重金属污染土壤旋流洗脱设备的设计及性能评估

孙荣江, 侯峰, 丁焱梁, 耿坤宇, 杨强. 重金属污染土壤旋流洗脱设备的设计及性能评估[J]. 环境工程学报, 2018, 12(4): 1208-1217. doi: 10.12030/j.cjee.201710036
引用本文: 孙荣江, 侯峰, 丁焱梁, 耿坤宇, 杨强. 重金属污染土壤旋流洗脱设备的设计及性能评估[J]. 环境工程学报, 2018, 12(4): 1208-1217. doi: 10.12030/j.cjee.201710036
SUN Rongjiang, HOU Feng, DING Yanliang, GENG Kunyu, YANG Qiang. Design and performance evaluation of soil washing on heavy metal contaminated soil by hydrocyclone[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1208-1217. doi: 10.12030/j.cjee.201710036
Citation: SUN Rongjiang, HOU Feng, DING Yanliang, GENG Kunyu, YANG Qiang. Design and performance evaluation of soil washing on heavy metal contaminated soil by hydrocyclone[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1208-1217. doi: 10.12030/j.cjee.201710036

重金属污染土壤旋流洗脱设备的设计及性能评估

  • 基金项目:

    上海青年科技启明星计划A类(16QA1401200)

    霍英东教育基金会青年教师基金资助项目(151077)

Design and performance evaluation of soil washing on heavy metal contaminated soil by hydrocyclone

