颗粒活性炭吸附去除尿中药活性化合物(PhACs)

何强, 张峻华, 古励, 王书敏, Kujawa-Roeleveld K.. 颗粒活性炭吸附去除尿中药活性化合物(PhACs)[J]. 环境工程学报, 2013, 7(9): 3307-3311.
引用本文: 何强, 张峻华, 古励, 王书敏, Kujawa-Roeleveld K.. 颗粒活性炭吸附去除尿中药活性化合物(PhACs)[J]. 环境工程学报, 2013, 7(9): 3307-3311.
He Qiang, Zhang Junhua, Gu Li, Wang Shumin, Kujawa-Roeleveld K.. Removal of pharmaceutically active compounds (PhACs) from huamn urine using granular activated carbon[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3307-3311.
Citation: He Qiang, Zhang Junhua, Gu Li, Wang Shumin, Kujawa-Roeleveld K.. Removal of pharmaceutically active compounds (PhACs) from huamn urine using granular activated carbon[J]. Chinese Journal of Environmental Engineering, 2013, 7(9): 3307-3311.

颗粒活性炭吸附去除尿中药活性化合物(PhACs)

  • 基金项目:

    欧盟第六框架计划项目(SWITCH-018530)

  • 中图分类号: X703

Removal of pharmaceutically active compounds (PhACs) from huamn urine using granular activated carbon

  • Fund Project:
  • 摘要: 研究了多组分背景下2种煤质颗粒状活性炭D1220、R08S对人尿中4种药活性化合物(PhACs)(1 mg/L)——苯扎贝特(BEZ)、卡马西平(CAR)、布洛芬(IBU)和美托洛尔(MET)——的吸附去除。结果表明,D1220(R08S)对4种PhAC的吸附均符合Freundlich等温式,均为优惠吸附;D1220(R08S)对各PhAC的吸附作用强弱顺序为BEZ>CAR>MET>IBU(BEZ>CAR>IBU>MET);PhACs平衡浓度小于3.01(0.91)μg/L时,D1220(R08S)对4种PhACs中的BEZ的吸附性能最好,平衡浓度大于3.01(1.93)μg/L时,D1220(R08S)则对MET的吸附性能最好;活性炭投加量为2 g/L时,D1220(R08S)对4种PhAC的去除率均在88%以上;总体吸附性能D1220优于R08S。
  • 加载中
  • [1] 谢胜, 李娟英, 赵庆祥. 磺胺类抗生素的活性炭吸附过程研究. 环境工程学报, 2012, 6(2): 483-488 Xie S., Li J. Y., Zhao Q. X. Research on adsorption process of sulfonamide antibiotics with activated carbon. Chinese Journal of Environmental Engineering, 2012, 6(2): 483-488 (in Chinese)
    [2] 何文杰, 谭浩强, 韩宏大, 等. 粉末活性炭对水中农药的吸附性能研究. 环境工程学报, 2010, 4(8): 1692-1696 He W. J., Tan H. Q., Han H. D., et al. Study on adsorption of pesticides from water by powdered activated carbon. Chinese Journal of Environmental Engineering, 2010, 4(8): 1692-1696 (in Chinese)
    [3] Mehinto A. C., Hill E. M., Tyler C. R. Uptake and biological effects of environmentally relevant concentrations of the nonsteroidal anti-inflammatory pharmaceutical diclofenac in rainbow trout (oncorhynchus mykiss). Environ. Sci. Technol., 2010, 44(6): 2176-2182
    [4] Contardo-Jara V., Lorenz C., Pflugmacher S., et al. Exposure to human pharmaceuticals Carbamazepine, Ibuprofen and Bezafibrate causes molecular effects in Dreissena polymorpha. Aquat. Toxicol., 2011, 105(3-4): 428-437
    [5] Pomati F., Netting A. G., Calamari D., et al. Effects of erythromycin, tetracycline and ibuprofen on the growth of Synechocystis sp and Lemna minor. Aquat. Toxicol., 2004, 67(4): 387-396
    [6] Pomati F., Castiglioni S., Zuccato E., et al. Effects of a complex mixture of therapeutic drugs at environmental levels on human embryonic cells. Environ. Sci. Technol., 2006, 40(7): 2442-2447
    [7] Kümmerer K. Pharmaceuticals in the Environment. Annu. Rev. Environ. Resour., 2010, 35(1): 57-75
    [8] Martinez J. L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut., 2009, 157(11): 2893-2902
    [9] Kostich M. S., Lazorchak J. M. Risk to aquatic organisms posed by human pharmaceutical use. Sci. Total. Environ., 2008, 389(2-3): 329-339
    [10] Fatta-Kassinos D., Kalavrouziotis I. K., Koukoulakis P. H., et al. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Sci. Total. Environ., 2011, 409(19): 3555-3563
    [11] Chen F., Ying G.G., Kong L.X., et al. Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environ. Pollut., 2011, 159(6): 1490-1498
    [12] Verlicchi P., Galletti A., Petrovic M., et al. Hospital effluents as a source of emerging pollutants: An overview of micropollutants and sustainable treatment options. J. Hydrol., 2010, 389(3-4): 416-428
    [13] Ternes T. A., Joss A. Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micropollutants in Urban Water Management. London: IWA, 2006
    [14] Janssens I., Tanghe T., Verstraete W. Micropollutants: A bottleneck in sustainable wastewater treatment. Water Sci. Technol., 1997, 35(10): 13-26
    [15] Larsen T. A., Gujer W. Separate management of anthropogenic nutrient solutions (human urine). Water Sci. Technol., 1996, 34(3-4): 87-94
    [16] Heberer T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett., 2002, 131(1-2): 5-17
    [17] Behera S. K., Kim H. W., Oh J. E., et al. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total. Environ., 2011, 409(20): 4351-4360
    [18] Citraningrum M., Gunawan, Indraswati N., et al. Improved adsorption capacity of commercially available activated carbon Norit Rox 0.8 Supra with thermal treatment for phenol removal. J. Environ. Protect. Sci., 2007, 1: 62-74
    [19] Seco A., Gabaldón C., Marzal P., et al. Effect of pH, cation concentration and sorbent concentration on cadmium and copper removal by a granular activated carbon. Journal of Chemical Technology and Biotechnology, 1999, 74(9): 911-918
    [20] Giles C. H., MacEwan T. H., Nakhwa S. N., et al. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc., 1960, 56: 3973-3993
    [21] Giles C. H., Smith D., Huitson A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid Interface Sci., 1974, 47(3): 755-765
    [22] 近藤精一, 石川达雄, 安部郁夫. 吸附科学. (第2版). 北京: 化学工业出版社, 2006
    [23] Benito G. G., Miranda M. P., Santos D. R. d l. Decolorization of wastewater from an alcoholic fermentation process with trametes versicolor. Bioresour. Technol., 1999, 61(1): 33-37
    [24] Venkatathri N., Srivastava R., Yun D. S., et al. Silica nano hollow cuboids: A novel method of fabrication and guest encapsulation. Bull. Catal. Soc. India, 2009, 8: 121-132
    [25] Suriyanon N., Punyapalakul P., Ngamcharussrivichai C. Mechanistic study of diclofenac and carbamazepine adsorption on functionalized silica-based porous materials. Chem. Eng. J., 2013, 214: 208-218
    [26] Golubović A., Abramović B., Šćepanović M., et al. Improved efficiency of sol-gel synthesized mesoporous anatase nanopowders in photocatalytic degradation of metoprolol. Materials Research Bulletin, 2013, 48(4): 1363-1371
  • 加载中
计量
  • 文章访问数:  2015
  • HTML全文浏览数:  1173
  • PDF下载数:  1032
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-04-18
  • 刊出日期:  2013-09-15

