生物基质活性炭对挥发性有机物的吸附

马晓东, 欧阳峰, 申东美, 曹小凯. 生物基质活性炭对挥发性有机物的吸附[J]. 环境工程学报, 2013, 7(6): 2296-2300.
引用本文: 马晓东, 欧阳峰, 申东美, 曹小凯. 生物基质活性炭对挥发性有机物的吸附[J]. 环境工程学报, 2013, 7(6): 2296-2300.
Ma Xiaodong, Ouyang Feng, Shen Dongmei, Cao Xiaokai. Adsorption of VOCs using activated carbons prepared by biologic matters[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2296-2300.
Citation: Ma Xiaodong, Ouyang Feng, Shen Dongmei, Cao Xiaokai. Adsorption of VOCs using activated carbons prepared by biologic matters[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2296-2300.

生物基质活性炭对挥发性有机物的吸附

  • 基金项目:

    深圳市"双百计划"项目(2008)

  • 中图分类号: X511

Adsorption of VOCs using activated carbons prepared by biologic matters

  • Fund Project:
  • 摘要: 以咖啡渣和柚子皮生物基质为原料用磷酸活化法制成活性炭,探讨了制备条件对活性炭制备的影响,并研究了其对正丁烷的吸附行为。磷酸活化过程中磷酸的用量为生物基质质量的1.5倍为宜,咖啡渣采用超声干燥法,柚子皮采用水热法制备。制备的活性炭对正丁烷均有较好的吸附能力,以柚子皮为原料、磷酸用量为原料质量两倍活化制成的活性炭吸附性能最佳,最大吸附量约为商用活性炭的2倍。吸附剂均能较好地与兰格缪尔曲线相拟合,计算了不同正丁烷覆盖度下的等量吸附热,其变化规律与吸附曲线变化规律相一致。
  • [1] 蒋卉. 挥发性有机物的控制技术及其发展. 资源开发与市场, 2006,22(4):315-317 Jiang Hui. Control technology and development of volatile organic compounds. Resource Development and Market, 2006,22(4):315-317(in Chinese)
    [2] 许全瑞, 沈美庆, 王军. 油烟污染及其排放控制技术. 中国稀土学报, 2003,21(z2):22-25 Xu Quanrui, Shen Meiqing, Wang Jun. Pollution and emission control technology of cooking fume. Journal of the Chinese Rare Earth Society, 2003,21(z2):22-25(in Chinese)
    [3] Roak S. E., Cabrera-Fonseca J., Milazzo M., et al. Catalytic oxidation of volatile organic liquids. Journal of Environmental Engineering, 2004,130(3):329-337
    [4] Ciambell I. G., Perathoner P., Perathoner S., et al. Environm-ental catalysis: Trends and outlook. Catalysis Today, 2002,75(1-4):3-15
    [5] Amor J. N. Environmental catalysis. Applied Catalysis B: Environmental, 1992,1(4):221-256
    [6] Foster K.L., Fuerman R.G., Economy J., et al. Adsorption characteristics of trace volatile organic compounds in gas streams onto activated carbon fibers. Chemistry of Materials, 1992,4(5):1068-1073
    [7] Dimotakis E. D., Cal M. P., Economy J., et al. Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams: Evidence for enhanced physical adsorption. Environmental Science and Technology, 1995,29(7):1876-1880
    [8] Vorontsov A.V., Savinov E.N., Smirniotis P.G. Vibrofluideized and fixed-bed photocatalytic reactors: case of gaseous acetone photooxidation. Chemical Engineering Science, 2000,55(21):5089-5098
    [9] Khan F.I., Ghoshal A.K. Removal of volatile organic compounds from polluted air. Journal of Loss Prevention in the Process Industries, 2000,13(6):527-545
    [10] Ruddy E.N., Carroll L.A. Select the best VOC control strategy. Chemical Engineering Progress, 1993,89(7):28-35
    [11] 徐效梅, 黄维秋, 赵书华, 等. 活性炭吸附VOC穿透曲线的研究. 能源环境保护, 2008,22(2):7-10 Xu Xiaomei, Huang Weiqiu, Zhao Shuhua, et al. Study on the activated carbon's adsorption breakthrough curves of VOC. Energy Environmental Protection, 2008,22(2):7-10(in Chinese)
