阴极负载不同催化剂对天然水体中沉积物微生物燃料电池运行特性的影响

付飞, 任月萍, 李秀芬, 华兆哲, 潘丹云, 赵亚楠. 阴极负载不同催化剂对天然水体中沉积物微生物燃料电池运行特性的影响[J]. 环境工程学报, 2013, 7(12): 4614-4618.
引用本文: 付飞, 任月萍, 李秀芬, 华兆哲, 潘丹云, 赵亚楠. 阴极负载不同催化剂对天然水体中沉积物微生物燃料电池运行特性的影响[J]. 环境工程学报, 2013, 7(12): 4614-4618.
Fu Fei, Ren Yueping, Li Xiufen, Hua Zhaozhe, Pan Danyun, Zhao Yanan. Effect of various cathode modifications on operation performance of sediment microbial fuel cells in freshwater[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4614-4618.
Citation: Fu Fei, Ren Yueping, Li Xiufen, Hua Zhaozhe, Pan Danyun, Zhao Yanan. Effect of various cathode modifications on operation performance of sediment microbial fuel cells in freshwater[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4614-4618.

阴极负载不同催化剂对天然水体中沉积物微生物燃料电池运行特性的影响

  • 基金项目:

    国家自然科学基金资助项目(21076097,21206058)

    国家水体污染控制与治理科技重大专项(2012ZX07101-013-04)

    中央高校基本科研业务费专项资金资助(JUSRP111A09)

  • 中图分类号: X524

Effect of various cathode modifications on operation performance of sediment microbial fuel cells in freshwater

  • Fund Project:
  • 摘要: 考察了阴极负载Co3O4和MnOOH对天然水体中沉积物微生物燃料电池(SMFC)产电性能和SMFC对沉积物中有机质去除率的影响。实验结果表明,SMFC阴极负载Co3O4和MnOOH后,体系的输出电压由483 mV增大到549 mV和534 mV;相应体系的内阻由206 Ω显著降低到99 Ω和128 Ω,最大功率密度(Pmax)由3.3 mW/m2增大到9.1 mW/m2和6.6 mW/m2。此外,SMFC体系的电流密度与沉积物中烧失量(LOI)、易氧化有机质(ROOM)去除率呈线性关系,并且阴极负载Co3O4和MnOOH可以促进阳极沉积物中有机质的去除。
  • 加载中
  • [1] Logan B. E., Hameler S. B., Rozendal R. A., et al. Microbial fuel cells: Methodology and technology. Environmental Science & Technology, 2006, 40(17):5181-5192
    [2] Song T. S., Yan Z. S., Zhao Z. W., et al. Construction and operation of freshwater sediment microbial fuel cell for electricity generation. Bioprocess and Biosystems Engineering, 2011, 34(5):621-627
    [3] Hai P. T., Jang J. K., Chang I. S., et al. Improvement of cathode reaction of a mediatorless microbial fuel cell. Journal of Microbiology and Biotechnology, 2004, 14(2):324-329
    [4] Yang S. Q., Jia B. Y., Liu H. Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology, 2009, 100(3):1197-1202
    [5] Zhang L., Liu C., Zhuang L., et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells. Biosensors and Bioelectronics, 2009, 24(9):2825-2829
    [6] Roche I., Katuri K., Scott K. A microbial fuel cell using manganese oxide oxygen reduction catalysts. Journal of Applied Electrochemistry, 2010, 40(1):13-21
    [7] Xu J. B., Gao P., Zhao T. S., et al. Non-precious Co3O4 nano-rod electrocatalyst for oxygen reduction reaction in anion-exchange membrane fuel cells. Energy Environmental Science, 2012, 5(1):5333-5339
    [8] Sun W., Hsu A., Chen R. R. Carbon-supported tetragonal MnOOH catalysts for oxygen reduction reaction in alkaline media. Journal of Power Sources, 2011, 196(2):627-635
    [9] Yang J., Liu H. W., Martens W. N., et al. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. The Journal of Physical Chemistry C, 2010, 114(1):111-119
    [10] Xi G. C., Peng Y. Y., Zhu Y. C., et al. Preparation of β-MnO2 nanorods through a γ-MnOOH precursor route. Materials Research Bulletin, 2004, 39(11):1641-1648
    [11] 梁鹏, 范明志, 曹效鑫, 等.微生物燃料电池表观内阻的构成和测量. 环境科学, 2007, 28(8):1894-1898 Liang P., Fan M. Z., Cao X. X., et al. Composition and measurement of the apparent internal resistance in microbial fuel cell. Environmental Science, 2007, 28(8):1894-1898(in Chinese)
    [12] Loring D. H., Rantala R. T. T. Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth Science Reviews, 1992, 32(4):235-283
    [13] Raghavulu S. V., Babu P. S., Goud R. K., et al. Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: Process evaluation through electro-kinetic analysis. RSC Advances, 2012, 2(2):677-688
    [14] Renslow R., Donovan C., Shim M., et al. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells. Physical Chemistry Chemical Physics, 2011, 13(48):21573-21584
    [15] Fan Y. Z., Sharbrough E., Liu H. Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 2008, 42(21):8101-8107
    [16] 卢娜, 周顺桂, 倪晋仁.微生物燃料电池的产电机制. 化学进展, 2008, 20(7-8):1233-1240 Lu N., Zhou S. G., Ni J. R. Mechanism of energy generation of microbial fuel cells. Progress in Chemistry, 2008, 20(7-8):1233-1240(in Chinese)
    [17] Jadhav G. S., Ghangrekar M. M. Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 2009, 100(2):717-723
  • 加载中
计量
  • 文章访问数:  1549
  • HTML全文浏览数:  887
  • PDF下载数:  855
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-12-11
  • 刊出日期:  2013-12-08

阴极负载不同催化剂对天然水体中沉积物微生物燃料电池运行特性的影响

  • 1. 江南大学环境与土木工程学院, 无锡 214122
基金项目:

国家自然科学基金资助项目(21076097,21206058)

国家水体污染控制与治理科技重大专项(2012ZX07101-013-04)

中央高校基本科研业务费专项资金资助(JUSRP111A09)

摘要: 考察了阴极负载Co3O4和MnOOH对天然水体中沉积物微生物燃料电池(SMFC)产电性能和SMFC对沉积物中有机质去除率的影响。实验结果表明,SMFC阴极负载Co3O4和MnOOH后,体系的输出电压由483 mV增大到549 mV和534 mV;相应体系的内阻由206 Ω显著降低到99 Ω和128 Ω,最大功率密度(Pmax)由3.3 mW/m2增大到9.1 mW/m2和6.6 mW/m2。此外,SMFC体系的电流密度与沉积物中烧失量(LOI)、易氧化有机质(ROOM)去除率呈线性关系,并且阴极负载Co3O4和MnOOH可以促进阳极沉积物中有机质的去除。

English Abstract

参考文献 (17)

目录

/

返回文章
返回