3DBER-S阴极nirS型反硝化菌群的分析

徐忠强, 郝瑞霞, 王建超, 任晓克. 3DBER-S阴极nirS型反硝化菌群的分析[J]. 环境工程学报, 2016, 10(6): 3287-3294. doi: 10.12030/j.cjee.201501004
引用本文: 徐忠强, 郝瑞霞, 王建超, 任晓克. 3DBER-S阴极nirS型反硝化菌群的分析[J]. 环境工程学报, 2016, 10(6): 3287-3294. doi: 10.12030/j.cjee.201501004
Xu Zhongqiang, Hao Ruixia, Wang Jianchao, Ren Xiaoke. Analysis of the nirS-type denitrifying bacteria in cathode of three-dimensional biofilm-electrode reactor and sulfur autotrophic coupled denitrification system[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3287-3294. doi: 10.12030/j.cjee.201501004
Citation: Xu Zhongqiang, Hao Ruixia, Wang Jianchao, Ren Xiaoke. Analysis of the nirS-type denitrifying bacteria in cathode of three-dimensional biofilm-electrode reactor and sulfur autotrophic coupled denitrification system[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 3287-3294. doi: 10.12030/j.cjee.201501004

3DBER-S阴极nirS型反硝化菌群的分析

  • 基金项目:

    国家自然科学基金资助项目(51378028)

  • 中图分类号: X703

Analysis of the nirS-type denitrifying bacteria in cathode of three-dimensional biofilm-electrode reactor and sulfur autotrophic coupled denitrification system

