海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙

王晓燕, 许振成, 刘芸, 鞠勇明, 任学昌, 庞志华, 郝火凡, 方建德. 海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙[J]. 环境工程学报, 2013, 7(6): 2093-2099.
引用本文: 王晓燕, 许振成, 刘芸, 鞠勇明, 任学昌, 庞志华, 郝火凡, 方建德. 海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙[J]. 环境工程学报, 2013, 7(6): 2093-2099.
Wang Xiaoyan, Xu Zhencheng, Liu Yun, Ju Yongming, Ren Xuechang, Pang Zhihua, Hao Huofan, Fang Jiande. Degradation of methyl orange by sponge iron reduction coupled with GAC adsorption and microwave regeneration[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2093-2099.
Citation: Wang Xiaoyan, Xu Zhencheng, Liu Yun, Ju Yongming, Ren Xuechang, Pang Zhihua, Hao Huofan, Fang Jiande. Degradation of methyl orange by sponge iron reduction coupled with GAC adsorption and microwave regeneration[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2093-2099.

海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙

  • 基金项目:

    国家"十二五"科技支撑计划项目(2012BAJ21B07)

  • 中图分类号: X703.1

Degradation of methyl orange by sponge iron reduction coupled with GAC adsorption and microwave regeneration

  • Fund Project:
  • 摘要: 采用海绵铁(s-Fe0)还原耦合活性炭(GAC)吸附-微波(MW)再生技术降解甲基橙(MO)溶液,重点考察了s-Fe0投加量、粒径、微波功率等因素对MO去除效果的影响。结果表明,s-Fe0投加剂量为15.0 g/L、粒径为3~5 mm、超声波功率为200 W,反应1 h,MO的去除率为94.2%。其次,采用GAC吸附-MW再生技术(800 W,照射1 min)循环处理上述脱色后的MO废水。结果表明,GAC吸附可有效降低废水的生物毒性及残留的染料、TOC和总铁离子浓度,且MW辐射可有效再生吸附饱和的GAC颗粒。因此,s-Fe0还原耦合GAC吸附-MW再生技术可以有效降解MO染料,具有处理效果好、实现资源循环利用等优点。
  • 加载中
  • [1] Lowry G., Johnson K. Congener-pecific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environment Science and Technology, 2004,38(19):5208-5216
    [2] Shea P. J., Machacek T. A., Comfort S.D. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution, 2004,132(2):183-188
    [3] Manning B. A., Kiser J. R., Kwon H., et al. Spectroscopic investigation of Cr(III)-and Cr(VI)-treated nanoscale zerovalent iron. Environment Science and Technology, 2007,41(2):586-592
    [4] Moon B. G., Park Y. B., Park K. H. Fenton oxidation of Orange II by pre-reduction using nanoscale zero-valent iron. Desalination, 2011,268(1-3):249-252
    [5] Li J. G., Wei L. H., Li Y. G., et al. Cadmium removal from wastewater by sponge iron sphere prepared by hydrogen reduction. Journal of Environmental Sciences, 2011,23(Supplement):S114-S118
    [6] Li J. G., Li J., Li Y. G. Cadmium removal from wastewater by sponge iron sphere prepared by charcoal direct reduction. Journal of Environmental Sciences, 2009,21(Supplement 1):S60-S64
    [7] 高孟春, 张小敬, 李冰, 等. 海绵铁对酸性媒介黑T废水脱色的研究.工业水处理, 2009,29(9):31-33 Gao M. C., Zhang X. J., Li B., et al. Study on the decolorization of Acidic Mordant Black T with sponge iron. Industrial Water Treatment, 2009,29(9):31-33(in Chinese)
    [8] 高孟春, 李冰, 梁方圆, 等.海绵铁/锰砂混合填料预处理模拟印染废水的研究.工业水处理,2010,30(9):32-34 Gao M. C., Li B., Liang F.Y., et al. Study on the pretreatment of simulated dyeing wastewater with the mixture of sponge iron and manganese sand. Industrial Water Treatment, 2010,30(9):32-34(in Chinese)
    [9] Faria P. C. C., Orfal J. J. M., Pereira M. F. R. Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Research, 2004,38(8):2043-2052
    [10] Chang S. H., Wang K. S., Liang H. H., et al. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process. Journal of Hazardous Materials, 2010,175(1-3):850-857
    [11] Zhang Z. H., Shan Y. B., Wang J., et al. Investigation on the rapid degradation of congo red catalyzed by activated carbon powder under microwave irradiation. Journal of Hazardous Materials, 2007,147(1-2):325-333
    [12] Quan X., Liu X. T., Bo L. L., et al. Regeneration of Acid Orange 7-exhausted granular activated carbons with microwave irradiation. Water Research, 2004,38(20):4484-4490
