混凝-热处理联合MAP法处理高浓度水性油墨印花废水

于晓, 张文哲, 于潘芬, 张宾, 肖本益, 柳荣展. 混凝-热处理联合MAP法处理高浓度水性油墨印花废水[J]. 环境工程学报, 2018, 12(5): 1471-1479. doi: 10.12030/j.cjee.201709218
引用本文: 于晓, 张文哲, 于潘芬, 张宾, 肖本益, 柳荣展. 混凝-热处理联合MAP法处理高浓度水性油墨印花废水[J]. 环境工程学报, 2018, 12(5): 1471-1479. doi: 10.12030/j.cjee.201709218
YU Xiao, ZHANG Wenzhe, YU Panfen, ZHANG Bin, XIAO Benyi, LIU Rongzhan. Combination process of coagulation-heat treatment and MAP for treatment of high concentration water-based ink printing wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1471-1479. doi: 10.12030/j.cjee.201709218
Citation: YU Xiao, ZHANG Wenzhe, YU Panfen, ZHANG Bin, XIAO Benyi, LIU Rongzhan. Combination process of coagulation-heat treatment and MAP for treatment of high concentration water-based ink printing wastewater[J]. Chinese Journal of Environmental Engineering, 2018, 12(5): 1471-1479. doi: 10.12030/j.cjee.201709218

混凝-热处理联合MAP法处理高浓度水性油墨印花废水

  • 基金项目:

    国家自然科学基金青年基金资助项目(51508285)

    山东省自然科学基金资助项目(ZR2015PE013)

Combination process of coagulation-heat treatment and MAP for treatment of high concentration water-based ink printing wastewater

