不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响

徐德福, 李振威, 李映雪, 潘潜澄, 陈晓艺, 王琪飞, 李鑫, 管益东. 不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响[J]. 环境工程学报, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070
引用本文: 徐德福, 李振威, 李映雪, 潘潜澄, 陈晓艺, 王琪飞, 李鑫, 管益东. 不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响[J]. 环境工程学报, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070
XU Defu, LI Zhengwei, LI Yingxue, PAN Qiancheng, CHEN Xiaoyi, WANG Qifei, LI Xin, GUAN Yidong. Effects of different sizes of biochar and loach on plant root morphology and nitrification and denitrification in constructed wetland[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070
Citation: XU Defu, LI Zhengwei, LI Yingxue, PAN Qiancheng, CHEN Xiaoyi, WANG Qifei, LI Xin, GUAN Yidong. Effects of different sizes of biochar and loach on plant root morphology and nitrification and denitrification in constructed wetland[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070

不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响

  • 基金项目:

    江苏省自然科学基金资助项目(BK20141477)

    教育部留学回国人员科研启动基金资助项目(2014S048)

    江苏高校“青蓝工程”项目(20161507)

    江苏省“六大人才高峰”资助项目(R2016L06)

Effects of different sizes of biochar and loach on plant root morphology and nitrification and denitrification in constructed wetland

