微生物燃料电池驱动的光电催化降解甲基橙

孙哲, 林立, 黄满红, 陈东辉. 微生物燃料电池驱动的光电催化降解甲基橙[J]. 环境工程学报, 2014, 8(12): 5383-5387.
引用本文: 孙哲, 林立, 黄满红, 陈东辉. 微生物燃料电池驱动的光电催化降解甲基橙[J]. 环境工程学报, 2014, 8(12): 5383-5387.
Sun Zhe, Lin Li, Huang Manhong, Chen Donghui. Photoelectrocatalytic degradation of methyl orange driven by microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5383-5387.
Citation: Sun Zhe, Lin Li, Huang Manhong, Chen Donghui. Photoelectrocatalytic degradation of methyl orange driven by microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5383-5387.

微生物燃料电池驱动的光电催化降解甲基橙

  • 基金项目:

    中央高校基本科研业务费专项资金资助(CUSF-DH-D-2014047)

  • 中图分类号: X703

Photoelectrocatalytic degradation of methyl orange driven by microbial fuel cell

  • Fund Project:
  • 摘要: 实验制备出了具有光催化性能的Cu2O纳米线电极,对比研究了Cu2O电极在光催化、微生物燃料电池驱动的电催化和微生物燃料电池驱动的光电催化反应过程中对甲基橙溶液的降解效果的影响。实验结果表明,微生物燃料电池驱动的光电催化反应对甲基橙的降解效果最好,当溶液pH为3、外加偏压为0.7 V、反应时间为40 min时,对甲基橙的降解率可以达到83%。实验首次利用微生物燃料电池作为外界驱动电压光电协同降解了甲基橙,证明在微生物燃料电池产生的较低电压也可以对光电极催化降解污染物的效率有提升。
  • [1] Logan B.E. Simultaneous wastewater treatment and bio-logical electrieity generation. Water. Sci. and Technol.,2005,52(1-2): 31-37
    [2] McCarty P. L., Bae J., Kim J. Domestic wastewater t-reatment as a net energy producer:Can this be achieve. Environ. Sci. & Technol., 2011, 45(17):7100-7106
    [3] Lovley D. R. Microbial fuel cells:Novel miecrobial physiologies and engineering approaehes. Curr. Opin. Biotechnol.,2006, 17(3): 327-332
    [4] Angenent L.T., Karim K., Al-Dahhan M. H., et al.Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology,2004, 22(9): 477-485
    [5] He Z., Minteer S. D., Angenent L. T. Electricity ge-neration from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. & Technol.,2005, 39(14): 5262-5267
    [6] Adams C. D., Cozzens R. A., Kim B. J. Effects of ozonation on the biodegradability of substituted phenols. Water. Res.,1997, 31(10): 2655-2663
    [7] Sergi G. S., Sergi D., Josep M., et al. Solar photoele-ctrocatalytic degradation of Acid Orange 7 azo dye using a highly stable TiO2 photoanode synthesized by atmospheric plasma spray. Applied Catalysis B: Enviromental, 2013,132-133(27): 142-150
    [8] Ferraz E. R. A., Oliveira G. A. R., Grando M. D., et al. Photoelectrocatalysis based on Ti/TiO2 nanotubes removes toxic properties of the azo dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1 from aqueous chloride samples. Journal of Enviromental Management, 2013,124(30): 108-114
    [9] Macedo L. C. A., Zaia D. A. M., Moore G. J., et al. Degradation of leather dye on TiO2: A study of applied experimental parameters on photoelectrocatalysis. Journal of Photochemistry and Photobiology A: Chemistry,2007, 185(1): 86-93
    [10] Liu B. S., Wen L. P., Zhao X. J. Efficient degradation of aqueous methyl orange over TiO2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation. Progress in Organic Coatings,2009, 64(2-3): 120-123
    [11] Zheng Q., Lee C. Visible light photoelectrocatalytic degradation of methyl orange using anodized nanoporous WO3. Electrochimica Acta, 2014,115(1): 140-145
    [12] Wang Y. B., Zhang Y. N., Zhao G. H., et al. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. Appl. Mater. Interfaces, 2012, 4(8): 3965-3972
    [13] Zhuang J. D., Dai W. X., Tian Q. F., et al. Photocatal-ytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location. Langmuir Article,2010, 26(12): 9686-9694
    [14] Paschoal F. M. M., Pepping G., Zanoni M. V. B., et al. Photoelectrocatalytic removal of bromate using Ti/TiO2 coated as a photocathode. Environ. Sci. & Technol.,2009, 43(19): 7496-7502
