猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响

ALOUN Manosane, 杨朝晖, 徐锐, 李娟, 张益杰, 周焱, 王庆鹏, 柏洋. 猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响[J]. 环境工程学报, 2017, 11(11): 6014-6021. doi: 10.12030/j.cjee.201702001
引用本文: ALOUN Manosane, 杨朝晖, 徐锐, 李娟, 张益杰, 周焱, 王庆鹏, 柏洋. 猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响[J]. 环境工程学报, 2017, 11(11): 6014-6021. doi: 10.12030/j.cjee.201702001
ALOUN Manosane, YANG Zhaohui, XU Rui, LI Juan, ZHANG Yijie, ZHOU Yan, WANG Qingpeng, BAI Yang. Impacts of different mix ratio of pig manure and dewatered sludge on anaerobic digestion performance and microbial community diversity[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6014-6021. doi: 10.12030/j.cjee.201702001
Citation: ALOUN Manosane, YANG Zhaohui, XU Rui, LI Juan, ZHANG Yijie, ZHOU Yan, WANG Qingpeng, BAI Yang. Impacts of different mix ratio of pig manure and dewatered sludge on anaerobic digestion performance and microbial community diversity[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6014-6021. doi: 10.12030/j.cjee.201702001

猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响

  • 基金项目:

    国家自然科学基金资助项目(51578223,51521006,51378189)

  • 中图分类号: X705

Impacts of different mix ratio of pig manure and dewatered sludge on anaerobic digestion performance and microbial community diversity

