热改性斜发沸石对富营养化水体的脱氮除磷效果

张传光, 张乃明, 于秀芳. 热改性斜发沸石对富营养化水体的脱氮除磷效果[J]. 环境工程学报, 2013, 7(5): 1665-1670.
引用本文: 张传光, 张乃明, 于秀芳. 热改性斜发沸石对富营养化水体的脱氮除磷效果[J]. 环境工程学报, 2013, 7(5): 1665-1670.
Zhang Chuanguang, Zhang Naiming, Yu Xiufang. Effect of denitrification and dephosphorization of thermal modified clinoptilolite for eutrophic water[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1665-1670.
Citation: Zhang Chuanguang, Zhang Naiming, Yu Xiufang. Effect of denitrification and dephosphorization of thermal modified clinoptilolite for eutrophic water[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1665-1670.

热改性斜发沸石对富营养化水体的脱氮除磷效果

  • 基金项目:

    国家"水体污染控制与治理"科技重大专项(2009ZX07102-003-2-3)

  • 中图分类号: X52

Effect of denitrification and dephosphorization of thermal modified clinoptilolite for eutrophic water

  • Fund Project:
  • 摘要: 氮、磷是导致水体富营养化且又较难去除的一类物质。实验采用模拟的方法研究了天然沸石和不同温度改性沸石的脱氮除磷效果。结果表明,天然沸石对氮、磷静态吸附去除率分别达71%和91%。随着改性温度的升高,350℃改性沸石振荡吸附氮、磷效果最好,较之天然沸石提高了18%,改性温度继续上升则呈下降趋势。不同沸石对氮、磷的吸附特征可用一级动力学方程进行描述,其中350℃改性沸石对氮、磷的吸附特征在不同的固液比情况下均符合一级动力学方程。
  • [1] 于秀芳, 张乃明. 昆明翠湖水质变化特征及影响因素研究. 云南地理环境研究, 2008, 20(3): 38-41 Yu Xiufang, Zhang Naiming. Study on the varing characteristics and influencing factors of water quality of Cuihu lake in Kunming. Yunnan Geographic Environment Research, 2008, 20(3): 38-41 (in Chinese)
    [2] 张志斌, 夏四清, 赵建夫,等. 化学生物絮凝/悬浮床处理低浓污水. 中国给水排水, 2005, 21(2): 44-46 Zhang Zhibin, Xia Siqing, Zhao Jianfu, et al. Chemical-biological flocculation/suspended carrier bed process for low strength wastewater treatment. China Water & Wastewater, 2005, 21(2): 44-46 (in Chinese)
    [3] 谢红刚, 王三反, 褚润. 沸石在水处理中的应用. 环境科学与管理, 2006, 31(9): 106-108 Xie Honggang, Wang Sanfan, Chu Run. Application of zeolite in water treatment. Environmental Science and Management, 2006, 31(9): 106-108 (in Chinese)
    [4] 王万军, 邵聚红, 赵彦巧. 天然沸石在环境污染治理中的研究现状和发展趋势. 资源环境与工程, 2007, 21(2): 187-192 Wang Wangjun, Shao Juhong, Zhao Yanqiao. The application of zeolite to treatment of environmental pollution: Its status quo and tendency. Resources Environment & Engineering, 2007, 21(2): 187-192 (in Chinese)
    [5] 安红梅, 吴立波, 岳尚超, 等. 斜发沸石对城市污水处理厂二级出水中氨氮的处理效果研究. 环境工程学报, 2010, 4(5): 1111-1115 An Hongmei, Wu Libo, Yue Shangchao, et al. Experimental study on removal of ammonia nitrogen in secondary effluent by clinoptilolite. Chinese Journal of Environmental Engineering, 2010, 4(5): 1111-1115 (in Chinese)
    [6] Booker N. A., Cooney E. L. Ammonia removal from sewage using natural australian zeolite. Water Science Technology, 1996, 34(9): 17-24
    [7] Nguyen M. L., Tanner C. C. Ammonium removal from wastewaters using natural New Zealand zeolites. New Zealand Journal of Agricultural Research, 1998, 41(3): 427-446
    [8] Zorpas A., Constantinides T., Vlyssides A. G., et al. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresource Technology, 2000, 72(2): 113-119
    [9] Usa O., Yakoh K. Removal of orthophosphate from aqueous solution using natural zeolite. Journal of Chemistry and Chemical Engineering, 2010, 4(8): 42-46
    [10] Chen J., Kong H., Wu D., et al. Removal of phosphate from aqueous solution by zeolite synthesized from fly ash. Journal of Colloid and Interface Science, 2006, 300(2): 491-497
    [11] Zhang B. H., Wu D. Y., Wang C., et al. Simultaneous removal of ammonium and phosphate by zeolite synthesized from coal fly ash as influenced by acid treatment. Journal of Environmental Sciences, 2007, 19(5): 544-545
    [12] Cao W. C., Hao J. C., Lian B., et al. Zeolite and fungi's flocculability of simulated wastewater containing heavy metal ions or phosphorus. Chinese Journal of Geochemistry, 2010, 29(2): 137-142