  • Fund Project:
  • 摘要: 采用混凝-热处理联合磷酸铵镁沉淀法(MAP)处理高浓度水性油墨印花废水,研究了各工艺参数对该废水处理效果的影响。研究表明:混凝-热处理可降低废水的COD和色度,实现固液快速分离,有效降低混凝污泥含水率;MAP法可有效降低混凝-热处理后废水的氨氮含量,药剂摩尔比和反应体系pH对氨氮去除效果影响较大。当投加15 mL·L-1的40%(体积分数)混凝剂NS-1、在70 ℃下热处理50 min的条件下,废水的COD去除率达到93.65%,色度去除率达到99.97%,而混凝污泥含水率可降到56.62%;向混凝-热处理后废水中投加硫酸镁和磷酸氢二钠,当药剂摩尔比为1.1:0.9:1(Mg:P:N)、体系pH为9.5、在20 ℃反应30 min的条件下,废水的氨氮去除率可达96.27%,剩余总磷低于12 mg·L-1。
  • 加载中
  • [1] 牛倩倩, 刘昕. 水性油墨常用连结料性能[J]. 今日印刷,2017(3):61-62
    [2] 张磊, 张永丽, 梁英. 混凝-BAF处理水性油墨废水实验[J]. 环境工程,2015,33(4):1-3
    [3] HUSSAIN A, LEBRUN F M, TARTAKOVSKY B.Removal of organic carbon and nitrogen in a membraneless flow-through microbial electrolysis cell[J].Enzyme and Microbial Technology,2017,102:41-48 10.1016/j.enzmictec.2017.03.013
    [4] NOONPUI S, THIRAVETYAN P, NAKBANPOTE W, et al.Color removal from water-based ink wastewater by bagasse fly ash, sawdust fly ash and activated carbon[J].Chemical Engineering Journal,2010,162(2):503-508
    [5] BALEA A, MONTE M C, FUENTE E, et al.Application of cellulose nanofibers to remove water-based flexographic inks from wastewaters[J].Environmental Science and Pollution Research,2017,24(5):5049-5059 10.1007/s11356-016-8257-x
    [6] 张金朝, 张文晖. 混凝-絮凝工艺处理水性油墨废水[J]. 中国造纸,2016,35(3):13-18
    [7] 蔡丽云, 王佳嘉. 混凝-生化工艺处理油墨和胶浆废水工程实例[J]. 给水排水,2016,42(5):62-66 10.3969/j.issn.1002-8471.2016.05.014
    [8] CHAI L Y, PENG C , MIN X B, et al.Two-sectional struvite formation process for enhanced treatment of copper–ammonia complex wastewater[J].Transactions of Nonferrous Metals Society of China,2017,27(2):457-466 10.1016/S1003-6326(17)60052-9
    [9] 宗刚, 杨凯. 资源化回收废水中氨氮的研究进展[J]. 应用化工,2016,45(12):2336-2338
    [10] 欧昌海, 郭雪松, 肖本益, 等. 镁盐对高速铁路列车粪便污水中磷回收的响应面法优化研究[J]. 环境科学学报,2017,37(1):213-218 10.13671/j.hjkxxb.2016.0184
    [11] 柳荣展,张晓东,张宾,等.一种油墨废液处理及其污泥脱水的方法:ZL201410083361.7[P]. 2017-02-22
    [12] 中华人民共和国国家环境保护局,北京市化工研究院.水质 化学需氧量的测定 重铬酸盐法:GB 11914-1989[S]. 北京: 中国环境科学出版社,1990
    [13] 中华人民共和国国家环境保护局,中国纺织大学.水质 色度的测定:GB 11903-1989[S]. 北京: 中国环境科学出版社,1990
    [14] 中华人民共和国环境保护部,沈阳市环境监测中心.水质 氨氮的测定 纳氏试剂分光光度法:HJ 535-2009[S]. 北京: 中国环境科学出版社,2010
    [15] 中华人民共和国国家环境保护局,北京市环保监测中心.水质 总磷的测定 钼酸铵分光光度法:GB 11893-1989[S]. 北京: 中国环境科学出版社,1990
    [16] 中华人民共和国建设部,青岛市城市排水监测站.城市污水处理厂污泥检验方法:CJ/T 221-2005[S]. 北京: 中国环境科学出版社,2006
    [17] 王顺, 柳荣展, 张宾,等. 混凝-热固化-微电解法处理高浓度水性油墨废水[J]. 水处理技术,2015,41(4):122-124
    [18] XIA C, YUE Q Y, SONG F Y, et al.A study on the deep dewatering of urban dewatered-sewage sludge by aluminum chloride[J].Desalination and Water Treatment,2016,57(2):545-552 10.1080/19443994.2014.967728
    [19] LI J, LIU L, LIU J, et al.Effect of adding alum sludge from water treatment plant on sewage sludge dewatering[J].Journal of Environmental Chemical Engineering,2016,4(1):746-752 10.1016/j.jece.2015.07.021
    [20] 曹秉帝, 张伟军, 王东升, 等. 污泥絮凝调理对絮体理化性质的影响机制研究[J]. 环境污染与防治,2016,38(2):29-33
    [21] 王彩霞, 张伟军, 王东升, 等. 过氧乙酸和亚铁联用调质强化活性污泥过滤脱水性能[J]. 环境工程学报,2015,9(8):3975-3984
    [22] 陈功, 朱晶莹, 戈钧, 等.PEO-PPO-PEO 嵌段共聚物温敏特性及其影响机制的分子模拟[J]. 化工学报,2014,65(10):4157-4167
    [23] ERIKSSON R, MERTA J, ROSENHOLM J B.The calcite/water interface II.Effect of added lattice ions on the charge properties and adsorption of sodium polyacrylate[J].Journal of Colloid and Interface Science,2008,326(2):396-402 10.1016/j.jcis.2008.06.047
    [24] PI P H, CHEN X, WEN X F, et al.Preparaten and characterization of ambient-temperature self-crosslinkable water-soluble acrylic resin for PE film ink[J].Journal of Coatings Technology and Research,2016,13(1):73-80
    [25] 韩琦, 薛爽, 刘影, 等. 河流底泥中溶解性有机物的释放途径及影响因素研究[J]. 中国环境科学,2016,36(12):3737-3749
    [26] LI C X, WANG X D, ZHANG G Y, et al.Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification[J].Water Research,2017,117:49-57 10.1016/j.watres.2017.03.047
    [27] CHEN Z, ZHANG W J, WANG D S, et al.Enhancement of activated sludge dewatering performance by combined composite enzymatic lysis and chemical re-flocculation with inorganic coagulateds: Kinetics of enzymatic reaction and re-flocculation morphology[J].Water Research,2015,83:367-376 10.1016/j.watres.2015.06.026
    [28] ZHANG J Z, YUE Q Y, XIA C , et al.The study of Na2SiO3 as conditioner used to deep dewater the urban sewage dewatered sludge by filter press[J].Separaten and Purification Technology,2017,174:331-337 10.1016/j.seppur.2016.11.004
    [29] 张涛, 呼世斌, 周丹. 水性油墨废水的混凝工艺实验[J]. 环境科学与技术,2005,28(3):93-95
    [30] HIRASAWA I, KANEKO S, KANAI Y, et al.Crystallization phenomena of magnesium ammonium phosphate (MAP) in a fluidized-bed-type crystallizer[J].Journal of Crystal Growth,2002,237-239(1):2183-2187 10.1016/S0022-0248(01)02268-0
    [31] KATAKI S, WEST H, CLARKE M, et al.Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential[J].Resources, Conservation and Recycling,2016,107:142-156 10.1016/j.resconrec.2015.12.009
    [32] 米海蓉, 成功, 李士松,等. 基于热力学分析的MAP法处理模拟氮磷废水研究[J]. 哈尔滨工程大学学报,2016,37(11):1514-1519 10.11990/jheu.201511050
    [33] HUANG H M, LIU J H, ZHANG P, et al.Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J].Chemical Engineering Journal,2017,307:696-706 10.1016/j.cej.2016.08.134
    [34] UYSAL A, YILMAZEL Y D, DEMIRER G N.The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester[J].Journal of Hazardous Materials,2010,181(1/2/3):248-254 10.1016/j.jhazmat.2010.05.004
    [35] 蒋京东, 徐远, 马三剑,等. 鸟粪石结晶沉淀法处理氨氮废水[J]. 水处理技术,2008,34(2):45-49
    [36] 王浩, 成官文, 宋晓薇,等. 鸟粪石沉淀法处理高氨氮稀土废水[J]. 水处理技术,2013,39(7):108-111 10.3969/j.issn.1000-3770.2013.07.027
  • 加载中
计量
  • 文章访问数:  2243
  • HTML全文浏览数:  1929
  • PDF下载数:  244
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-05-19