  • Fund Project:
  • 摘要: 向人工湿地中加入2种粒径(粒径1~2 mm和粒径<1 mm)生物炭和泥鳅,研究了不同粒径生物炭和泥鳅对湿地植物根系形态和基质硝化与反硝化强度的影响。结果表明,向人工湿地中加入泥鳅和生物炭,降低了基质的氨态氮含量,增加基质的硝态氮含量、硝化强度和反硝化强度;与粒径小(<1 mm)的生物炭相比,添加粒径大(1~2 mm)的生物炭后,湿地基质的氨态氮含量、硝态氮含量和反硝化强度分别降低了46.6%、51.1%和35.4%。加入生物炭和泥鳅均增加了湿地植物总根长和总根体积,然而与粒径小的生物炭相比,添加粒径大的生物炭后,人工湿地中植物总根长和总根体积分别降低了15.1%和6.8%。基质硝态氮含量与人工湿地中植物总根长和总根体积分别呈显著相关关系(α = 0.01)。结果表明,生物炭提高了人工湿地基质硝化强度,有利于硝态氮的生成,促进人工湿地中植物根的生长,增加了总根长和总根体积。
  • 加载中
  • [1] 高德才,张蕾,刘强,等.旱地土壤施用生物炭减少土壤氮损失及提高氮素利用[J].农业工程学报,2014,30(6):54-61
    [2] 刘玮晶,刘烨,高晓荔,等.外源生物质炭对土壤中铵态氮素滞留效应的影响[J].农业环境科学学报,2012,31(5):962-968
    [3] KOOKANA R S, SARMAH A K, ZWIETEN L V.et al.Biochar application to soil: Agronomic and environmental benefits and unintended consequences[J].Advances in Agronomy,2011,112:103-142 10.1016/B978-0-12-385538-1.00003-2
    [4] JINDO K, MIZUMOTO H, SAWADA Y.et al.Physical and chemical characterization of biochars derived from different agricultural residues[J].Biogeoscience,2014,11(23):6613-6621 10.5194/bg-11-6613-2014
    [5] GUL S, WHALEN J K, THOMAS B W,et al.Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions[J].Agriculture, Ecosystems and Environment,2015,206:46-59 10.1016/j.agee.2015.03.015
    [6] AL-WABEL M I, AL-OMRAN A, EL-NAGGAR A H.et al.Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes[J].Bioresource Technology,2013,131:374-379 10.1016/j.biortech.2012.12.165
    [7] CANTRELL K B, HUNT P G, UCHIMIYA, M.et al.Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J].Bioresource Technology,2012,107:419-428 10.1016/j.biortech.2011.11.084
    [8] HUSSAIN M, FAROOQ M, NAWAZ A.et al.Biochar for crop production: Potential benefits and risks[J].Journal of Soil Sediments,2017,17(3):685-716 10.1007/s11368-016-1360-2
    [9] SIGUA G C, NOVAK J M, WATTS D W.et al.Impact of switchgrass biochars with supplemental nitrogen on carbon-nitrogen mineralization in highly weathered Coastal Plain Ultisols[J].Chemosphere,2016,145:135-141 10.1016/j.chemosphere.2015.11.063
    [10] MURRAY J, KEITH A, SINGH B.The stability of low- and high-ash biochars in acidic soils of contrasting mineralogy[J].Soil Biology and Biochemistry,2015,89:217-225 10.1016/j.soilbio.2015.07.014
    [11] SUBEDI R, TAUPE N, IKOYI I.et al.Chemically and biologically-mediated fertilizing value of manure derived biochar[J].Science of the Total Environment,2016,550:924-933 10.1016/j.scitotenv.2016.01.160
    [12] TSUI T, RANDALL D J, CHEW S F, et al.Accumulation of ammonia in the body and NH3 volatilization from alkaline regions of the body surface during ammonia loading and exposure to air in the weather loach Misgurnus anguillicaudatus[J].Journal of Experimental Biology,2002,205(5):651-659
    [13] GONCALVES A F, CASTRO L F C, PEREIRA-WILSON C, et al.Is there a compromise between nutrient uptake and gas exchangein the gut of Misgurnus anguillicaudatus, an intestinal air-breathing fish[J].Comparative Biochemistry and Physiology Part D:Genomics and Proteomics,2007,2(4):345-355 10.1016/j.cbd.2007.08.002
    [14] ROZARI P D, GREENWAY M, HANANDEHC A E.Phosphorus removal from secondary sewage and septage using sand media amended with biochar in constructed wetland mesocosms[J].Science of the Total Environment,2016,569-570:123-133[J] 10.1016/j.scitotenv.2016.06.096
    [15] 国家环境保护总局.水和废水监测分析方法[M].4版.中国环境科学出版社, 2002
    [16] 宋歌,孙波,教剑英. 测定土壤硝态氮的紫外分光光度法与其他方法的比较[J].土壤学报, 2007,44(2): 288-293
    [17] 贺锋,吴振斌,陶菁,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50
    [18] 郑仁宏,邓仕槐,李远伟,等.表面流人工湿地硝化和反硝化强度研究[J].环境污染与防治,2007, 20(1):37-43
    [19] BERGLUND L M, DELUCA T H, ZACKRISSON O.Activated carbon amendments to soil alters nitritation rates[J].Soil Biology and Biochemistry,2004,36(12):2067-2073
    [20] ULYETT J, SAKRABANI R, KIBBLEWHITE M, et al.Impact of biochar addition on water retention, nitrification and carbon dioxide evolution from two sandy loam soils[J].European Journal of Soil Science,2014,65:96-104 10.1111/ejss.12081
    [21] SHAMIM G, JOANN K W.Biochemical cycling of nitrogen and phosphorus in biochar-amended soils[J].Soil Biology & Biochemistry,2016,103:1-15 10.1016/j.soilbio.2016.08.001
    [22] SHAMIM G, JOANN K W.Biochemical cycling of nitrogen and phosphorus in biochar-amended soils[J].Soil Biology & Biochemistry,2016,103:1-15 10.1016/j.soilbio.2016.08.001
    [23] MAAG M, VINTHER F P.Nitrous oxide emission by nitrification and denitrification in in different soil types and at different soil moisture contents and temperatures[J].Applied Soil Ecology,1996,4:5-14 10.1016/0929-1393(96)00106-0
    [24] 申卫博, 张云, 汪自庆, 等. 木材制备生物炭的孔结构分析[J]. 中国粉体技术,2015,21(2):24-27
    [25] MANDAL S, THANGARAJAN R, BOLAN N S, et al.Biochar-induced concomitant decrease in ammonia volatilization and increase in nitrogen use efficiency by wheat [J].Chemosphere,2016,142:120-127 10.1016/j.chemosphere.2015.04.086
    [26] 靖彦, 陈效民, 李秋霞, 等.施用生物质炭对红壤中硝态氮垂直运移的影响及其模拟[J]. 应用生态学报,2014,25(11):3161-3167
    [27] KNOWLES O A, ROBINSON B H, CONTANGELO A, et al.Biochar for the mitigation of nitrate leaching from soil amended with biosolids[J].Science of the Total Environment,2011,409(17):3206-3210 10.1016/j.scitotenv.2011.05.011
    [28] 孙刚, 房岩, 安永辉, 等. 泥鳅对水田上覆水中氮素动态的生物扰动效应[J].生态与农村环境学报,2009,25(2):39-43
    [29] JEFFERY S, VERHEIJEN F G A, VEIDE M, et al.A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis[J].Agriculture, Ecosystems and Environment,2011,144:175-187 10.1016/j.agee.2011.08.015
    [30] KAMMANN C I, LINSEL S, G??LING J W, et al.Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil-plant relations[J].Plant and Soil,2011,345:195-210 10.1007/s11104-011-0771-5
    [31] 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响[J].作物学报,2013,39(8):1445-1451
    [32] FENG Z J, ZHU L Z.Impact of biochar on soil N2O emissions under different biochar-carbon/fertilizer-nitrogen ratios at a constant moisture condition on a silt loam soil [J].Science of the Total Environment,2017,584-585:776-782 10.1016/j.scitotenv.2017.01.115
  • 加载中
计量
  • 文章访问数:  3340
  • HTML全文浏览数:  3041
  • PDF下载数:  303
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26
徐德福, 李振威, 李映雪, 潘潜澄, 陈晓艺, 王琪飞, 李鑫, 管益东. 不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响[J]. 环境工程学报, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070
引用本文: 徐德福, 李振威, 李映雪, 潘潜澄, 陈晓艺, 王琪飞, 李鑫, 管益东. 不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响[J]. 环境工程学报, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070
XU Defu, LI Zhengwei, LI Yingxue, PAN Qiancheng, CHEN Xiaoyi, WANG Qifei, LI Xin, GUAN Yidong. Effects of different sizes of biochar and loach on plant root morphology and nitrification and denitrification in constructed wetland[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070
Citation: XU Defu, LI Zhengwei, LI Yingxue, PAN Qiancheng, CHEN Xiaoyi, WANG Qifei, LI Xin, GUAN Yidong. Effects of different sizes of biochar and loach on plant root morphology and nitrification and denitrification in constructed wetland[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1917-1925. doi: 10.12030/j.cjee.201711070