颗粒活性炭吸附去除尿中药活性化合物(PhACs)

  • 1. 重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
  • 2. 重庆文理学院水环境修复重点实验室, 重庆 402160
  • 3. 荷兰瓦赫宁根大学环境技术分部, 瓦赫宁根 6700EV
基金项目:

欧盟第六框架计划项目(SWITCH-018530)

摘要: 研究了多组分背景下2种煤质颗粒状活性炭D1220、R08S对人尿中4种药活性化合物(PhACs)(1 mg/L)——苯扎贝特(BEZ)、卡马西平(CAR)、布洛芬(IBU)和美托洛尔(MET)——的吸附去除。结果表明,D1220(R08S)对4种PhAC的吸附均符合Freundlich等温式,均为优惠吸附;D1220(R08S)对各PhAC的吸附作用强弱顺序为BEZ>CAR>MET>IBU(BEZ>CAR>IBU>MET);PhACs平衡浓度小于3.01(0.91)μg/L时,D1220(R08S)对4种PhACs中的BEZ的吸附性能最好,平衡浓度大于3.01(1.93)μg/L时,D1220(R08S)则对MET的吸附性能最好;活性炭投加量为2 g/L时,D1220(R08S)对4种PhAC的去除率均在88%以上;总体吸附性能D1220优于R08S。

English Abstract

参考文献 (26)

目录

/

返回文章
返回