苯系物降解单菌间的协同耦合作用

周月明, 刘娜, 李斗, 尹雅洁, 宋立岩, 张雷. 苯系物降解单菌间的协同耦合作用[J]. 环境工程学报, 2014, 8(11): 5049-5056.
引用本文: 周月明, 刘娜, 李斗, 尹雅洁, 宋立岩, 张雷. 苯系物降解单菌间的协同耦合作用[J]. 环境工程学报, 2014, 8(11): 5049-5056.
Zhou Yueming, Liu Na, Li Dou, Yin Yajie, Song Liyan, Zhang Lei. Synergetic and coupled effects of bacteria in a BTEX degrading community[J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 5049-5056.
Citation: Zhou Yueming, Liu Na, Li Dou, Yin Yajie, Song Liyan, Zhang Lei. Synergetic and coupled effects of bacteria in a BTEX degrading community[J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 5049-5056.

苯系物降解单菌间的协同耦合作用

  • 基金项目:

    中国科学院西部行动计划项目(KZCX2-XB3-14)

    2012年中国科学院"西部之光"人才培养计划西部博士资助项目

  • 中图分类号: X172

Synergetic and coupled effects of bacteria in a BTEX degrading community

  • Fund Project:
  • 摘要: 针对BTEX降解混菌间协同耦合作用不明的问题,以稳定的BTEX降解混菌为研究对象,通过分离纯化,从混菌中分离得到的8株BTEX降解单菌,将对BTEX有降解效果和没有降解效果的单菌分别组合,采用摇瓶实验研究不同体系对BTEX的降解效果,试图找到单菌在BTEX降解过程中的作用,并探寻菌间的协同耦合作用.实验结果表明,B2、B4、B6单菌主要的作用是降解BTEX,并且B2菌可以解除B4菌和B6菌混合后对X降解的抑制,并提高了B、T和E的降解速率;B1、B3、B5、B7和B8单菌无BTEX降解功能,B1、B3和B5菌可能利用B、T和E降解过程中产生的代谢产物(各单菌没有降解能力,但在混菌中依然存在,推测单菌可以利用降解过程中产生的代谢产物),并从48 h开始降解B、T和E;B7、B8两株菌互相协同,共同完成对BTEX的降解.由优势菌群和非优势菌群组成的混合系统,促使有些没有降解功能的菌株混合后具有降解功能,还导致有些菌株混合后降解率和降解速率降低,对降解BTEX既有促进作用又有拮抗作用.混菌48 h对BTEX的总降解率为91.6%,说明一个稳定存在的天然混合群落,其内部菌种经过长期的优胜劣汰,保持了很高的降解率和降解速率.
  • [1] 周月明,刘娜,张兰英,等. 耐低温混菌降解苯系物的特性及菌种鉴定研究. 生态环境学报, 2010, 19(7): 1893-1900 Zhou Y. M., Liu N., Zhang L. Y., et al. Investigation of biodegrading characteristics of BTEX by low-temperature-tolerated bacterial colony. Ecology and Environmental Sciences, 2010, 19(7): 1893-1900(in Chinese)
    [2] 叶峰. 降解BTX的复合微生物菌剂制备及高效降解菌的研究. 杭州: 浙江工业大学硕士学位论文, 2009 Ye F. Research on preparation of composite microorganism agent and Its high-efficiency microbial strains degrading BTX. Hangzhou:Master Dissertation of Zhejiang University of Technology, 2009(in Chinese)
    [3] 章剑丽. 地下水石油类污染物(BTEX)的微生物降解实验研究. 上海: 上海交通大学硕士学位论文, 2010 Zhang J. L.Experient on biodegradation of BTEX contaminant in groundwater. Shanghai:Master Dissertation of Shanghai University, 2010(in Chinese)
    [4] 刘秀丽. 地下水中 BTEX 的迁移规律及其原位生物修复技术研究. 天津: 天津大学博士学位论文, 2010 Liu X L.Transport and removal of BTEX in groundwater using in situ bioremediation technology.Tianjin:Doctor Dissertation of Tianjin University, 2010(in Chinese)
    [5] 吴丹, 李法云, 杨姝倩,等. 采用优势菌降解 BTEX 和石油烃的性能. 辽宁工程技术大学学报(自然科学版), 2004, 29(2): 316-319 Wu D., Li F. Y., Yang S. J., et al. Biodegradation of petroleum hydrocarbon and BTEX by dominant strains. Journal of Liaoning Technical University(Natural Science), 2004, 29(2): 316-319 (in Chinese)
    [6] 张倩. 高盐条件BTEX降解菌群多样性、降解基因型及相容性溶质分析. 上海: 华东理工大学硕士学位论文, 2012 Zhang Q. Community diversity, degrading gene and compatible solutes of BTEX degrading bacterial consortium in high salinity. Shanghai: Master Dissertation of East China University of Science and Technology, 2012(in Chinese)
    [7] Briones A., Raskinl. Diversity and dynamics of microbial communities in engineered environments and their implications for process stability. Curr Opin Biotechnol,2003, 14(3): 270-276
    [8] Cansteinh F., Li Y., Felske A., et al. Longterm stability of mercury reducing microbial biofilm communities analyzed by 16S-23S rDNA interspacer region polymorphism. Microb. Ecol., 2001, 42(4): 624-634
    [9] Fernandez A. S., Huang S., Seston S., et al. How stable is stable function versus community composition. Appl. Environ. Microbiol., 1999, 65(8): 3697-3704
    [10] Fernandez A. S., Hashsham S. A., Dollhope S. L., et al. Flexible community structure correlates with stable community function in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol., 2000, 66(9): 4060-4067