  • Fund Project:
  • 摘要: 研究采用猪粪与城市污水厂脱水污泥以5种不同VS比例(1:0,2:1,1:1,1:2和0:1)进行中温厌氧消化实验,以研究反应器在不同配比下的产甲烷特性,同时结合16S rRNA扩增子测序技术分析了消化过程中微生物组成的多样性变化。实验结果表明,添加猪粪能明显提升消化效率,当猪粪与污泥以2:1混合消化时甲烷累计产量最高可达684 L·kg-1VS,比污泥单独消化提升了120%。2:1组的VS去除率可达63.1%,且运行稳定,没有出现明显的酸抑制现象。随着猪粪的添加,优势菌种演替为Bacteroides、Clostridium、Methanosaeta和Methanosarcina。冗余分析结果表明共消化组中甲烷产生主要以氢营养型途径为主。添加猪粪参与共消化能明显提高微生物群落多样性,促进菌种间的协同作用,从而提升有机质转化效率。
  • 加载中
  • [1] XU R, YANG Z H, CHEN T, et al. Anaerobic co-digestion of municipal wastewater sludge with food waste under different fat, oil, grease contents:study on reactor performance and extracellular polymeric substances[J]. Rsc Advances, 2015, 5(125):103547-103556
    [2] YANG Z, XU R, ZHENG Y, et al. Characterization of extracellular polymeric substances and microbial diversity in anaerobic co-digestion reactor treated sewage sludge with fat, oil, grease[J]. Bioresource Technology, 2016, 212:164-73
    [3] GOU C, YANG Z, HUANG J, et al. Effects of temperature and organic loading rate on the performance and microbial community of anaerobic co-digestion of waste activated sludge and food waste[J]. Chemosphere, 2014, 105(0):146-51
    [4] TANG L, ZENG G M, SHEN G L, et al. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor[J]. Environmental Science & Technology, 2008, 42(4):1207-1212
    [5] ZHANG W, WEI Q, WU S, et al. Batch anaerobic co-digestion of pig manure with dewatered sewage sludge under mesophilic conditions[J]. Applied Energy, 2014, 128(3):175-183
    [6] RAJAGOPAL R, MASS D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143(17):632-641
    [7] YANG G, ZHANG G, WANG H. Current state of sludge production, management, treatment and disposal in China[J]. Water Research, 2015, 78:60-73
    [8] 梁银春, 黄逸鑫, 郭晓博, 等. 不同碳氮比对干法厌氧消化产沼气特性及细菌群落多样性的影响[J]. 环境工程学报, 2016, 10(10):5978-5986
    [9] DENG L, ZENG G, FAN C, et al. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil[J]. Applied Microbiology & Biotechnology, 2015, 99(19):1-11
    [10] ZHENG Y, XIAO Y, YANG Z, et al. The bacterial communities of bioelectrochemical systems associated with the sulfate removal under different pHs[J]. Process Biochemistry, 2014, 49(8):1345-1351
    [11] ZHENG Y, WANG C, ZHENG Z Y, et al. Ameliorating acidic soil using bioelectrochemistry systems[J]. Rsc Advances, 2014, 4(4):62544-62549
    [12] KAFLE G K, KIM S H. Effects of chemical compositions and ensiling on the biogas productivity and degradation rates of agricultural and food processing by-products[J]. Bioresource Technology, 2013, 142(8):553-561
    [13] BONMAT A, FLOTATS X, MATEU L, et al. Study of thermal hydrolysis as a pretreatment to mesophilic anaerobic digestion of pig slurry[J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2001, 44(4):109-116
    [14] LUOSTARINEN S, LUSTE S, SILLANP M. Increased biogas production at wastewater treatment plants through co-digestion of sewage sludge with grease trap sludge from a meat processing plant[J]. Bioresource Technology, 2009, 100(1):79-85
    [15] ATHANASOULIA E, MELIDIS P, AIVASIDIS A. Optimization of biogas production from waste activated sludge through serial digestion[J]. Renewable Energy, 2012, 47(6):147-151
    [16] TAKASHIMA M. Examination on Process Configurations Incorporating Thermal Treatment for Anaerobic Digestion of Sewage Sludge[J]. Journal of Environmental Engineering, 2008, 134(7):543-549
    [17] 郭晓慧. 餐厨垃圾厌氧消化产甲烷工艺特性及其微生物学机理研究[D]杭州:浙江大学, 2014
    [18] XIE S, LAWLOR P G, FROST J P, et al. Effect of pig manure to grass silage ratio on methane production in batch anaerobic co-digestion of concentrated pig manure and grass silage[J]. Bioresource Technology, 2011, 102(10):5728-5733
    [19] BOROWSKI S, DOMAN'SKI J, WEATHERLEY L. Anaerobic co-digestion of swine and poultry manure with municipal sewage sludge[J]. Waste Management, 2013, 34(2):513-521
    [20] 陈广银, 郑正, 常志州,等. 不同氮源对麦秆厌氧消化过程的影响[J]. 中国环境科学, 2011, 31(1):73-77
    [21] 李玉春, 陈广银, 常志州, 等. 碳氮比对稻秸厌氧发酵过程的影响[J]. 中国沼气, 2012, 30(4):25-29
    [22] LI D, LIU S, MI L, et al. Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and pig manure[J]. Bioresource Technology, 2015, 187:319-326
    [23] ZHOU S, NIKOLAUSZ M, ZHANG J, et al. Variation of the microbial community in thermophilic anaerobic digestion of pig manure mixed with different ratios of rice straw[J]. Journal of Bioscience and Bioengineering, 2016, 122(3):334-340
    [24] FLINT H J, BAYER E A, RINCON M T, et al. Polysaccharide utilization by gut bacteria:potential for new insights from genomic analysis[J]. Nature Reviews Microbiology, 2008, 6(2):121-31
    [25] LIM J W, CHIAM J A, WANG J Y. Microbial community structure reveals how microaeration improves fermentation during anaerobic co-digestion of brown water and food waste[J]. Bioresour Technology, 2014, 171:132-138
    [26] FERRY J G. Enzymology of one-carbon metabolism in methanogenic pathways[J]. Fems Microbiology Reviews, 1999, 23(1):13-38
    [27] DEMIREL B, SCHERER P. The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane:A review.[J]. Reviews in Environmental Science and Bio/Technology, 2008, 7(2):173-190
  • 加载中
计量
  • 文章访问数:  1688
  • HTML全文浏览数:  1408
  • PDF下载数:  208
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-03-15
  • 刊出日期:  2017-11-15

猪粪与污泥不同配比对其厌氧共消化与微生物多样性的影响

  • 1. 湖南大学环境科学与工程学院, 环境生物与控制教育部重点实验室, 长沙 410082
基金项目:

国家自然科学基金资助项目(51578223,51521006,51378189)

摘要: 研究采用猪粪与城市污水厂脱水污泥以5种不同VS比例(1:0,2:1,1:1,1:2和0:1)进行中温厌氧消化实验,以研究反应器在不同配比下的产甲烷特性,同时结合16S rRNA扩增子测序技术分析了消化过程中微生物组成的多样性变化。实验结果表明,添加猪粪能明显提升消化效率,当猪粪与污泥以2:1混合消化时甲烷累计产量最高可达684 L·kg-1VS,比污泥单独消化提升了120%。2:1组的VS去除率可达63.1%,且运行稳定,没有出现明显的酸抑制现象。随着猪粪的添加,优势菌种演替为Bacteroides、Clostridium、Methanosaeta和Methanosarcina。冗余分析结果表明共消化组中甲烷产生主要以氢营养型途径为主。添加猪粪参与共消化能明显提高微生物群落多样性,促进菌种间的协同作用,从而提升有机质转化效率。

English Abstract

参考文献 (27)

目录

/

返回文章
返回