多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水

赵连梅, 蒋树贤, 李冬梅, 池勇志, 张景丽. 多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水[J]. 环境工程学报, 2013, 7(5): 1849-1853.
引用本文: 赵连梅, 蒋树贤, 李冬梅, 池勇志, 张景丽. 多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水[J]. 环境工程学报, 2013, 7(5): 1849-1853.
Zhao Lianmei, Jiang Shuxian, Li Dongmei, Chi Yongzhi, Zhang Jingli. Treatment of wastewater containing cupric tartrate trihydrate by heterogeneous Fenton oxidation-precipitation[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1849-1853.
Citation: Zhao Lianmei, Jiang Shuxian, Li Dongmei, Chi Yongzhi, Zhang Jingli. Treatment of wastewater containing cupric tartrate trihydrate by heterogeneous Fenton oxidation-precipitation[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1849-1853.

多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水

  • 基金项目:

    广东省自然科学基金资助项目(S2011040003754)

    广东工业大学博士启动基金(103018)

    国家自然科学基金资助项目(51078265)

  • 中图分类号: X703.1

Treatment of wastewater containing cupric tartrate trihydrate by heterogeneous Fenton oxidation-precipitation

  • Fund Project:
  • 摘要: 针对工业废水中难以去除的络合态重金属,采用自制的负载型FeSO4/HS为催化剂,用Fenton-like氧化2,3-二羟基琥珀酸铜废水,并将游离出来的铜加碱沉淀除去。研究发现,当22O2为25 mmol/L时负载型FeSO4/HS催化的催化活性最高。当H2O2分3次等量投加时获得最高COD和铜去除率。催化剂的活性随降解次数的增加而缓慢下降,可以通过补加亚铁的方法消除,亚铁补加量在0.4 mg/L时效果最好,补加后催化剂的催化活性具有较好的持续性。
  • [1] Evina Katsou, Simos Malamis, Katherine J., et al. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Chemosphere, 2011, 82(4):557-564
    [2] Jinhui Huang, Guangming Zeng, Chunfei Zhou, et al. Adsorption of surfactant micelles and Cd2+/Zn2+ in micellar-enhanced ultrafiltration. Journal of Hazardous Materials, 2010, 183(2):287-293
    [3] Feng H. M., Zheng J. C., Lei N. Y., et al.Photoassisted Fenton degradation of polystyrene. Environ. Sci. Technol., 2011, 45(2):744-750
    [4] Shuxian Jiang, Junxiong Qu, Ya Xiong. Removal of chelated copper from wastewaters by Fe2+-based replacement-precipitation. Environmental Chemistry Letters, 2010, 8(4):339-342
    [5] 邹照华,何素芳,韩彩芸,等.重金属废水处理技术研究进展.工业水处理, 2010,30(5):9-12 Zou Zhaohua, He Sufang, Han Caiyun, et al. Research progress in heavy metal wastewater treatment techniques. Industrial Water Treatment, 2010,30(5):9-12(in Chinese)
    [6] 谢章旺,邵嘉慧,何义亮.壳聚糖络合-超滤耦合过程去除溶液中铅离子的研究.环境科学, 2010,31(6):1532-1536 Xie Zhangwang,Shao Jiahui,He Yiliang. Removal of lead from aqueous solutions by complexation-ultrafiltration with chitosan. Environmental Science, 2010,31(6):1532-1536(in Chinese)
    [7] 徐春月,马前,包樱,等.利用厌氧菌发酵产物处理含铅废水及机理研究.环境工程学报, 2010,4(5):1129-1133 Xu Chunyue, Ma Qian, Bao Ying, et al. Study on mechanism and treatment of wastewater containing lead using anaerobic metabolites. Chinese Journal of Environmental Engineering,2010,4(5):1129-1133(in Chinese)
    [8] Rosal R., Rodríguez A., Perdigón-Melón J.A., et al. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res., 2010, 44(2):578-588
    [9] Sui Q., Huang J., Deng S., et al. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res., 2010, 44(2):417-426
    [10] Loganathan B., Phillips M., Mowery H. Contamination profiles and mass loadings of macrolide antibiotics and illicit drugs from a small urban wastewater treatment plant. Chemosphere, 2009, 75(1): 70-77
    [11] Zhou Y. T., Nie H. L., Christopher B.W., et al. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J. Colloid Inter. Sci., 2009, 330(1):29-37
    [12] Qu Y. H., Zeng G. M., Huang J. H., et al. Treatment of the wastewater containing Cd2+ using micellar enhanced ultrafiltration combined with foam fractionation. Environ. Eng. Sci., 2009, 26(4):761-766