    [11] Hashsham S. A., Fernandez A. S., Dollhope S. L., et al. Parallel processing of substrate correlates with greater functional stability in methanogenic bioreactor communities perturbed by glucose. Appl. Environ. Microbiol., 2000, 66(9):4050-4057
    [12] Smith N. R., Yu Z., Mohn W. W. Stability of the bacterial community in a pulp mill effluent treatment systerm during normal operation and a systerm shutdown. Water Res., 2003, 37(20): 4873-4884
    [13] Saikaly P. E., Oerther D. B. Bacterial competition in activated sludge: Theoretical analysis of varying solid retention times on diversity. Microb. Ecol., 2004, 48(2): 274-284
    [14] Kerr B., Riley M. A., Feldman M. W., et al. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature, 2002, 418(6894): 171-174
    [15] Hobley, King J. R., Sockett R. E. Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses. Appl. Environ. Microbiol., 2005, 72(10): 6757-6765
    [16] Tait K., Sutherland I. W. Antagonistic interactions amongst bacteriocin-producing enteric bacteria in dual species biofilms. Appl. Microbiol., 2002, 93(2): 345-352
    [17] Menge B. A. Indirect effects in marine rocky intertidal interaction webs: Patterns and importance. Ecol Monogr, 1995, 65(1): 21-74
    [18] Kato S., Haruta S., Cui Z. J., et al. Network relationships of bacteria in a stable mixed culture. Microb. Ecol., 2008, 56(3): 403-411
    [19] Haruta S., Cui Z., Huang Z., et al. Construction of a stable microbial community with high cellulose-degradation ability. Appl. Microbiol. Biotechnol., 2002, 59(4-5): 529-534
    [20] Kato S., Haruta S., Cui Z. J., et al. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiology Ecology, 2004, 51(1): 133-142
    [21] Kato S., Haruta S., Cui Z. J., et al. Stable coexistence of five bacterial strains as a cellulose-degrading community. Applied and Environmental Microbiology, 2005, 17(11): 7099-7106
    [22] 王琳, 邵宗泽. 4株苯系物降解菌菌株的筛选鉴定、降解特性及其降解基因研究. 微生物学报, 2006, 46(5): 1-5 Wang L., Shao Z. Z. Isolation and characterization of 4 benzene toluene-degrading bacterial strains and detection of related degradation genes. Acta Microbiologica Sinica, 2006, 46(5): 1-5 (in Chinese)
    [23] 刘鹏, 魏亚东, 崔铁军. Biolog系统和16SrDNA序列分析方法在植物病原细菌鉴定中的应用. 植物检疫, 2006, 20(2): 86-87 Liu P., Wei Y. D., Cui T. J. Application of plant pathogenic bacteria identification with BIOLOG automatic microbiology analysis systerm and 16SrDNA sequential analysis systerm. Plant Quaratine, 2006, 20(2): 86-87 (in Chinese)
    [24] 杜昕波, 赵耘, 李伟杰, 等. 利用BIOLOG系统对不同种类细菌鉴定的研究. 中国兽药杂志, 2008, 42(3): 31-33 Du X. B., Zhao Y., Li W. J., et al. Research of identification of several strains bacteria with BIOLOG automatic microbiology analysis systerm. Chinese Journal of Veterinary, 2008, 42(3): 31-33 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1321
  • HTML全文浏览数:  669
  • PDF下载数:  937
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-10-14
  • 刊出日期:  2014-11-07
周月明, 刘娜, 李斗, 尹雅洁, 宋立岩, 张雷. 苯系物降解单菌间的协同耦合作用[J]. 环境工程学报, 2014, 8(11): 5049-5056.
引用本文: 周月明, 刘娜, 李斗, 尹雅洁, 宋立岩, 张雷. 苯系物降解单菌间的协同耦合作用[J]. 环境工程学报, 2014, 8(11): 5049-5056.
Zhou Yueming, Liu Na, Li Dou, Yin Yajie, Song Liyan, Zhang Lei. Synergetic and coupled effects of bacteria in a BTEX degrading community[J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 5049-5056.
Citation: Zhou Yueming, Liu Na, Li Dou, Yin Yajie, Song Liyan, Zhang Lei. Synergetic and coupled effects of bacteria in a BTEX degrading community[J]. Chinese Journal of Environmental Engineering, 2014, 8(11): 5049-5056.

