土霉素在4种人工湿地基质上的吸附-解吸特性

高锋, 杨朝晖, 李晨, 邓一兵. 土霉素在4种人工湿地基质上的吸附-解吸特性[J]. 环境工程学报, 2013, 7(5): 1683-1688.
引用本文: 高锋, 杨朝晖, 李晨, 邓一兵. 土霉素在4种人工湿地基质上的吸附-解吸特性[J]. 环境工程学报, 2013, 7(5): 1683-1688.
Gao Feng, Yang Zhaohui, Li Chen, Deng Yibing. Adsorption and desorption of oxytetracycline in four constructed wetland substrates[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1683-1688.
Citation: Gao Feng, Yang Zhaohui, Li Chen, Deng Yibing. Adsorption and desorption of oxytetracycline in four constructed wetland substrates[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1683-1688.

土霉素在4种人工湿地基质上的吸附-解吸特性

  • 基金项目:

    国家自然科学基金资助项目(50908214)

    浙江省海洋与渔业项目(浙海渔计[127]号)

  • 中图分类号: X703.1

Adsorption and desorption of oxytetracycline in four constructed wetland substrates

  • Fund Project:
  • 摘要: 为了研究土霉素在人工湿地基质床中的行为机制,本实验采用批量平衡方法研究了壤土、煤灰渣、粗砂和细砂等4种人工湿地基质材料对土霉素的吸附、解吸特性。结果表明,土霉素在人工湿地基质材料上的吸附可分为前4小时的快速吸附阶段和之后的慢速吸附阶段,14 h后达到吸附平衡,这一吸附平衡时间明显低于一般人工湿地系统的水力停留时间。可以认为,土霉素在人工湿地中有足够的时间吸附于基质层上,其吸附量的大小主要取决于基质材料的性质。土霉素在4种基质材料上的等温吸附实验表明,吸附等温线均呈非线性,用Freundlich方程能较好地对吸附数据进行非线性拟合。在4种人工湿地基质材料中,煤灰渣对土霉素的吸附作用最强,通过Freundlich方程拟合的吸附容量参数(KF)为280.2;其次为壤土,KF值为129.3;粗砂和细砂的吸附作用较弱,KF值分别为53.2和64.5。人工湿地基质材料对土霉素的吸附能力主要与基质有机质含量、粘粒含量、Fe2O3含量、阳离子交换量和Al2O3含量呈正相关。土霉素在4种人工湿地基质材料上的解吸均存在滞后现象,相对于壤土和煤灰渣,吸附于粗砂和细砂上的土霉素更容易被解吸下来。
  • [1] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性. 生态学报, 2006, 26(1): 265-270 Wang R., Liu T. Z., Wang T. The fate of antibiotics in environment and its ecotoxicology: A review. Acta Ecologica Sinica, 2006, 26(1): 265-270 (in Chinese)
    [2] 鲍艳宇, 周启星, 万莹, 等. 3种四环素类抗生素在褐土上的吸附和解吸. 中国环境科学, 2010, 30(10): 1383-1388 Bao Y. Y., Zhou Q. X., Wan Y., et al. Adsorption and desorption of three tetracycline antibiotics in cinnamon soils of China. China Environmental Science, 2010, 30(10): 1383-1388 (in Chinese)
    [3] Ternes T. A., Meisenheimer M., Mcdowell D. Removal of pharmaceuticals during drinking water treatment. Environmental Science and Technology, 2002, 36(5): 3855-3863
    [4] 陈育枝, 张元元, 袁希平, 等. 动物四环素类抗生素现状及前景. 兽药, 2006, 11(3): 16-17
    [5] 徐维海, 张干, 邹世春, 等. 典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征. 环境科学, 2007, 28(8): 1779-1783 Xu W. H., Zhang G., Zou S. C., et al. Occurrence, distribution and fate of antibiotics in sewage treatment plants. Environmental Science, 2007, 28(8): 1779-1783 (in Chinese)
    [6] Karthikeyan K. G., Meyer M. T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 2006, 36(1): 196-207
    [7] 张金生, 袁兴中, 曾光明, 等. 外循环三相流化床-人工湿地系统处理渗滤液可行性研究. 环境科学, 2009, 30(11): 3371-3376 Zhang J. S., Yuan X. Z., Zeng G. M., et al. Feasibility of treatment of landfill leachates by external loop three phase fluidized bed-constructed wetland system. Environmental Science, 2009, 30(11): 3371-3376 (in Chinese)
    [8] 付融冰, 杨海真, 顾国维, 等. 潜流水平湿地对农业灌溉径流氮磷的去除. 中国环境科学, 2005, 25(6): 669-673 Fu R. B., Yang H. Z., Gu G. W., et al. Removal of nitrogen and phosphorus from agricultural irrigation runoff in subsurface horizontal-flow wetland. China Environmental Science, 2005, 25(6): 669-673 (in Chinese)
    [9] Klomjek P., Nitisoravut S. Constructed treatment wetland: a study of eight plant species under saline conditions. Chemosphere, 2005, 58(5): 585-593
    [10] Yalcuk A., Ugurlu A. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresource Technology, 2009, 100(9): 2521-2526
    [11] Mitsch W. J., Wise K. M. Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Research, 1998, 32(6): 1888-1900
    [12] Kivaisi A. K. The potential for constructed wetlands for wastewater treatment and reuse in developing countries: A review. Ecological Engineering, 2001, 16(4): 545-560
    [13] Scholz M., Xu J. Performance comparison of experimental constructed wetlands with different filter media and macrophytes treating industrial wastewater contaminated with lead and copper. Bioresource Technology, 2002, 83(2): 71-79
    [14] Hussain S. A., Prasher S. O., Patel R. M. Removal of ionophoric antibiotics in free water surface constructed wetlands. Ecological Engineering, 2012, 41(4): 13-21
    [15] Conkle J. L., Lattao C., White J. R., et al. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere, 2010, 80(11): 1353-1359
    [16] 章明奎, 王丽平, 郑顺安. 两种外源抗生素在农业土壤中的吸附与迁移特性. 生态学报, 2008, 28(2): 761-766 Zhang M. K., Wang L. P., Zheng S. A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils. Acta Ecologica Sinica, 2008, 28(2): 761-766 (in Chinese)
    [17] 张劲强, 董元华. 诺氟沙星在4种土壤中的吸附-解吸特征. 环境科学, 2007, 28(9): 2134-2140 Zhang J. Q., Dong Y. H. Adsorption and desorption of norfloxacin on four typical soils in China. Environmental Science, 2007, 28(9): 2134-2140 (in Chinese)
    [18] 武庭瑄, 周敏, 郭宏栋, 等. 四环素在黄土中的吸附行为. 环境科学学报, 2008, 28(11): 2311-2314 Wu T. X., Zhou M., Guo H. D., et al. Adsorption of tetracycline on loess soils. Acta Scientiae Circumstantiae, 2008, 28(11): 2311-2314 (in Chinese)
    [19] Xu X. R., Li X. Y. Sorption and desorption of antibiotic tetracycline on marine sediments. Chenosphere, 2010, 78(4): 430-436
    [20] Sukul P., Lamshoft M., Zuhlke S., et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems. Chenosphere, 2008, 73(8): 1344-1350
    [21] Wang J., Hu J., Zhang S. Studies on the sorption of tetracycline onto clays and marine sediment from seawater. Journal of Colloid and Interface Science, 2010, 349(2): 578-582
    [22] Boxall A. B. A., Blackwell P., Cavallo R., et al. The sorption and transport of sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1-2): 19-28
    [23] Pils J. R., Laird D. A. Sorption of tetracycline and chlortetracycline on K-and Ca-saturated soil clays, humic substances, and clay-humic complexes. Environmental Science and Technology, 2007, 41(6): 1928-1933
    [24] Jones A. D., Bruland G. L., Agrawal S. G. Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 2005, 24(4): 761-770
    [25] Thiele E. S. Adsorption of the antibiotic pharmaceutical compound sulfapyridine by a long-term differently fertilized loess chernozem. Journal of Plant Nutrition and Soil Science, 2000, 163(6): 589-594
    [26] Pusino A., Pinna M. V., Gessa C. Azimsulfuron sorption desorption on soil. Journal of Agricultural and Food Chemistry, 2004, 52(11): 3462-3466
  • 加载中
计量
  • 文章访问数:  1943
  • HTML全文浏览数:  965
  • PDF下载数:  825
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-11-22
  • 刊出日期:  2013-05-22
高锋, 杨朝晖, 李晨, 邓一兵. 土霉素在4种人工湿地基质上的吸附-解吸特性[J]. 环境工程学报, 2013, 7(5): 1683-1688.
引用本文: 高锋, 杨朝晖, 李晨, 邓一兵. 土霉素在4种人工湿地基质上的吸附-解吸特性[J]. 环境工程学报, 2013, 7(5): 1683-1688.
Gao Feng, Yang Zhaohui, Li Chen, Deng Yibing. Adsorption and desorption of oxytetracycline in four constructed wetland substrates[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1683-1688.
Citation: Gao Feng, Yang Zhaohui, Li Chen, Deng Yibing. Adsorption and desorption of oxytetracycline in four constructed wetland substrates[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1683-1688.