  • Fund Project:
  • 摘要: 针对高浓度重金属污染土壤,尤其是污染负荷较高的黏土土壤,传统的物化方法难以实现其高效的洗脱。利用旋流场中土壤颗粒高速自转/公转,实现土壤颗粒污染物的强化快速脱附。土壤旋流洗脱实验分为旋流器的分离性能和单一/复合污染物的脱附性能2部分。在土壤-水体系下,旋流器的最优操作条件为:进口流量0.7 m3·h-1,分流比0.12,固液比为1:20。对于Pb污染物,底流脱附效率均能达到近85%,溢流也能够达到70%。对于Cu污染物,底流和溢流脱附均能达到90%左右。对于Cr(VI)污染物,底流脱附最高能达到60%左右,但溢流洗脱效率极低。复合污染能够在单次通过后脱除Pb、Cu、Cr(VI)等多种重金属污染,且洗脱效果与单一污染洗脱时基本一致。对实际的场地修复具有指导意义。
  • 加载中
  • [1] MOUTSATSOU A, GREGOU M, MATSAS D, et al.Washing as a remediation technology applicable in soils heavily polluted by mining-metallurgical activities[J].Chemosphere, 2006, 63 (10): 1632-1640 10.1016/j.chemosphere.2005.10.015
    [2] 刘少文, 焦如珍, 董玉红, 等. 土壤重金属污染的生物修复研究进展[J]. 林业科学, 2017, 53(5): 146-155 10.11707/j.1001-7488.20170517
    [3] 孙铁珩, 李培军, 周启星. 土壤污染形成机理与修复技术[M]. 北京: 科学出版社, 2005: 208-210
    [4] PENG J F, SONG Y H, YUAN P, et al.The remediation of heavy metals contaminated sediment[J].Journal of Hazardous Materials, 2009, 161(2/3): 633-640 10.1016/j.jhazmat.2008.04.061
    [5] 杭小帅, 周健民, 王火焰, 等. 粘土矿物修复重金属污染土壤[J]. 环境工程学报, 2007, 1(9): 113-120 10.3969/j.issn.1673-9108.2007.09.025
    [6] 杨勇, 何艳明, 栾景丽, 等. 国际污染场地土壤修复技术综合分析[J]. 环境科学与技术, 2012, 35(10): 92-98 10.13227/j.hjkx.2014.04.054
    [7] 王显海, 刘云国, 曾光明, 等.EDTA溶液修复重金属污染土壤的效果及金属的形态变化特征[J]. 环境科学, 2006, 27(5): 1008-1012 10.3321/j.issn:0250-3301.2006.05.035
    [8] WANG G Y, ZHANG S R, XU X X, et al.Heavy metal removal by GLDA washing: Optimization, redistribution, recycling, and changes in soil fertility[J].Science of The Total Environment, 2016, 569/570: 557-568 10.1016/j.scitotenv.2016.06.155
    [9] LJUNG K, SELINUS O, OTABBONG E, et al.Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children[J].Applied Geochemistry, 2006, 21(9): 1613-1624 10.1016/j.apgeochem.2006.05.005
    [10] CL:AIRE.Understanding soil washing [EB/OL]. [2017-10-19]. https://www.claire.co.uk/useful-government-legislation-and-guidance-by-country/78-options-appraisal-info-oa/201-detailed-evaluation-of-remediation-options-info-oa2
    [11] 王鑫杰, 黄锦楼, 刘志强, 等. 超声波辅助化学萃取对某工业场地铅污染土壤修复效果研究[J]. 环境科学, 2013, 34(9): 3704-3708
    [12] SWAMY K M, NARAYANA K L.Ultrasonically assisted leaching[C]//MASON T J, TIEHM A.Advances in sonochemistry, theme issue-ultrasound in environmental protection.New York: Elsevier, 2001
    [13] GAO Y X, DING R, WU S, et al.Influence of ultrasonic waves on the removal of different oil components from oily sludge[J].Environmental Technology, 2015, 36(14): 1771-1775 10.1080/09593330.2015.1010594
    [14] ARAIN M B, KAZI T G, JAMALI M K, et al.Speciation of heavy metals in sediment by conventional, ultrasound and microwave assisted single extraction methods: A comparison with modified sequential extraction procedure[J].Journal of Hazardous Materials, 2008, 154(1/2/3): 998-1006 10.1016/j.jhazmat.2007.11.004
    [15] 刘珑, 王殿生, 曾秋孙, 等. 微波修复石油污染土壤升温特性影响因素的实验研究[J]. 环境工程学报, 2011, 5(4): 898-902
    [16] GRIFFITHS R A.Soil-washing technology and practice[J].Journal of Hazardous Materials, 1995, 40(2): 175-189 10.1016/0304-3894(94)00064-N
    [17] 尹晋, 马小东, 孙红文. 电动修复不同形态铬污染土壤的研究[J]. 环境工程学报, 2008, 2(5): 684-689
    [18] HUANG Y, LI J P, ZHANG Y H, et al.High-speed particle rotation for coating oil removal by hydrocyclone[J].Separation and Purification Technology, 2017, 177: 263-271 10.1016/j.seppur.2016.12.001
    [19] XU Y X, LIU Y, ZHANG Y H, et al.Effect of shear stress on deoiling of oil-contaminated catalysts in a hydrocyclone[J].Chemical Engineering and Technology, 2016, 39(3): 567-575 10.1002/ceat.201500378
    [20] 黄国勇, 付庆灵, 朱俊, 等. 低分子有机酸对土壤中Cu化学形态的影响[J]. 环境科学, 2014, 35(8): 3091-3095 10.13227/j.hjkx.2014.08.036
    [21] 王丹, 魏威, 梁东丽, 等. 土壤铜、铬(Ⅵ)复合污染重金属形态转化及其对生物有效性的影响[J]. 环境科学, 2011, 32(10): 3113-3120
    [22] 庞学诗. 水力旋流器技术与应用[M]. 北京: 中国石化学出版社, 2011: 94-96
    [23] 赵立新, 蒋明虎, 温青, 等. 水力旋流器分离细颗粒的试验研究[J]. 化学工程, 2004, 32(2): 42-46 10.3969/j.issn.1005-9954.2004.02.010
  • 加载中
计量
  • 文章访问数:  2206
  • HTML全文浏览数:  1787
  • PDF下载数:  349
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-04-22

重金属污染土壤旋流洗脱设备的设计及性能评估

  • 1. 华东理工大学机械与动力工程学院,上海 200237
  • 2. 华东理工大学国家环境保护化工过程环境风险评价与控制重点实验室,上海 200237
基金项目:

上海青年科技启明星计划A类(16QA1401200)

霍英东教育基金会青年教师基金资助项目(151077)

摘要: 针对高浓度重金属污染土壤,尤其是污染负荷较高的黏土土壤,传统的物化方法难以实现其高效的洗脱。利用旋流场中土壤颗粒高速自转/公转,实现土壤颗粒污染物的强化快速脱附。土壤旋流洗脱实验分为旋流器的分离性能和单一/复合污染物的脱附性能2部分。在土壤-水体系下,旋流器的最优操作条件为:进口流量0.7 m3·h-1,分流比0.12,固液比为1:20。对于Pb污染物,底流脱附效率均能达到近85%,溢流也能够达到70%。对于Cu污染物,底流和溢流脱附均能达到90%左右。对于Cr(VI)污染物,底流脱附最高能达到60%左右,但溢流洗脱效率极低。复合污染能够在单次通过后脱除Pb、Cu、Cr(VI)等多种重金属污染,且洗脱效果与单一污染洗脱时基本一致。对实际的场地修复具有指导意义。

English Abstract

参考文献 (23)

目录

/

返回文章
返回