Acta, 2004,504(2):217-226 10.1016/j.aca.2003.10.047
    [27] 鲍艳宇, 娄翼来, 颜丽, 等. 不同畜禽粪便好氧堆肥过程中重金属Pb Cd Cu Zn的变化特征及其影响因素分析[J]. 农业环境科学学报, 2010, 29(9): 1820-1826
    [28] MAO X, JIANG R, XIAO W, et al.Use of surfactants for the remediation of contaminated soils: A review[J].Journal of Hazardous Materials, 2015, 285: 419-435 10.1016/j.jhazmat.2014.12.009
    [29] MULLIGAN C N, YONG R N, GIBBS B F.Surfactant-enhanced remediation of contaminated soil: A review[J].Engineering Geology, 2001, 60(1): 371-380 10.1016/S0013-7952(00)00117-4
    [30] PRADHAN B K, SANDLE N K.Effect of different oxidizing agent treatments on the surface properties of activated carbons[J].Carbon, 1999, 37(8): 1323-1332 10.1016/S0008-6223(98)00328-5
  • 加载中
计量
  • 文章访问数:  3561
  • HTML全文浏览数:  3171
  • PDF下载数:  446
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

腐殖质纳米颗粒对镉污染土壤的修复

  • 1. 中国科学院烟台海岸带研究所,中国科学院海岸带环境过程与生态修复重点实验室,烟台 264003
  • 2. 中国科学院大学,北京 100049
  • 3. 广东大众农业科技有限公司,东莞 523169
基金项目:

国家重点研发计划(2016YFD0200303)

国家自然科学基金资助项目(41501522)

山东省重点研发计划(2016CYJS05A01-1)

东莞市第一批引进创新科研团队(2014607101003)

摘要: 外源腐殖质可改变土壤镉(Cd)的含量和状态。以风化煤为原料制备的不溶性胡敏酸为吸附剂,对比研究了其对冶炼厂周边污染土壤及人工模拟污染土壤中Cd的钝化效果。再以泥炭为原料,制备富里酸钾为主的水溶性腐殖酸钾为淋洗剂,用于活化、去除上述2种土壤中的Cd。结果表明,胡敏酸在砂质的人工模拟污染土壤中钝化效果更好,2%的剂量可使土壤中CaCl2提取态Cd的浓度(0.103 mg·L-1)降低19.7%。腐殖酸钾去除土壤Cd的效率随淋洗剂浓度增加而提高,在10 g·L-1的浓度时,单次淋洗可去除高达38.1%的Cd。傅里叶变换红外光谱分析表明,腐殖质与Cd反应后形成了羧酸盐。因此,腐殖质纳米颗粒既可以钝化土壤中的Cd,也可以活化土壤中的Cd,从而达到修复Cd污染土壤的目的。其关键在于根据钝化或活化的目标,选择溶解度适当的腐殖质材料。

English Abstract

参考文献 (30)

目录

/

返回文章
返回