水环境中腐殖酸与镉离子结合作用的影响因素

杨毅, 王晓昌, 金鹏康, 兰亚琼. 水环境中腐殖酸与镉离子结合作用的影响因素[J]. 环境工程学报, 2013, 7(12): 4603-4606.
引用本文: 杨毅, 王晓昌, 金鹏康, 兰亚琼. 水环境中腐殖酸与镉离子结合作用的影响因素[J]. 环境工程学报, 2013, 7(12): 4603-4606.
Yang Yi, Wang Xiaochang, Jin Pengkang, Lan Yaqiong. Influencing factors of binding of humic acid and cadmium ion in the water environment[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4603-4606.
Citation: Yang Yi, Wang Xiaochang, Jin Pengkang, Lan Yaqiong. Influencing factors of binding of humic acid and cadmium ion in the water environment[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4603-4606.

水环境中腐殖酸与镉离子结合作用的影响因素

  • 基金项目:

    国家自然科学基金资助项目(50708088)

    西安建筑科技大学青年科技基金(QN0712)

  • 中图分类号: X131

Influencing factors of binding of humic acid and cadmium ion in the water environment

  • Fund Project:
  • 摘要: 通过测定不同化学条件下腐殖酸与镉离子作用后的游离态镉离子浓度及其结合率,研究各因素对腐殖酸与镉离子作用的影响。研究结果表明,pH值、离子强度、投加镉离子总浓度、腐殖酸浓度和反应温度均影响腐殖酸与镉离子的结合。pH值在4.5~6.5范围内,随pH值升高,腐殖酸与Cd2+的结合率增大,游离态Cd2+浓度减少。溶液的离子强度增大对结合反应有抑制作用。投加Cd2+总浓度的增大会导致结合态Cd2+浓度和游离态Cd2+浓度逐渐增加,而其结合率逐渐减小。腐殖酸浓度逐渐增大,使Cd2+和腐殖酸的结合率逐渐增大。在20℃~50℃范围内时,随反应温度升高,游离态Cd2+浓度逐渐减小,其结合率逐渐增加。
  • [1] Marang L., Eidner S., Kumke M. U., et al. Spectroscopic characterization of the competitive binding of Eu(Ⅱ), Ca(Ⅱ), and Cu(Ⅱ) to a sedimentary originated humic acid. Chemical Geology, 2009, 264(1-4):154-161
    [2] Gondar D., Iglesias A., López R., et al. Copper binding by peat fulvic and humic acids extracted from two horizons of an ombrotrophic peat bog. Chemosphere, 2006, 63(1):82-88
    [3] Maria Rosaria Provenzano, Valeria D'Orazio, Maria Jerzykiewicz, et al. Fluorescence behaviour of Zn and Ni complexes of humic acids from different sources. Chemosphere, 2004, 55(6):885-892
    [4] Coles C. A., Yong R. N. Humic acid preparation, properties and interactions with metals lead and cadmium. Engineering Geology, 2006, 85(1-2):26-32
    [5] Leenheer J. A., Wershaw R. L., Brown G. K., et al. Characterization and diagenesis of strong-acid carboxyl groups in humic substances. Applied Geochemistry, 2003, 18(3):471-482
    [6] 周岩梅, 张琼, 汤鸿霄. 多环芳烃类有机物在腐殖酸上的吸附行为研究. 环境科学学报, 2010, 30(8):1564-1571 Zhou Yanmei, Zhang Qiong, Tang Hongxiao. Sorption behavior of polycyclic aromatic hydrocarbons onto humic acid particulates. Acta Scientiae Circumstantiae, 2010, 30(8):1564-1571(in Chinese)
    [7] Kinniburgh D. G., van Riemsdijk W. H., Koopal L. K., et al. Ion binding to natural organic matter:Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 1999, 151(1-2):147-166
    [8] 陈颖, 袁旭音. 河口湿地沉积物中腐殖酸含量对外源重金属分布的影响研究. 水土保持学报, 2008, 22(4):185-189 Chen Ying, Yuan Xuyin. Effects of humic acid on partitioning of extrinsic heavy metal for the estuarine wetland sediment. Journal of Soil and Water Conservation, 2008, 22 (4):185-189(in Chinese)
    [9] Dong L. H., Yang J. S., Yuan H. L., et al. Chemical characteristics and influences of two fractions of Chinese lignite humic acids on urease. European Journal of Soil Biology, 2008, 44(2):166-171
    [10] Furukawa K., Takahashi Y. Effect of complexation with humic substances on diffusion of metal ions in water. Chemosphere, 2008, 73(8):1272-1278
    [11] Pandey A. K., Pandey S. D., Misra V. Stability constants of metal-humic acid complexes and its role in environmental detoxification. Ecotoxicology and Environmental Safety, 2000, 47(2):195-200
    [12] Tsiridis V., Petala M., Samaras P., et al. Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri. Ecotoxicology and Environmental Safety, 2006, 63(1):158-167
    [13] Orhan Gezici, Hüseyin Kara, Ahmet Ayar, et al. Sorption behavior of Cu(Ⅱ) ions on insolubilized humic acid under acidic conditions:An application of Scatchard plot analysis in evaluating the pH dependence of specific and nonspecific bindings. Separation and Purification Technology, 2007, 55(1):132-139
    [14] Burcu Özkaraova Güngör E., Bekbölet M. Zinc release by humic and fulvic acid as influenced by pH, complexation and DOC sorption. Geoderma, 2010, 159(1-2):131-138
  • 加载中
计量
  • 文章访问数:  1807
  • HTML全文浏览数:  940
  • PDF下载数:  1351
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-14
  • 刊出日期:  2013-12-08
杨毅, 王晓昌, 金鹏康, 兰亚琼. 水环境中腐殖酸与镉离子结合作用的影响因素[J]. 环境工程学报, 2013, 7(12): 4603-4606.
引用本文: 杨毅, 王晓昌, 金鹏康, 兰亚琼. 水环境中腐殖酸与镉离子结合作用的影响因素[J]. 环境工程学报, 2013, 7(12): 4603-4606.
Yang Yi, Wang Xiaochang, Jin Pengkang, Lan Yaqiong. Influencing factors of binding of humic acid and cadmium ion in the water environment[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4603-4606.
Citation: Yang Yi, Wang Xiaochang, Jin Pengkang, Lan Yaqiong. Influencing factors of binding of humic acid and cadmium ion in the water environment[J]. Chinese Journal of Environmental Engineering, 2013, 7(12): 4603-4606.

水环境中腐殖酸与镉离子结合作用的影响因素

  • 1. 西安建筑科技大学环境与市政工程学院, 西安 710055
基金项目:

国家自然科学基金资助项目(50708088)

西安建筑科技大学青年科技基金(QN0712)

摘要: 通过测定不同化学条件下腐殖酸与镉离子作用后的游离态镉离子浓度及其结合率,研究各因素对腐殖酸与镉离子作用的影响。研究结果表明,pH值、离子强度、投加镉离子总浓度、腐殖酸浓度和反应温度均影响腐殖酸与镉离子的结合。pH值在4.5~6.5范围内,随pH值升高,腐殖酸与Cd2+的结合率增大,游离态Cd2+浓度减少。溶液的离子强度增大对结合反应有抑制作用。投加Cd2+总浓度的增大会导致结合态Cd2+浓度和游离态Cd2+浓度逐渐增加,而其结合率逐渐减小。腐殖酸浓度逐渐增大,使Cd2+和腐殖酸的结合率逐渐增大。在20℃~50℃范围内时,随反应温度升高,游离态Cd2+浓度逐渐减小,其结合率逐渐增加。

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回