    [13] Chen B. Y. Toxicity assessment of aromatic amines to Pseudomonas luteola:Chemostat pulse technique and dose-response analysis. Process Biochemistry, 2006,41(7):1529-1538
    [14] 马晓妍, 闫志刚, 刘永军, 等. 污水的青海弧菌Q67生物毒性检测及影响因素分析. 环境科学, 2011,32(6):1632-1637 Ma X.Y., Yan Z. G., Liu Y. J., et al. Detection of wastewater ecotoxicity using Virbrio qinghaiensis sp.-Q67 and its impact factors analysis. Environmental Science, 2011,32(6):1632-1637(in Chinese)
    [15] 赵红宁, 王学江, 夏四清. 水生生态毒理学方法在废水毒性评价中的应用. 净水技术, 2008,27(5):18-24 Zhao H. N., Wang X. J., Xia S. Q. Application of aquatic ecotoxicology in assessment of wastewater toxicity. Water Purification Technology, 2008,27(5):18-24(in Chinese)
    [16] Ma M., Tong Z.H., Wang Z.J. Acute toxicity bioassay using fresh water luminescent bacterium Vibrio-qinghaiensissp.-Q67. Bulletin of Environmental Contamination and Toxicology, 1999,62(3):247-253
    [17] Hung H. M., Ling F. H., Hoffmann M. R. Kinetics and mechanism of the enhanced reductive degradation of nitrobenzene by elemental iron in the presence of ultrasound. Environmental Science and Technology, 2000,34(9):1758-1763
    [18] Zhang H., Duan L. J., Zhang Y., et al. The use of ultrasound to enhance the decolorization of the C.I. Acid Orange 7 by zero-valent iron. Dyes and Pigments, 2005,65(1):39-43
    [19] 张亚平, 蔡慧农, 韦朝海, 等. 超声强化Fe0去除阳离子红GTL的研究. 环境工程学报, 2008,2(10):1297-1301 Zhang Y. P., Cai H. N., Wei C. H., et al. Study on the use of ultrasound to enhance rem oval of cationic red GTL by zero-valent iron. Chinese Journal of Environmental Engineering, 2008,2(10):1297-1301(in Chinese)
    [20] Fan J.,Guo Y. H.,Wang J. J., et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials, 2009,166(2-3):904-910
    [21] Riviera U. J., Ferro G. M., Bautist T. I., et al. Regeneration of ortho-chlorophenol-exhausted activated carbon with liquid water at high pressure and temperature. Water Research, 2003,37(8):1905-1911
    [22] Leng C. C., Pinto N. G. An investigation of the mechanisms of chemical regeneration of activated carbon. Industrial & Engineering Chemistry Research, 1996,35(6):2024-2031
  • 加载中
计量
  • 文章访问数:  2267
  • HTML全文浏览数:  1057
  • PDF下载数:  1095
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-04-10
  • 刊出日期:  2013-06-11
王晓燕, 许振成, 刘芸, 鞠勇明, 任学昌, 庞志华, 郝火凡, 方建德. 海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙[J]. 环境工程学报, 2013, 7(6): 2093-2099.
引用本文: 王晓燕, 许振成, 刘芸, 鞠勇明, 任学昌, 庞志华, 郝火凡, 方建德. 海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙[J]. 环境工程学报, 2013, 7(6): 2093-2099.
Wang Xiaoyan, Xu Zhencheng, Liu Yun, Ju Yongming, Ren Xuechang, Pang Zhihua, Hao Huofan, Fang Jiande. Degradation of methyl orange by sponge iron reduction coupled with GAC adsorption and microwave regeneration[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2093-2099.
Citation: Wang Xiaoyan, Xu Zhencheng, Liu Yun, Ju Yongming, Ren Xuechang, Pang Zhihua, Hao Huofan, Fang Jiande. Degradation of methyl orange by sponge iron reduction coupled with GAC adsorption and microwave regeneration[J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2093-2099.

海绵铁还原耦合活性炭吸附-微波再生技术降解甲基橙

  • 1.  兰州交通大学环境与市政工程学院, 兰州 730070
  • 2.  环境保护部华南环境科学研究所, 广州 510655
基金项目:

国家"十二五"科技支撑计划项目(2012BAJ21B07)

摘要: 采用海绵铁(s-Fe0)还原耦合活性炭(GAC)吸附-微波(MW)再生技术降解甲基橙(MO)溶液,重点考察了s-Fe0投加量、粒径、微波功率等因素对MO去除效果的影响。结果表明,s-Fe0投加剂量为15.0 g/L、粒径为3~5 mm、超声波功率为200 W,反应1 h,MO的去除率为94.2%。其次,采用GAC吸附-MW再生技术(800 W,照射1 min)循环处理上述脱色后的MO废水。结果表明,GAC吸附可有效降低废水的生物毒性及残留的染料、TOC和总铁离子浓度,且MW辐射可有效再生吸附饱和的GAC颗粒。因此,s-Fe0还原耦合GAC吸附-MW再生技术可以有效降解MO染料,具有处理效果好、实现资源循环利用等优点。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回