    [15] Zhao D., Chen C. C., Wang Y. F., et al. Enhancedphotocatalytic degradation of dye pollutants under visible irradiation on Al(III)-modified TiO2: Structure, interaction, and interfacial electron transfer. Environ. Sci. & Technol.,2008, 42(1): 308-314
    [16] Yang D. J., Liu H. W., Zheng Z. F., et al. An effici-ent photocatalyst structure: TiO2(B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc., 2009, 131(49): 17885-17893
    [17] Asmussen R. M., Tian M., Chen A. C. A new approach to wastewater remediation based on bifunctional electrodes. Environ. Sci. & Technol.,2009, 43(13): 5100-5105
    [18] Candal R. J., Zeltner W.A., Anderson M. A. Effects of pH and applied potential on photocurrent and oxidation rate of saline solutions of formic acid in a photoelectrocatalytic reactor. Environ. Sci. & Technol., 2000, 34(16): 3443-3451
    [19] 张金娜.三种不同阴极类型微生物燃料电池产电性能研究.哈尔滨:哈尔滨工业大学博士学位论文,2009 Zhang J. N. Electricity generation from three differentcathodes of microbial fuel cells.Harbin: Doctoral Dissertation of Harbin Institute of Technology,2009(in Chinese)
    [20] 陈少华.微生物燃料电池原位修复地下水硝酸盐污染研究.合肥:合肥工业大学博士学位论文, 2011 Chen S. H. Research on in-situ remediation of nitrate pollution in groundwater by microbial fuel cell. Hefei: Doctoral Dissertation of Hefei University of Technology, 2011(in Chinese)
    [21] Qian F., Wang G. M., Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocat- hode. Nano Letters, 2010, 10(11): 4686-4691
    [22] 王栾,郭佩佩,叶琴,等.改性TiO2电极光电催化降解甲基橙.化工环保, 2012, 32(2): 129-132 Wang L., Guo P. P., Ye Q., et al. Photoelectrocatalytic degradation of methyl orange with doped TiO2 electrode. Enviromental Protection of Chemical Industy, 2012, 32(2): 129-132(in Chinese)
    [23] 张金涛,夏圣安,刘宝亮.TiO2纳米管阵列电催化降解甲基橙.工业水处理, 2013,33(8): 14-18 Zhang J. T., Xia S. A., Liu B. L. Electrocatalytic degradation of methyl orange with TiO2 nanotube arrays. Industrial Water Treatment, 2013,33(8): 14-18(in Chinese)
    [24] Fabiana M.M.P., Greg P., Maria V.B.Z., et al. Photo-electrocatalytic removal of bromate using Ti/TiO2 coat-ed as a photocathode. Environ. Sci. & Technol.,2009, 43 (19):7496-7502
    [25] Zhang H. M., Wang Y., Liu P., et al. Anatase TiO2 crystal facet growth:Mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. Appl. Mater. Interfaces, 2011, 3(7): 2472-2478
    [26] Alagarsamy P., Sepperumal M., Ramasamy R. Functi-onalized silicate sol-gel-supported TiO2-Au core-shell nanomaterials and their photoelectrocatalytic activity. Appl. Mater. Interfaces,2010, 2(7): 1912-1917
  • 加载中
计量
  • 文章访问数:  1809
  • HTML全文浏览数:  1272
  • PDF下载数:  938
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-12-11
  • 刊出日期:  2014-12-03
孙哲, 林立, 黄满红, 陈东辉. 微生物燃料电池驱动的光电催化降解甲基橙[J]. 环境工程学报, 2014, 8(12): 5383-5387.
引用本文: 孙哲, 林立, 黄满红, 陈东辉. 微生物燃料电池驱动的光电催化降解甲基橙[J]. 环境工程学报, 2014, 8(12): 5383-5387.
Sun Zhe, Lin Li, Huang Manhong, Chen Donghui. Photoelectrocatalytic degradation of methyl orange driven by microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5383-5387.
Citation: Sun Zhe, Lin Li, Huang Manhong, Chen Donghui. Photoelectrocatalytic degradation of methyl orange driven by microbial fuel cell[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5383-5387.

微生物燃料电池驱动的光电催化降解甲基橙

  • 1.  东华大学环境科学与工程学院, 国家环境保护纺织工业污染防治工程技术中心, 上海 201620
  • 2.  湖南城市学院化学与环境工程学院, 益阳 413000
  • 3.  上海应用技术学院化学与环境工程学院, 上海 200235
基金项目:

中央高校基本科研业务费专项资金资助(CUSF-DH-D-2014047)

摘要: 实验制备出了具有光催化性能的Cu2O纳米线电极,对比研究了Cu2O电极在光催化、微生物燃料电池驱动的电催化和微生物燃料电池驱动的光电催化反应过程中对甲基橙溶液的降解效果的影响。实验结果表明,微生物燃料电池驱动的光电催化反应对甲基橙的降解效果最好,当溶液pH为3、外加偏压为0.7 V、反应时间为40 min时,对甲基橙的降解率可以达到83%。实验首次利用微生物燃料电池作为外界驱动电压光电协同降解了甲基橙,证明在微生物燃料电池产生的较低电压也可以对光电极催化降解污染物的效率有提升。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回