响应面法优化Fenton预处理干法腈纶废水

魏健, 宋永会, 赵乐, 田智勇, 徐东耀. 响应面法优化Fenton预处理干法腈纶废水[J]. 环境工程学报, 2013, 7(5): 1695-1701.
引用本文: 魏健, 宋永会, 赵乐, 田智勇, 徐东耀. 响应面法优化Fenton预处理干法腈纶废水[J]. 环境工程学报, 2013, 7(5): 1695-1701.
Wei Jian, Song Yonghui, Zhao Le, Tian Zhiyong, Xu Dongyao. Optimization of Fenton process for pretreatment of dry-spun acrylic fiber wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1695-1701.
Citation: Wei Jian, Song Yonghui, Zhao Le, Tian Zhiyong, Xu Dongyao. Optimization of Fenton process for pretreatment of dry-spun acrylic fiber wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1695-1701.

响应面法优化Fenton预处理干法腈纶废水

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2012ZX07202-002)

    中法国际科技合作项目(2010DFB90590)

  • 中图分类号: X703.1

Optimization of Fenton process for pretreatment of dry-spun acrylic fiber wastewater with response surface methodology

  • Fund Project:
  • 摘要: 采用Fenton法预处理难降解干法腈纶废水,选取H2O2用量、Fe2+用量、初始pH和反应温度4个因素为变量,COD去除率为响应值进行中心组合设计。利用响应面法对实验结果进行分析,建立了以COD去除率为响应值的二次多项式模型并进行了显著性检验,分析了各因素单独及交互作用对COD去除率的影响,确定了最佳反应条件,并考察了最佳条件下处理前后废水可生化性和毒性变化。结果表明,所选取的4个因素影响COD去除率的主次顺序依次为:H2O2用量、Fe2+用量、初始pH和反应温度;在H2O2浓度为90.0 mmol/L、Fe2+浓度为23.9 mmol/L、初始pH值为3.4、温度为38.5℃的最佳条件下,COD去除率为53.8%,与模型预测值51.9%吻合度较高,偏差仅为3.66%;最佳条件下处理后废水可生化性显著提高,生物毒性明显降低,适宜于后续的生化处理。
  • [1] 汪宏渭,孙在柏,孙国华.干法腈纶废水处理技术.化工环保,2005,25(2):128-131 Wang H. W., Sun Z. B., Sun G. H. Study on the treatment process for dry-spun polyacrylonitrile fiber wastewater. Environmental Protection of Chemical Industry, 2005, 25(2): 128-131 (in Chinese)
    [2] 杨崇臣,田智勇,宋永会,等.膜生物反应器(MBR)处理干法腈纶废水.环境科学研究,2010, 23(7): 912-917 Yang C. C., Tian Z. Y., Song Y. H., et al. Wastewater treatment of dry-spun acrylic fiber by membrane bioreactor. Research of Environmental Science, 2010, 23(7): 912-917 (in Chinese)
    [3] 赵朝成,陆晓华,刘海洪,等.腈纶废水生化处理研究.工业水处理,2004, 24(5): 42-45 Zhao C. C., Lu X. H., Liu H. H., et al. Study on the biological treatment of acrylic fiber wastewater. Industrial Water Treatment, 2004, 24(5): 42-45 (in Chinese)
    [4] Zhang C., Wang J., Zhou H., et al. Anodic treatment of acrylic fiber manufacturing wastewater with boron-doped diamond electrode: A statistical approach. Chemical Engineering Journal, 2010, 161(1-2): 93-98
    [5] Santos M. S. F., Alves A., Madeira L. M. Paraquat removal from water by oxidation with Fenton's reagent. Chemical Engineering Journal, 2011, 175(1): 279-290
    [6] Chu L., Wang J., Dong J., et al. Treatment of coking wastewater by an advanced Fenton oxidation process using iron power and hydrogen peroxide. Chemosphere, 2012, 86(4): 409-414
    [7] Wang H. Y., Hu Y. N., Cao G. P., et al. Degradation of propylene glycol wastewater by Fenton's reagent in a semi-continuous reactor. Chemical Engineering Journal, 2011, 170(1): 75-81
    [8] Popuri S. R., Chang C. Y., Xu J. A study on different addition approach of Fenton's reagent for DCOD removal ABS wastewater. Desalination, 2011, 277(1-3): 141-146
    [9] Prato-Garcia D., Buitrón G. Evaluation of three reagent dosing strategies in a photo-Fenton process for the decolorization of azo dye mixtures. Journal of Hazardous Materials, 2012, 217-218(1): 293-300
    [10] Sun J. H., Shi S. H., Lee Y. F., et al. Fenton oxidative decolorization of the azo dye Direct Blue 15 in aqueous solution. Chemical Engineering Journal, 2009, 155(3): 680-683
    [11] He P. J., Zhong Z., Zhang H., et al. PAEs and BPA removal in landfill leachate with Fenton process and its relationship with the DOM composition. Science of the Total Environment, 2009, 407(17): 4928-4933
    [12] Vedrenne M., Vasquez-Medrano R., Prato-Garcia D., et al. Characterization of detoxification of a mature landfill leachate using a combined coagulation-flocculation/photo Fenton treatment. Journal of Hazardous Materials, 2012, 205-206(1): 208-215
    [13] Mason R. L., Gunst R. F., Hess J. J. Statistical Design and Analysis of Experiments with Application to Engineering and Science. The United States of America: John Wiley and Sons Publication, 2003
    [14] 刘春明,董秀芹,张敏华.响应面法优化超临界水氧化降解喹啉废水.环境工程学报,2012,6(10):3569-3572 Liu C. M., Dong X. Q., Zhang M. H. Optimization of supercritical water oxidation of quinolone wastewater by response surface methodological analysis. Chinese Journal of Environmental Engineering, 2012, 6(10): 3569-3572 (in Chinese)
    [15] Bianco B., Michelis I. D., Vegliò F. Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method. Journal of Hazardous Materials, 2011, 186(2-3): 1733-1738
    [16] Hermosilla D., Merayo N., Ordóez R., et al. Optimization of conventional Fenton and ultraviolet-assisted oxidation process for the treatment of reverse osmosis retentate from a paper mill. Waste Management, 2012, 32(6): 1236-1243
    [17] Cruz-González K., Torres-Lopez O., García-León A.M., et al. Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination, 2012, 286(1): 63-68
    [18] 国家环境保护总局.水和废水监测分析方法.(第4版). 北京:中国环境科学出版社, 2002
    [19] Martins R. C., Rossi A. F., Quinta-Ferreira R. M., et al. Fenton's oxidation process for phenolic wastewater remediation and biodegradability enhancement. Journal of Hazardous Materials, 2010, 180(1-3): 716-721
    [20] Kallel M., Belaid C., Mechichi T., et al. Removal of organic load and phenolic compounds from olive mill wastewater by Fenton oxidation with zero-valent iron. Chemical Engineering Journal, 2009, 150(2-3): 391-395
    [21] Lai B., Zhou Y. X., Qin H. K., et al. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by microelectrolysis. Chemical Engineering Journal, 2012, 179(1): 1-7
  • 加载中
计量
  • 文章访问数:  1825
  • HTML全文浏览数:  819
  • PDF下载数:  773
  • 施引文献:  0
出版历程
  • 收稿日期:  2013-02-15
  • 刊出日期:  2013-05-22
魏健, 宋永会, 赵乐, 田智勇, 徐东耀. 响应面法优化Fenton预处理干法腈纶废水[J]. 环境工程学报, 2013, 7(5): 1695-1701.
引用本文: 魏健, 宋永会, 赵乐, 田智勇, 徐东耀. 响应面法优化Fenton预处理干法腈纶废水[J]. 环境工程学报, 2013, 7(5): 1695-1701.
Wei Jian, Song Yonghui, Zhao Le, Tian Zhiyong, Xu Dongyao. Optimization of Fenton process for pretreatment of dry-spun acrylic fiber wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1695-1701.
Citation: Wei Jian, Song Yonghui, Zhao Le, Tian Zhiyong, Xu Dongyao. Optimization of Fenton process for pretreatment of dry-spun acrylic fiber wastewater with response surface methodology[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1695-1701.

