涂料废渣水热减量及其产物特性

游继光, 李响, 薛罡, 刘振鸿. 涂料废渣水热减量及其产物特性[J]. 环境工程学报, 2018, 12(5): 1557-1564. doi: 10.12030/j.cjee.201711025
引用本文: 游继光, 李响, 薛罡, 刘振鸿. 涂料废渣水热减量及其产物特性[J]. 环境工程学报, 2018, 12(5): 1557-1564. doi: 10.12030/j.cjee.201711025
YOU Jiguang, LI Xiang, XUE Gang, LIU Zhenhong. Hydrothermal reduction of paint residue and properties of products[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1557-1564. doi: 10.12030/j.cjee.201711025
Citation: YOU Jiguang, LI Xiang, XUE Gang, LIU Zhenhong. Hydrothermal reduction of paint residue and properties of products[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1557-1564. doi: 10.12030/j.cjee.201711025

涂料废渣水热减量及其产物特性

  • 基金项目:

    国家自然科学基金资助项目(51508084)

    江苏省自然科学基金资助项目(BK20150434)

Hydrothermal reduction of paint residue and properties of products

  • Fund Project:
  • 摘要: 采用水热技术处理涂料废渣,考察了水热温度、反应时间、含水率和投碱量对涂料废渣减量及其产物特性的影响,并用SEM、元素分析对涂料废渣进行表征。实验结果表明:随着水热温度的升高及时间的延长,涂料废渣减量效果及水热液中COD、TN浓度不断增加,固体产物的热值也随之增加,而含水率对涂料废渣减量的影响不大;随着碱投加量的增加,涂料废渣减量效果和水热液中COD、TN浓度逐渐提高,固体产物的热值呈不规则变化。水热温度220 ℃、水热时间4 h、含水率77.5%、投碱量0.17 g(NaOH,投加量以每克干物质(DS)计)为涂料废渣减量的最佳反应条件。在最优条件下,总减量率和干重减量率分别为79.1%和52.1%,含水率为47.2%。水热固体产物热值较高,可以作燃料为其他工艺提供热能。
  • 加载中
  • [1] VAAJASAARI K,KULOVAARA M,JOUTTI A,et al.Hazardous properties of paint residues from the furniture industry[J].Journal of Hazardous Materials,2004,106(2/3):71-79 10.1016/ j.jhazmat.2003.11.004
    [2] 袁园,汪晓雷.漆渣的循环再利用[J].再生资源与循环经济,2015,8(1):34-37
    [3] 曹桂清,杨志伟.油漆废渣回收再生利用[J].佛山科学技术学院学报(自然科学版),2012,30(4):81-83
    [4] 胡芝娟,李海龙,赵亮,等.水泥窑协同处置废弃物技术研究及工程实例[J].中国水泥,2011(4):45-49
    [5] 钱晓荣,唐帆,董悦,杨双. 微生物降解油漆废渣技术综述[C]//中国环境科学学会.2014年中囯环境科学学术学术年会论文集.成都,2014:5792-5795
    [6] NEYENS E,BAEYENS J.A review of thermal sludge pre-treatment processes to improve dewaterability[J].Journal of Hazardous Materials,2003,98(1/2/3):51-67 10.1016/S0304-3894(02)00320-5
    [7] 万晓,张妍,张超,等.水热技术在污泥减量化和资源化中的应用[J].中国建设信息(水工业市场),2010(8):55-57
    [8] LIU Y,TAY J H.Strategy for minimization of excess sludge production from the activated sludge process[J].BiotechnologyAdvances,2001,19(2):97-107 10.1016/S0734-9750(00)00066-5
    [9] PARSHETTI G K,LIU Z G,JAIN A,et al.Hydrothermal carbonization of sewage sludge for energy production with coal[J].Fuel,2013,111:201-210 10.1016/j.fuel.2013.04.052
    [10] 赵丹,张琳,郭亮,等. 水热碳化与干法碳化对剩余污泥的处理比较[J]. 环境科学与技术,2015,38(10): 78-83
    [11] 王在钊,贾通通,王蛟秦,等. 水热预处理对污泥理化性质的影响[J].环境工程技术学报,2016, 6(5):440-446
    [12] BOUGRIER C,DELGENES J P,CARRERE H.Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion [J].Chemical Engineering Journal,2008,139(2):236-244 10.1016/j.cej.2007.07.099
    [13] 宜慧,韩芸,李玉友,等. 碱解+低温水热预处理改善剩余污泥中温厌氧消化性能工艺[J]. 环境工程学报,2014,8(9):3927-3932