土霉素在4种人工湿地基质上的吸附-解吸特性

  • 1.  浙江海洋学院海洋科学学院, 舟山 316004
  • 2.  湖南大学环境科学与工程学院, 长沙 410082
基金项目:

国家自然科学基金资助项目(50908214)

浙江省海洋与渔业项目(浙海渔计[127]号)

摘要: 为了研究土霉素在人工湿地基质床中的行为机制,本实验采用批量平衡方法研究了壤土、煤灰渣、粗砂和细砂等4种人工湿地基质材料对土霉素的吸附、解吸特性。结果表明,土霉素在人工湿地基质材料上的吸附可分为前4小时的快速吸附阶段和之后的慢速吸附阶段,14 h后达到吸附平衡,这一吸附平衡时间明显低于一般人工湿地系统的水力停留时间。可以认为,土霉素在人工湿地中有足够的时间吸附于基质层上,其吸附量的大小主要取决于基质材料的性质。土霉素在4种基质材料上的等温吸附实验表明,吸附等温线均呈非线性,用Freundlich方程能较好地对吸附数据进行非线性拟合。在4种人工湿地基质材料中,煤灰渣对土霉素的吸附作用最强,通过Freundlich方程拟合的吸附容量参数(KF)为280.2;其次为壤土,KF值为129.3;粗砂和细砂的吸附作用较弱,KF值分别为53.2和64.5。人工湿地基质材料对土霉素的吸附能力主要与基质有机质含量、粘粒含量、Fe2O3含量、阳离子交换量和Al2O3含量呈正相关。土霉素在4种人工湿地基质材料上的解吸均存在滞后现象,相对于壤土和煤灰渣,吸附于粗砂和细砂上的土霉素更容易被解吸下来。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回