不同粒径生物炭和泥鳅对人工湿地植物根系形态及基质硝化与反硝化能力的影响

  • 1. 江苏省大气环境与装备技术协同创新中心,南京 210044
  • 2. 江苏省大气环境监测与污染控制高技术研究重点实验室,南京 210044
  • 3. 南京信息工程大学环境科学与工程学院,南京 210044
基金项目:

江苏省自然科学基金资助项目(BK20141477)

教育部留学回国人员科研启动基金资助项目(2014S048)

江苏高校“青蓝工程”项目(20161507)

江苏省“六大人才高峰”资助项目(R2016L06)

摘要: 向人工湿地中加入2种粒径(粒径1~2 mm和粒径<1 mm)生物炭和泥鳅,研究了不同粒径生物炭和泥鳅对湿地植物根系形态和基质硝化与反硝化强度的影响。结果表明,向人工湿地中加入泥鳅和生物炭,降低了基质的氨态氮含量,增加基质的硝态氮含量、硝化强度和反硝化强度;与粒径小(<1 mm)的生物炭相比,添加粒径大(1~2 mm)的生物炭后,湿地基质的氨态氮含量、硝态氮含量和反硝化强度分别降低了46.6%、51.1%和35.4%。加入生物炭和泥鳅均增加了湿地植物总根长和总根体积,然而与粒径小的生物炭相比,添加粒径大的生物炭后,人工湿地中植物总根长和总根体积分别降低了15.1%和6.8%。基质硝态氮含量与人工湿地中植物总根长和总根体积分别呈显著相关关系(α = 0.01)。结果表明,生物炭提高了人工湿地基质硝化强度,有利于硝态氮的生成,促进人工湿地中植物根的生长,增加了总根长和总根体积。

English Abstract

参考文献 (32)

返回顶部

目录

/

返回文章
返回