  • Fund Project:
  • 摘要: 为探究低碳氮比条件下3DBER-S(三维电极生物膜与硫自养耦合脱氮工艺)阴极反硝化菌群特征、强化脱氮机制,在TOC/TN=0.36的进水条件下稳定运行反应器,运用nirS基因克隆文库方法,分析了3DBER-S阴极生物膜反硝化菌群结构。结果表明,在3DBER-S阴极生物膜上反硝化菌中,β变形菌(β-proteobacteria)是优势菌种,占细菌总数的59.22%。其中,所占比例最大的是异养菌,包括与固氮弧菌属(Azoarcus tolulyticus)和趋磁螺菌(Magnetospirillum magneticum)类似的细菌,分别占44.74%和21.05%。能够分别利用硫单质或氢气作为电子供体进行反硝化脱氮的Sulfuricella denitrifican、高氯酸盐降解菌(Dechlorospirillum sp.)和陶厄氏菌属(Thauera)三者所占比例之和达到了17.11%。表明系统中氮的去除是由异养反硝化、氢自养反硝化和硫自养反硝化共同作用的结果,既有效减少了脱氮过程中有机碳源的消耗,又维持了系统酸碱度的平衡,从而能够在低碳氮比条件下维持稳定高效的脱氮效果。
  • 加载中
  • [1] 李素梅, 郝瑞霞, 孟成成. 三维电极生物膜反应器低温启动试验研究. 中国给水排水, 2013, 29(5): 101-105 Li Sumei, Hao Ruixia, Meng Chengcheng. Start-up of three-di-mensional electrode biofilm reactor at low temperature. China Water & Wastewater, 2013, 29(5): 101-105(in Chinese)
    [2] Hao Ruixia, Li Sumei, Li Jingbing, et al. Denitrifi-cation of simulated municipal wastewater treatment plant effluent using a three-dimensional biofilm-electrode reactor: Operating performance and bacterial community. Bioresource Technology, 2013, 143: 178-186
    [3] 孟成成. 基于分子生物学技术的三维电极生物膜与硫自养耦合脱氮工艺研究. 北京: 北京工业大学硕士学位论文, 2014 Meng Chengcheng. Study on the coupled three-dimensional biofilm-electrode and sulfur autotrophic denitrification system based on molecular biological techniques. Beijing:Master Dissertation of Beijing University of Technology, 2014
    [4] Zhao Yingxin, Zhang Baogang, Feng Chuanping, et al. Behavior of autotrophic denitrification and heterotrophic denitrification in an intensified biofilm-electrode reactor for nitrate-contaminated drinking water treatment. Bioresource Technology, 2012, 107: 159-165
    [5] 黄显怀, 鲍立宁, 马利民. 电极生物膜法处理水中硝酸盐氮的试验研究. 哈尔滨工业大学学报, 2003, 35(12): 1486-1488 Huang Xianhuai, Bao Lining, Ma Limin. Denitrification of drinking water by biofilm-electrode process. Journal of Harbin Institute of Technology, 2003, 35(12): 1486-1488(in Chinese)
    [6] 吕江维, 刘佳, 沈宏, 等. 溶解氧对电极生物膜反硝化性能的影响. 哈尔滨工业大学学报, 2011, 43(2): 24-29 Lü Jiangwei, Liu Jia, Shen Hong, et al. Influences of dissolved oxygen on denitrification abilities of biofilm-electrode system. Journal of Harbin Institute of Technology, 2011, 43(2): 24-29(in Chinese)
    [7] 杨琳. 三维电极生物膜反应器全自养脱氮的研究. 重庆: 重庆大学硕士学位论文, 2012 Yang Lin. Completely autotrophic nitrogen removal in a three-dimensional-electrode-biofilm reactor. Chongqing: Master Dissertation of Chongqing University, 2012(in Chinese)
    [8] Song B., Ward B. B. Nitrite reductase genes in halobenzoate degrading denitrifying bacteria. Fems Microbiology Ecology, 2003, 43(3): 349-357
    [9] Yamane T. Denitrifying bacterial community in manure compost pellets applied to an Andosol upland field. Soil Science and Plant Nutrition, 2013, 59(4): 572-579
    [10] Yang Jiangke, Cheng Zhanbing, Li Jia, et al. Community composition of NirS-type denitrifier in a shallow eutrophic lake. Microbial Ecology, 2013, 66(4): 796-805
    [11] Zumft W. G. Cell biology and molecular basis of denitrification. Microbiology and Molecular Biology Reviews, 1997, 61(4): 533-616
    [12] 毛跃建. 废水处理系统中重要功能类群Thauera属种群结构与功能的研究. 上海: 上海交通大学博士学位论文, 2009 Mao Yuejian. Structural and functional analysis of Thauera genus in wastewater treatment plants. Shanghai: Doctoral Dissertation of Shanghai Jiao Tong University, 2009(in Chinese)
    [13] Zafiriadis I., Ntougias S., Nikolaidis C., et al. Denitrifying polyphosphate accumulating organisms population and nitrite reductase gene diversity shift in a DEPHANOX-type activated sludge system fed with municipal wastewater. Journal of Bioscience and Bioengineering, 2011, 111(2): 185-192
    [14] Braker G., Fesefeldt A., Witzel K. P. Development of PCR primer systems for amplification of nitrite reductase genes (nirK and nirS) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 1998, 64(10): 3769-3775
    [15] Braker G., Zhou Jizhong, Wu Liyou, et al. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities. Applied and Environmental Microbiology, 2000, 66(5): 2096-2104
    [16] 李建婷, 纪树兰, 刘志培, 等. 16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成. 环境科学研究, 2009, 22(10): 1218-1223 Li Jianting, Ji Shulan, Liu Zhipei, et al. Analysis of bacterial composition of aerobic granular sludge with 16S rDNA clone library. Research of Environmental Sciences, 2009, 22(10): 1218-1223(in Chinese)
    [17] Zhou Minghua, Fu Wenjing, Gu Heyan, et al. Nitrate removal from groundwater by a novel three-dimensional electrode biofilm reactor. Electrochimica Acta, 2007, 52(19): 6052-6059
    [18] Sun Yimin, Nemati M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters. Bioresource Technology, 2012, 114: 207-216
    [19] Xia Siqi, Li Jixiang, Wang Rongchang, et al. Tracking composition and dynamics of nitrification and denitrification microbial community in a biofilm reactor by PCR-DGGE and combining FISH with flow cytometry. Biochemical Engineering Journal, 2010, 49(3): 370-378
    [20] Chee-Sanford J. C., Frost J. W., Fries M. R., et al. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Applied and Environmental Microbiology, 1996, 62(3): 964-973
    [21] Zhou J., Palumbo A. V., Tiedje J. M. Sensitive detection of a novel class of toluene-degrading denitrifiers, Azoarcus tolulyticus, with small-subunit rRNA primers and probes. Applied and Environmental Microbiology, 1997, 63(6): 2384-2390
    [22] Song B K, Palleroni N. J., Kerkhof L. J., et al. Characterization of halobenzoate-degrading, denitrifying Azoarcus and Thauera isolates and description of Thauera chlorobenzoica sp. nov. International Journal of Systematic and Evolutionary Microbiology, 2001, 51(2): 589-602
    [23] Li Jinhua, Pan Yongxin. Environmental factors affect magnetite magnetosome synthesis in Magnetospirillum magneticum AMB-1: Implications for biologically controlled mineralization. Geomicrobiology Journal, 2012, 29(4): 362-373
    [24] Osaka T., Yoshie S., Tsuneda S., et al. Identification of acetate- or methanol-assimilating bacteria under nitrate-reducing conditions by stable-isotope probing. Microbial Ecology, 2006, 52(2): 253-266
    [25] Daniel L. M. C., Pozzi E., Foresti E., et al. Removal of ammonium via simultaneous nitrification-denitrification nitrite-shortcut in a single packed-bed batch reactor. Bioresource Technology, 2009, 100(3): 1100-1107
    [26] Etchebehere C., Errazquin M. I., Dabert P., et al. Community analysis of a denitrifying reactor treating landfill leachate. FEMS Microbiology Ecology, 2002, 40(2): 97-106
    [27] Osaka T., Shirotani K., Yoshie S., et al. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process. Water Research, 2008, 42(14): 3709-3718
    [28] Shinoda Y., Sakai Y., Uenishi H., et al. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Applied and Environmental Microbiology, 2004, 70(3): 1385-1392
    [29] Mao Yanping, Xia Yu, Zhang Tong. Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresource Technology, 2013, 128: 703-710
    [30] Watanabe T., Kojima H., Fukui M. Draft genome sequence of a psychrotolerant sulfur-oxidizing bacterium, Sulfuricella denitrificans skB26, and proteomic insights into cold adaptation. Applied and Environmental Microbiology, 2012, 78(18): 6545-6549
    [31] Logan B. E., LaPoint D. Treatment of perchlorate-and nitrate-contaminated groundwater in an autotrophic, gas phase, packed-bed bioreactor. Water Research, 2002, 36(14): 3647-3653
    [32] Rikken G. B., Kroom A. G. M., Van Ginkel C. G. Transformation of (per) chlorate into chloride by a newly isolated bacterium: Reduction and dismutation. Applied Microbiology and Biotechnology, 1996, 45(3): 420-426
    [33] 田春杰, 陈家宽, 钟扬, 等. 微生物系统发育多样性及其保护生物学意义. 应用生态学报, 2003, 14(4): 509-612 Tian Chunjie, Chen Jiakuan, Zhong Yang, et al. Phylogenetic diversity of microbes and its perspectives in conservation biology. Chinese Journal of Applied Ecology, 2003, 14(4): 509-612(in Chinese)
    [34] Giovannoni S. J., Mullins T. D., Field K. G. Microbial diversity in oceanic systems: rRNA approaches to the study of unculturable microbes//Joint I. Molecular Ecology of Aquatic Microbes. Berlin: Springer, 1995: 217-248
    [35] 陶天申, 杨瑞馥, 东秀珠. 原核生物系统学. 北京: 化学工业出版社, 2007: 277-291
  • 加载中
计量
  • 文章访问数:  2090
  • HTML全文浏览数:  1378
  • PDF下载数:  847
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-20
  • 刊出日期:  2016-06-03

