中药渣不同有机负荷厌氧发酵工艺参数分析
Effect of organic loading on semi-continuous anaerobic fermentation parameters of Chinese medicinal herb residues
-
摘要: 以人参、赤芍和桂皮等混合中药渣为发酵原料,采用全混式厌氧反应器,在中温(35±1)℃,通过半连续厌氧发酵工艺,研究其发酵过程中不同有机负荷,沼气日产气量、甲烷含量、pH值、挥发性有机酸(VFA)和总无机碳(TIC)等参数变化相互关系。结果表明:厌氧消化过程呈现5个阶段,即发酵启动期、增长期、稳定期、超负荷期和恢复期;反应器高效稳定运行可承受的中药渣最大有机负荷为8.0 g TS·(L·d)-1,系统pH值稳定在7.0左右,沼气日产气量8.38 L,容积产气率为1.68 L·(d·L)-1,原料产沼气能力262 mL·(TS g·d)-1,VS去除率为20.69%。有机负荷为10.0 g TS·(L·d)-1时超负荷运行,沼气产量急剧下降,系统运行稳定性被破坏。因此,在中药渣厌氧消化过程中一定要控制有机负荷在最佳数值,实时监测反应器运行过程中的各参数变化,及时做出调整,保证工程的高效稳定运行。Abstract: Biogas fermentation of mixed traditional Chinese medicinal herb residues was carried out with ginseng, red peony root, and cassia bark as starting materials in a continuous stirred tank reactor at the temperature of (35±1) ℃ to study the semi continuous fermentation process. At different organic loading rates, the correlation and changes of biogas production, methane contents, pH values, volatile organic acids (VFA), total inorganic carbon (TIC), and other parameters were tested. The results showed that the anaerobic digestion process for Chinese medicinal herb residues could be divided into the following five stages: the starting period, growth period, stable period, super load period, and recovery period. When the reactors were running efficiently and stably, the maximum organic loading rate of the Chinese medicinal herb residues was 8 g TS·(d·L)-1, and the pH value was stable at 7.0, the biogas average production rate was 1.68 L·(d·L)-1, and the VS removal rate was 20.69%. When the organic loading rate was increased to 10 g TS·(d·L)-1, the system was in overload operation mode, and consequently, system stability was destroyed and the biogas production capacity declined rapidly. Therefore, when subjecting Chinese medicinal herb residues to anaerobic digestion, one must control the organic loading rate at the optimal conditions. This can be accomplished by monitoring the various parameters in real-time and making adjustments to ensure efficient and stable operations in the reactor.
-
[1] 周达彪, 唐懋华. 中药渣农业循环利用模式产业化探讨[J]. 上海蔬菜, 2007 (6): 112-114 [2] 杨绪勤, 袁博, 蒋继宏. 中药渣资源综合再利用研究进展[J]. 江苏师范大学学报(自然科学版), 2015, 33(3): 40-44 [3] 吴东丽, 肖相政, 李岳彬. 中药渣资源化利用现状[J]. 广东化工, 2015, 42(14): 103-105 [4] 吴生文. 药食两用中药渣营养成分分析与膳食纤维提取研究[D]. 广州: 华南理工大学, 2008 [5] CHENG Xiyu, LIU Chunzhao. Enhanced biogas production from herbal-extraction process residues by microwave-assisted alkaline pretreatment[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(1): 127-131 [6] LI Yan, YAN Xiluan, FAN Jieping, et al. Feasibility of biogas production from anaerobic co-digestion of herbal-extraction residues with swine manure[J]. Bioresource Technology, 2011, 102(11): 6458-6463 [7] 姚利, 王艳芹, 边文范, 等. 中药药渣预处理厌氧发酵产沼气初步研究[J]. 可再生能源, 2013, 31(11): 89-93 [8] 张顺喜, 王文清, 张剑, 等. 中药浸膏药渣厌氧发酵产沼气研究[J]. 环境工程学报, 2010, 4(11): 2608-2612 [9] WANG Ming, LI Wenzhe, LI Shuang, et al. Biogas production from Chinese herb-extraction residues: Influence of biomass composition on methane yield[J]. Bioresources, 2013, 8(3): 3732-3740 [10] XU Junhu, CHEN Xiongfei, MU Linlin, et al. Mesophilic anaerobic study on Chinese herbs residues of honeysuckle and midday tea[J]. Advanced Materials Research, 2014, 878: 481-488 [11] 徐俊虎, 黄升谋. 地黄药渣中温厌氧特性研究[J]. 湖北文理学院学报, 2015, 36(5): 21-26 [12] 张云飞, 陈璐, 郭旭晶, 等. 中药渣微生物强化预处理效果及产气潜力[J]. 环境工程学报, 2014, 8(11): 4925-4930 [13] 于涛, 黄涛, 潘膺希, 等. 厌氧发酵连续运行中有机负荷与工艺参数相互作用研究[J]. 安全与环境学报, 2015, 15(4): 181-185 [14] 刘芳, 张万钦, 吴树彪, 等. 厌氧发酵中挥发酸含量与碳酸氢盐碱度的滴定法修正[J]. 农业机械学报, 2013, 44(9): 91-96 [15] RIEGER C, WEILAND P. Prozessstörungen frühzeitig erkennen[J]. Biogas Journal, 2006 (4): 18-20 [16] 张庆芳, 杨林海, 陈吉祥, 等. 餐厨垃圾厌氧发酵连续运行中有机负荷对其他参数的影响研究[J]. 中国沼气, 2014, 32(3): 27-31 [17] WANG Ming, SUN Xianli, LI Pengfei, et al. A novel alternate feeding mode for semi-continuous anaerobic co-digestion of food waste with chicken manure[J]. Bioresource Technology, 2014, 164: 309-314 [18] FILIPE Carlos D M, DAIGGER Glen T, GRADY C P Leslie. pH as a key factor in the competition between glycogen-accumulating organisms and phosphorus-accumulating organisms[J]. Water Environment Research, 2001, 73(2): 223-232 -

计量
- 文章访问数: 2154
- HTML全文浏览数: 1824
- PDF下载数: 400
- 施引文献: 0