    [13] 令玉林,戴友芝,刘立华,等.一种多DTC基团重金属螯合剂的合成及处理含铜废水性能.环境工程学报, 2011,5(6):1246-1250 Ling Yulin, Dai Youzhi, Liu Lihua, et al. Synthesis of a heavy metal chelating agent with DTC group and its performance of treatment of copper-containing wastewater. Chinese Journal of Environmental Engineering, 2011,5(6):1246-1250(in Chinese)
    [14] Despo F. K., Sureyya M. Pharmaceutical residues in environmental waters and wastewater: Current state of knowledge and future research. Anastasia Nikolaou Analytical and Bioanalytical Chemistry, 2011, 399 (1):251-275
    [15] Witte B. D., Langenhove H. V., Demeestere K., et al. Advanced oxidation of pharmaceuticals: chemical analysis and biological assessment of degradation products. Critical Reviews in Environmental Science and Technology, 2011, 41 (3):215-242
    [16] Vogna D., Marotta R., Napolitano A., et al. Advanced oxidation chemistry of paracetamol. UV/H2O2-Induced hydroxyla-tion/degradation pathways and 15N-aided inventory of nitrogenous breakdown products. J. Org. Chem., 2002, 67 (17): 6143-6151
    [17] Singh A. K., Negi R., Jain B., et al. Pd(Ⅱ) catalyzed oxidative degradation of paracetamol by chloramine-T in acidic and alkaline media. Industrial & Engineering Chemistry Research, 2011, 50(14):8407-8419
    [18] Yang L. M., Yu L. E., Ray M. B. Photocatalytic oxidation of paracetamol: dominant reactants, intermediates, and reaction mechanisms. Environ. Sci. Technol., 2009, 43 (2):460-465
    [19] Pignatello J. J., Baehr K. Waste management: ferric complexes as catalysts for Fenton degradation of 2,4-D and metal ochlor in soil. Journal of Environmental Quality, 1994, 23(2):365-369
    [20] Tony M. A., Purcell P. J., Zhao Y. Q., et al. Photo-catalytic degradation of an oil-water emulsion using the photo-Fenton treatment process: Effects and statistical optimization. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 2009, 44(2):179-187
    [21] Sahunin C., Kaewboran J., Hunsom M. Treatment of textile dyeing wastewater by photo oxidation using UV/H2O2/Fe2+ reagents. Science Asia, 2006, 32(2):181-186
    [22] 杨玲, 赵勇胜, 马百文, 等. Fenton和类Fenton氧化处理地下水中BTEX及其动力学.环境工程学报, 2011,5(5):992-996 Yang L., Zhao S.Y., Ma B.W., et al. Treatment of BTEX in groundwater by Fenton's and Fenton-like oxidation reaction and the kinetics. Chinese Journal of Environmental Engineering, 2011, 5(5):992-996(in Chinese)
  • 加载中
计量
  • 文章访问数:  1377
  • HTML全文浏览数:  559
  • PDF下载数:  1118
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-18
  • 刊出日期:  2013-05-22
赵连梅, 蒋树贤, 李冬梅, 池勇志, 张景丽. 多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水[J]. 环境工程学报, 2013, 7(5): 1849-1853.
引用本文: 赵连梅, 蒋树贤, 李冬梅, 池勇志, 张景丽. 多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水[J]. 环境工程学报, 2013, 7(5): 1849-1853.
Zhao Lianmei, Jiang Shuxian, Li Dongmei, Chi Yongzhi, Zhang Jingli. Treatment of wastewater containing cupric tartrate trihydrate by heterogeneous Fenton oxidation-precipitation[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1849-1853.
Citation: Zhao Lianmei, Jiang Shuxian, Li Dongmei, Chi Yongzhi, Zhang Jingli. Treatment of wastewater containing cupric tartrate trihydrate by heterogeneous Fenton oxidation-precipitation[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1849-1853.

多相Fenton氧化-沉淀法处理2,3-二羟基琥珀酸铜废水

  • 1.  天津城市建设学院环境与市政工程系,天津 300384
  • 2.  天津市水质科学与技术重点实验室,天津 300384
  • 3.  广东工业大学土木与交通工程学院,广州 510006
基金项目:

广东省自然科学基金资助项目(S2011040003754)

广东工业大学博士启动基金(103018)

国家自然科学基金资助项目(51078265)

摘要: 针对工业废水中难以去除的络合态重金属,采用自制的负载型FeSO4/HS为催化剂,用Fenton-like氧化2,3-二羟基琥珀酸铜废水,并将游离出来的铜加碱沉淀除去。研究发现,当22O2为25 mmol/L时负载型FeSO4/HS催化的催化活性最高。当H2O2分3次等量投加时获得最高COD和铜去除率。催化剂的活性随降解次数的增加而缓慢下降,可以通过补加亚铁的方法消除,亚铁补加量在0.4 mg/L时效果最好,补加后催化剂的催化活性具有较好的持续性。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回