3DBER-S阴极nirS型反硝化菌群的分析

  • 1.  北京工业大学建筑工程学院, 北京市水质科学与水环境恢复工程重点实验室, 北京 100124
  • 2.  云南开发规划设计院, 昆明 650217
基金项目:

国家自然科学基金资助项目(51378028)

摘要: 为探究低碳氮比条件下3DBER-S(三维电极生物膜与硫自养耦合脱氮工艺)阴极反硝化菌群特征、强化脱氮机制,在TOC/TN=0.36的进水条件下稳定运行反应器,运用nirS基因克隆文库方法,分析了3DBER-S阴极生物膜反硝化菌群结构。结果表明,在3DBER-S阴极生物膜上反硝化菌中,β变形菌(β-proteobacteria)是优势菌种,占细菌总数的59.22%。其中,所占比例最大的是异养菌,包括与固氮弧菌属(Azoarcus tolulyticus)和趋磁螺菌(Magnetospirillum magneticum)类似的细菌,分别占44.74%和21.05%。能够分别利用硫单质或氢气作为电子供体进行反硝化脱氮的Sulfuricella denitrifican、高氯酸盐降解菌(Dechlorospirillum sp.)和陶厄氏菌属(Thauera)三者所占比例之和达到了17.11%。表明系统中氮的去除是由异养反硝化、氢自养反硝化和硫自养反硝化共同作用的结果,既有效减少了脱氮过程中有机碳源的消耗,又维持了系统酸碱度的平衡,从而能够在低碳氮比条件下维持稳定高效的脱氮效果。

English Abstract

参考文献 (35)

目录

/

返回文章
返回