    [12] 苑守瑞, 朱义年, 梁美娜. 氯化锌活化法制备柚子皮活性. 环境科学与技术, 2010,33(6E):22-25 Yuan Shourui, Zhu Yinian, Liang Meina. Preparation of activated carbon from grapefruit bran by activation with zinc chloride. Environmental Science and Technology, 2010,33(6E):22-25(in Chinese)
    [13] Boonamnuayvitaya V., Sae-ung S., Tanthapanichakoon W. Preparation of activated carbons from coffee residue for the adsorption of formaldehyde. Separation and Purification Technology, 2005,42(2):159-168
    [14] Namane A., Mekarzia A., Benrachedi K., et al. Determinati-on of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4. Journal of Hazardous Materials, 2005,119(1-3):189-194
    [15] Ogata F., Tominaga H., Yabutani H., et al. Removal of fluoride ions from water by adsorption onto carbonaceous materials produced from coffee grounds. Journal of Oleo Science, 2011,60(12):619-625
    [16] Hirata M., Kawasaki N., Nakamura T., et al. Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment. Journal of Colloid and Interface Science, 2002,254(1):17-22
    [17] Foo K. Y., Hameed B. H. Microwave assisted preparation of activated carbon from pomelo skin for the removal of anionic and cationic dyes. Chemical Engineering Journal, 2011,172(2):385-390
    [18] 李登勇, 吴超飞, 韦朝海, 等. 柚子皮生物碳质对4-氯硝基苯的吸附动力学及吸附平衡特征. 环境工程学报, 2010,4(3):481-486 Li Dengyong, Wu Chaofei, Wei Chaohai, et al. Kinetics and equilibrium of 4-nitrochlorobenzene adsorption on biological carbon prepared by pomelo peel. Chinese Journal of Environmental Engineering, 2010,4(3):481-486(in Chinese)
    [19] 沈士德, 徐娟. 柚皮粉对水中Cr(Ⅵ)的吸附性能研究. 环境工程学报, 2010,4(8):1841-1845 Shen Shide, Xu Juan. Research on adsorption of hexavalent chromium in water onto grapefruit husk powder. Chinese Journal of Environmental Engineering, 2010,4(8):1841-1845(in Chinese)
    [20] 周殷, 胡长伟, 李建龙. 柚子皮吸附水溶液中亚甲基蓝的机理研究. 环境科学研究, 2008,21(5):49-54 Zhou Yin, Hu Changwei, Li Jianlong. Study on the biosorption mechanism of methylene blue in aqueous solution using pomelo peel. Research of Environmental Sciences, 2008,21(5):49-54(in Chinese)
    [21] 辛勤, 罗孟飞. 现代催化研究方法. 北京: 科学出版社, 2009.21-22
  • 加载中
计量
  • 文章访问数:  1665
  • HTML全文浏览数:  739
  • PDF下载数:  1223
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-06-11
  • 刊出日期:  2013-06-11
马晓东, 欧阳峰, 申东美, 曹小凯. 生物基质活性炭对挥发性有机物的吸附[J]. 环境工程学报, 2013, 7(6): 2296-2300.
引用本文: 马晓东, 欧阳峰, 申东美, 曹小凯. 生物基质活性炭对挥发性有机物的吸附[J]. 环境工程学报, 2013, 7(6): 2296-2300.
Ma Xiaodong, Ouyang Feng, Shen Dongmei, Cao Xiaokai. Adsorption of VOCs using activated carbons prepared by biologic matters[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2296-2300.
Citation: Ma Xiaodong, Ouyang Feng, Shen Dongmei, Cao Xiaokai. Adsorption of VOCs using activated carbons prepared by biologic matters[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2296-2300.

生物基质活性炭对挥发性有机物的吸附

  • 1. 哈尔滨工业大学深圳研究生院, 深圳 518055
基金项目:

深圳市"双百计划"项目(2008)

摘要: 以咖啡渣和柚子皮生物基质为原料用磷酸活化法制成活性炭,探讨了制备条件对活性炭制备的影响,并研究了其对正丁烷的吸附行为。磷酸活化过程中磷酸的用量为生物基质质量的1.5倍为宜,咖啡渣采用超声干燥法,柚子皮采用水热法制备。制备的活性炭对正丁烷均有较好的吸附能力,以柚子皮为原料、磷酸用量为原料质量两倍活化制成的活性炭吸附性能最佳,最大吸附量约为商用活性炭的2倍。吸附剂均能较好地与兰格缪尔曲线相拟合,计算了不同正丁烷覆盖度下的等量吸附热,其变化规律与吸附曲线变化规律相一致。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回