    [14] 刘金凤,盛广宏,王诗生,等. 水热处理对污泥性质的影响[J]. 环境污染与防治,2013,35(11):71-76
    [15] 李洋洋,李欢,金宜英,等. 碱热联合处理用于污泥强化脱水[J]. 高校化学工程学报,2010,24(4):714-718
    [16] 甘雁飞,周宁娟,张若晨,等. 废水处理厂剩余污泥水热减量及改善脱水性能的研究[J].环境工程,2017,35(4):91-96 10.13205/j.hjgc.201704019
    [17] 国家环境保护总局. 水和废水监测分析方法[M].4版. 北京: 中国环境科学出版社, 2002: 254-257
    [18] SALIHOGLU G,SALIHOGLU N K.A review on paint sludge from automotive industries: Generation, characteristics and management[J].Journal of Environmental Management,2016,169:223-235 10.1016/j.jenvman.2015.12.039
    [19] 闫秀懿,乔玮,李飘,等. 含油污泥的水热法减量处理[J].化工环保,2014,34(4):340-343
    [20] 黄维,范同祥. 水热碳化法的研究进展[J]. 材料导报,2014,28(S1):131-135
    [21] 钱原吉,吴占松. 油漆废渣的热解特性与热解工艺[J]. 清华大学学报(自然科学版),2008,48(2):236-239
    [22] 姜雨生,陶能烨,李继荣. 油漆废渣机械脱水研究[C]//中国环境科学学会.2014年中囯环境科学学会学术年会论文集.成都,2014:5846-5851
    [23] 荀锐,王伟,乔玮,尹可清. 城市污泥处理现状与强化脱水的水热减量化技术[J]. 环境卫生工程,2008,16(2):28-32
    [24] 盛广宏,陈蓓蓓,刘金凤. 热碱处理破解污泥效果研究[J]. 环境科技,2013,26(2):38-42
    [25] SEVILLA M, FUERTES A B.Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J].Chemistry,2009,15(16):4195-4203 10.1002/chem.200802097
    [26] MURSITO A T,HIRAJIMA T,SASAKI K.Upgrading and dewatering of raw tropical peat by hydrothermal treatment[J].Fuel,2010,89(3):635-641 10.1016/j.fuel.2009.07.004
    [27] WANG L,LI A.Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering:The dewatering performance and the characteristics of products[J].Water Research,2015,68:291-303 10.1016/j.watres.2014.10.016
    [28] ZHAO P,SHEN Y,GE S,et al.Energy recycling from sewage sludge by producing solid biofuel with hydrothermal carbonization[J].Energy Conversion and Management,2014,78(2):815-821 10.1016/j.enconman.2013.11.026
    [29] SCHUHMACHER J P,HUNTJENS F J,VAN K D W.Chemical structure and properties of coal XXVI studies on artificial coalification[J].Fuel,1960,39:223-234
    [30] XUE T,HUANG X.Releasing characteristics of phosphorus and other substances during thermal treatment of excess sludge [J].Journal of Environmental Sciences,2007,19(10):1153-1158 10.1016/S1001-0742(07)60188-0
  • 加载中
计量
  • 文章访问数:  1817
  • HTML全文浏览数:  1544
  • PDF下载数:  398
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

涂料废渣水热减量及其产物特性

  • 1. 东华大学环境科学与工程学院,上海201620
  • 2. 江苏同盐环保科技有限公司,盐城224000
基金项目:

国家自然科学基金资助项目(51508084)

江苏省自然科学基金资助项目(BK20150434)

摘要: 采用水热技术处理涂料废渣,考察了水热温度、反应时间、含水率和投碱量对涂料废渣减量及其产物特性的影响,并用SEM、元素分析对涂料废渣进行表征。实验结果表明:随着水热温度的升高及时间的延长,涂料废渣减量效果及水热液中COD、TN浓度不断增加,固体产物的热值也随之增加,而含水率对涂料废渣减量的影响不大;随着碱投加量的增加,涂料废渣减量效果和水热液中COD、TN浓度逐渐提高,固体产物的热值呈不规则变化。水热温度220 ℃、水热时间4 h、含水率77.5%、投碱量0.17 g(NaOH,投加量以每克干物质(DS)计)为涂料废渣减量的最佳反应条件。在最优条件下,总减量率和干重减量率分别为79.1%和52.1%,含水率为47.2%。水热固体产物热值较高,可以作燃料为其他工艺提供热能。

English Abstract

参考文献 (30)

目录

/

返回文章
返回