处理垃圾焚烧渗滤液的耐盐性优势菌筛选及特性

高严, 纪嘉阳, 孙德智. 处理垃圾焚烧渗滤液的耐盐性优势菌筛选及特性[J]. 环境工程学报, 2017, 11(9): 4944-4951. doi: 10.12030/j.cjee.201609051
引用本文: 高严, 纪嘉阳, 孙德智. 处理垃圾焚烧渗滤液的耐盐性优势菌筛选及特性[J]. 环境工程学报, 2017, 11(9): 4944-4951. doi: 10.12030/j.cjee.201609051
GAO Yan, JI Jiayang, SUN Dezhi. Isolation and characteristic of dominant salt-tolerant strains from incineration leachate treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4944-4951. doi: 10.12030/j.cjee.201609051
Citation: GAO Yan, JI Jiayang, SUN Dezhi. Isolation and characteristic of dominant salt-tolerant strains from incineration leachate treatment[J]. Chinese Journal of Environmental Engineering, 2017, 11(9): 4944-4951. doi: 10.12030/j.cjee.201609051

处理垃圾焚烧渗滤液的耐盐性优势菌筛选及特性

  • 基金项目:

    北京林业大学青年教师科学研究中长期项目(2015ZCQ-HJ-01)

  • 中图分类号: X703

Isolation and characteristic of dominant salt-tolerant strains from incineration leachate treatment