苯系物降解单菌间的协同耦合作用

  • 1. 中国科学院重庆绿色智能技术研究院, 重庆 400714
  • 2. 吉林大学环境与资源学院, 长春 130026
基金项目:

中国科学院西部行动计划项目(KZCX2-XB3-14)

2012年中国科学院"西部之光"人才培养计划西部博士资助项目

摘要: 针对BTEX降解混菌间协同耦合作用不明的问题,以稳定的BTEX降解混菌为研究对象,通过分离纯化,从混菌中分离得到的8株BTEX降解单菌,将对BTEX有降解效果和没有降解效果的单菌分别组合,采用摇瓶实验研究不同体系对BTEX的降解效果,试图找到单菌在BTEX降解过程中的作用,并探寻菌间的协同耦合作用.实验结果表明,B2、B4、B6单菌主要的作用是降解BTEX,并且B2菌可以解除B4菌和B6菌混合后对X降解的抑制,并提高了B、T和E的降解速率;B1、B3、B5、B7和B8单菌无BTEX降解功能,B1、B3和B5菌可能利用B、T和E降解过程中产生的代谢产物(各单菌没有降解能力,但在混菌中依然存在,推测单菌可以利用降解过程中产生的代谢产物),并从48 h开始降解B、T和E;B7、B8两株菌互相协同,共同完成对BTEX的降解.由优势菌群和非优势菌群组成的混合系统,促使有些没有降解功能的菌株混合后具有降解功能,还导致有些菌株混合后降解率和降解速率降低,对降解BTEX既有促进作用又有拮抗作用.混菌48 h对BTEX的总降解率为91.6%,说明一个稳定存在的天然混合群落,其内部菌种经过长期的优胜劣汰,保持了很高的降解率和降解速率.

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回