混凝-热处理联合MAP法处理高浓度水性油墨印花废水

  • 1. 青岛大学纺织服装学院,青岛 266071
  • 2. 中国科学院生态环境研究中心,北京 100085
基金项目:

国家自然科学基金青年基金资助项目(51508285)

山东省自然科学基金资助项目(ZR2015PE013)

摘要: 采用混凝-热处理联合磷酸铵镁沉淀法(MAP)处理高浓度水性油墨印花废水,研究了各工艺参数对该废水处理效果的影响。研究表明:混凝-热处理可降低废水的COD和色度,实现固液快速分离,有效降低混凝污泥含水率;MAP法可有效降低混凝-热处理后废水的氨氮含量,药剂摩尔比和反应体系pH对氨氮去除效果影响较大。当投加15 mL·L-1的40%(体积分数)混凝剂NS-1、在70 ℃下热处理50 min的条件下,废水的COD去除率达到93.65%,色度去除率达到99.97%,而混凝污泥含水率可降到56.62%;向混凝-热处理后废水中投加硫酸镁和磷酸氢二钠,当药剂摩尔比为1.1:0.9:1(Mg:P:N)、体系pH为9.5、在20 ℃反应30 min的条件下,废水的氨氮去除率可达96.27%,剩余总磷低于12 mg·L-1。

English Abstract

参考文献 (36)

目录

/

返回文章
返回