  • Fund Project:
  • 摘要: 采用改良的Gibbons培养基从处理垃圾焚烧渗沥液的EGSB反应器中筛选分离获得3株具有耐盐性的COD降解优势菌(Strain1、Strain2和Strain3),研究了优势菌的最佳生长条件;利用16S rDNA技术确定了优势菌的种属;采用静态实验方法研究了温度和接种量对优势菌COD降解性能的影响并通过菌种复配进一步提升COD降解效率;研究确定了Strain1(Bacillus属)、Strain2(Clostridium属)和Strain3(Enterobacter属)的最适生长条件。实验结果表明,3种优势菌在30~35℃时COD去除率最好。在Strain1和Strain2接种比例为1:2,进水COD为20 000 mg·L-1时,COD去除率达到54.3%,为最优接种组合。
  • 加载中
  • [1] CHOU J D, WEY M Y, LIANG H H, et al. Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators[J]. Journal of Hazardous Materials, 2009, 168(1):197-202
    [2] 中国环境保护产业协会城市生活垃圾处理委员会.我国城市生活垃圾处理行业2010年发展综述[J].中国环保产业, 2011(4):32-37
    [3] 林文华.垃圾焚烧电厂二恶英的产生及控制[J].广东化工,2016,43(14):179-181
    [4] 李华,赵由才,王罗春.垃圾堆酵对焚烧厂垃圾热值的影响[J].上海环境科学,2000, 19(2):89-91
    [5] ZHANG W L, ZHANG L, LI A M. Anaerobic co-digestion of food waste with MSW incineration plant fresh leachate:Process performance and synergistic effects[J]. Chemical Engineering Journal, 2015,259:795-805
    [6] 叶杰旭,穆永杰,孙德智,等.生活垃圾焚烧厂沥滤液处理技术研究进展[J]. 环境科学与技术,2012, 35(S1):134-139
    [7] LIU Z, DANG Y, SUN D Z, et al. Inhibitory effect of high NH4+-N concentration on anaerobic biotreatment of fresh leachate from a municipal solid waste incineration plant[J]. Waste Management, 2015, 43:188-195
    [8] DANG Y, ZHANG R, SUN D Z, et al. Calcium effect on anaerobic biological treatment of fresh leachate with extreme high calcium concentration[J].International Biodeterioration & Biodegradation, 2015,95:76-83
    [9] KUMAR G, BAKONVI P, KOBAYASHI T, et al. Enhancement of biofuel production via microbial augmentation:The case of dark fermentative hydrogen[J]. Renewable and Sustainable Energy Reviews, 2016, 57:879-891
    [10] HESNAWI R, DAHMANI K, AL-SWAYAH A, et al. Biodegradation of municipal wastewater with local and commercial bacteria[J]. Procedia Engineering, 2014,70:810-814
    [11] 全向春,刘佐才,范广裕,等.生物强化技术及其在废水治理中的应用[J]. 环境科学研究, 1999,12(2):22-27
    [12] HERRERO M, STUCKEY D C. Bioaugmentation and its application in wastewater treatment:A review[J]. Chemosphere, 2015, 140:119-128
    [13] RUNGROD J, KONSTANTINOS K,EAKALAK K. Immobilized-cell-augmented activated sludge process for treating wastewater containing hazardous compounds[J]. Water Environment Research, 2007, 79(5):461-471
    [14] CHEN M X, FAN R, ZOU W H, et al. Bioaugmentation for treatment of full scale diethylene glycol monobutyl ether wastewater by Serratia sp. BDG-2[J]. Journal of Hazardous Materials, 2016, 309:20-26
    [15] WENDEROTH D F, ROSENBROCK P, ABRAHAM W R, et al. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater[J]. Microbial Ecology, 2003, 46:161-176
    [16] GUO L, JI M, DONG H Y, et al. Screening and degradation performances of dominant strains in high-salinity landfill leachate[J]. Applied Microbiology and Biotechnology, 2009, 84(2):357-364
    [17] AGGELIS G, ICONOMOU D, CHRITOU M, et al. Phenolic removal in model olive oil mill wastewater using Pleyrotus ostreatus in bioreactor cultures and biological evaluation of the process[J]. Water Research, 2003, 37(16):3897-3904
    [18] TAKENO K, YAMAOKA Y, SASAKI K. Treatment of oil-containing sewage wastewater using immobilized photosynthetic bacteria[J]. World Journal of Microbiology & Biotechnology, 2005, 21(8/9):1385-1391
    [19] NAKASAKI K, SHOGO A, MIMOTO H. Inoculation of Pichia kudriavzevii RB1 degrades the organic acids present in raw compost material and accelerates composting[J]. Bioresource Technology, 2013, 144:521-528
    [20] TRAN Q, MIMOTO H, NAKASAKI K. Inoculation of lactic acid bacterium accelerates organic matter degradation during composting[J]. International Biodeterioration & Biodegradation, 2015, 104:377-383
    [21] 邱忠平,杨立中,刘丹,等.垃圾渗滤液COD降解菌株的筛选及其降解特性初探[J].四川环境, 2007, 26(1):5-8
    [22] 邱忠平,杨立中,刘丹,等.优势菌株对垃圾渗滤液COD的降解特性[J].西南交通大学学报,2006, 41(2):264-268
    [23] 叶杰旭,党岩,穆永杰,等.EGSB反应器处理城市生活垃圾沥滤液[J].环境工程学报,2012, 6(7):2321-2327
    [24] DANG Y, LEI Y Q, SUN D Z, et al. Impact of fulvic acids on bio-methanogenic treatment of municipal solid waste incineration leachate[J]. Water Research, 2016, 106:71-78
    [25] LEI Y Q, SUN D Z, DANG Y. Stimulation of methanogenesis in anaerobic digesters treating leachate from a municipal solid waste incineration plant with carbon cloth[J]. Bioresource Technology, 2016, 222:270-276
    [26] 杜连祥,路福平.微生物学实验技术[M].北京:中国轻工业出版社,2005
    [27] 党岩,张瑞,孙德智,等.EGSB处理垃圾焚烧渗沥液及其微生物群落变化[J].中国环境科学,2013,33(6):999-1004
    [28] 党岩.垃圾焚烧厂渗沥液中富里酸对厌氧生物处理的影响及其降解和转化研究[D].北京:北京林业大学, 2016
    [29] XU B, TIAN F X, HU C Y, et al. Chlorination of chlortoluron:Kinetics, pathways and chloroform formation[J]. Chemosphere, 2011, 83(7):909-916
    [30] 林静,谢冰.复合微生物制剂在环境保护中的应用[J].上海化工,2004, 29(12):7-11
  • 加载中
计量
  • 文章访问数:  2380
  • HTML全文浏览数:  1834
  • PDF下载数:  682
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-12-15
  • 刊出日期:  2017-08-26

处理垃圾焚烧渗滤液的耐盐性优势菌筛选及特性

  • 1. 北京林业大学水体污染源控制技术北京市重点实验室, 污染水体源控与生态修复技术北京市高校工程研究中心, 北京 100083
基金项目:

北京林业大学青年教师科学研究中长期项目(2015ZCQ-HJ-01)

摘要: 采用改良的Gibbons培养基从处理垃圾焚烧渗沥液的EGSB反应器中筛选分离获得3株具有耐盐性的COD降解优势菌(Strain1、Strain2和Strain3),研究了优势菌的最佳生长条件;利用16S rDNA技术确定了优势菌的种属;采用静态实验方法研究了温度和接种量对优势菌COD降解性能的影响并通过菌种复配进一步提升COD降解效率;研究确定了Strain1(Bacillus属)、Strain2(Clostridium属)和Strain3(Enterobacter属)的最适生长条件。实验结果表明,3种优势菌在30~35℃时COD去除率最好。在Strain1和Strain2接种比例为1:2,进水COD为20 000 mg·L-1时,COD去除率达到54.3%,为最优接种组合。

English Abstract

参考文献 (30)

目录

/

返回文章
返回