响应面法优化Fenton预处理干法腈纶废水

  • 1.  北京师范大学水科学研究院,北京 100875
  • 2.  中国环境科学研究院城市水环境科技创新基地,北京 100012
  • 3.  中国矿业大学(北京)化学与环境工程学院,北京 100083
基金项目:

国家"水体污染控制与治理"科技重大专项(2012ZX07202-002)

中法国际科技合作项目(2010DFB90590)

摘要: 采用Fenton法预处理难降解干法腈纶废水,选取H2O2用量、Fe2+用量、初始pH和反应温度4个因素为变量,COD去除率为响应值进行中心组合设计。利用响应面法对实验结果进行分析,建立了以COD去除率为响应值的二次多项式模型并进行了显著性检验,分析了各因素单独及交互作用对COD去除率的影响,确定了最佳反应条件,并考察了最佳条件下处理前后废水可生化性和毒性变化。结果表明,所选取的4个因素影响COD去除率的主次顺序依次为:H2O2用量、Fe2+用量、初始pH和反应温度;在H2O2浓度为90.0 mmol/L、Fe2+浓度为23.9 mmol/L、初始pH值为3.4、温度为38.5℃的最佳条件下,COD去除率为53.8%,与模型预测值51.9%吻合度较高,偏差仅为3.66%;最佳条件下处理后废水可生化性显著提高,生物毒性明显降低,适宜于后续的生化处理。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回