    [13] 邢锋, 丁浩, 冯乃谦. 活化处理提高天然沸石吸附能力的研究. 矿产保护与利用, 2000, (2): 17-21 Xing Feng, Ding Hao, Feng Naiqian. Study on activated processing of improving adsorption capacity of natural zeolite. Conservation and Utilization of Mineral Resource, 2000, (2): 17-21 (in Chinese)
    [14] 段金明, 林建清, 方宏达, 等. 改性沸石同步深度脱氮除磷的实验研究. 环境工程学报, 2009, 3(5): 829-833 Du Jingming, Lin Jianqing, Fang Hongda, et al. Experimental study on simultaneous removal of ammonium and phosphate in treated wastewater by modified zeolite. Chinese Journal of Environmental Engineering, 2009, 3(5): 829-833 (in Chinese)
    [15] 凌铃, 黄肖容, 隋贤栋. 改性天然沸石的除氟性能研究. 生态环境学报, 2009, 18(5): 1727-1731 Ling Ling, Huang Xiaorong, Sui Xiandong. Study on the fluoride removal with zeolite modified by polyferrie sulfat. Ecology and Environmenta1 Sciences, 2009, 18(5): 1727-1731 (in Chinese)
    [16] 李忠, 符瞰, 夏启斌. 改性天然沸石的制备及对氨氮的吸附. 华南理工大学学报(自然科学版), 2007, 35(4): 6-10 Li Zhong, Fu Kan, Xia Qibin. Modification of natural zeolite and adsorption of ammonia nitrogen by modified natural zeolite. Journal of South China University of Technology (Natural Science), 2007, 35(4): 6-10 (in Chinese)
    [17] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京: 中国环境科学出版社, 2002. 223-281
    [18] 吴志超, 麦穗海. 沸石吸附去除城市污水厂初沉池出水中氨氮的研究. 环境污染治理技术与设备, 2002, 11(3): 47-49 Wu Zhichao, Mai Suihai. Study on ammonia nitrogen removal from the effluent of primary sedimentation tank by zeolite adsorption. Techniques and Equipment for Environmental Pollution Control, 2002, 11(3): 47-49 (in Chinese)
    [19] 王维清, 和丽丽, 冯启明, 等. 热处理温度对斜发沸石结构及其载Cu2+量的影响. 非金属矿, 2007, 30 (1): 8-10 Wang Weiqing, He Lili, Feng Qiming, et al. Effect of thermal treatment temperature on structure of clinoptilolite and its loading Cu2+ quantity. Non-Metallic Mines, 2007, 30 (1): 8-10 (in Chinese)
    [20] 李中柱, 姚建初, 张洁. 分段控制焙烧温度提高Y型沸石质量. 精细石油化工进展, 2004, 5(1): 30-32 Li Zhongzhu, Yao Jinchu, Zhang Jie. Improve quality of Y zeolite by segmental control baking temperature. Advances in Fine Petrochemincals, 2004, 5(1): 30-32 (in Chinese)
    [21] 赵桂瑜, 周琪. 沸石吸附去除污水中磷的研究. 水处理技术, 2007, 33(2): 34-37 Zhao Guiyu, Zhouqi. Study on absorption of phosphorus from wastewater by zeolite. Technology of Water Treatment, 2007, 33(2): 34-37 (in Chinese)
    [22] 李萍, 林海, 汪澎, 等. 粉煤灰及沸石对污泥回流液中磷的吸附研究. 环境污染与防治, 2009, 31(9): 6-9 Li Ping, Lin Hai, Wang Peng, et al. Adsorption of phosphate in sludge refluxed liquid by fly ash and zeolite. Environmental Pollution and Control, 2009, 31(9): 6-9 (in Chinese)
    [23] 张秀英. 沸石颗粒吸附剂的制备及性能研究. 金属矿山, 2009, 401(11): 154-156 Zhang Xiuying. Study on the preparation and property of zeolite granular adsorbent. Metal Mine, 2009, 401(11): 154-156 (in Chinese)
    [24] 林建伟, 刘漪, 詹艳慧. CPB改性沸石对磷酸盐的吸附-解吸性能研究. 环境工程学报, 2010, 4(3): 575-580 Lin Jinwei, Liu Yi, Zhan Yanhui. Adsorption and desorption of phosphate on CPB modified zeolite. Chinese Journal of Environmental Engineering, 2010, 4(3): 575-580 (in Chinese)
  • 加载中
计量
  • 文章访问数:  1853
  • HTML全文浏览数:  834
  • PDF下载数:  949
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-26
  • 刊出日期:  2013-05-22
张传光, 张乃明, 于秀芳. 热改性斜发沸石对富营养化水体的脱氮除磷效果[J]. 环境工程学报, 2013, 7(5): 1665-1670.
引用本文: 张传光, 张乃明, 于秀芳. 热改性斜发沸石对富营养化水体的脱氮除磷效果[J]. 环境工程学报, 2013, 7(5): 1665-1670.
Zhang Chuanguang, Zhang Naiming, Yu Xiufang. Effect of denitrification and dephosphorization of thermal modified clinoptilolite for eutrophic water[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1665-1670.
Citation: Zhang Chuanguang, Zhang Naiming, Yu Xiufang. Effect of denitrification and dephosphorization of thermal modified clinoptilolite for eutrophic water[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1665-1670.

热改性斜发沸石对富营养化水体的脱氮除磷效果

  • 1. 云南农业大学资源与环境学院,昆明 650201
基金项目:

国家"水体污染控制与治理"科技重大专项(2009ZX07102-003-2-3)

摘要: 氮、磷是导致水体富营养化且又较难去除的一类物质。实验采用模拟的方法研究了天然沸石和不同温度改性沸石的脱氮除磷效果。结果表明,天然沸石对氮、磷静态吸附去除率分别达71%和91%。随着改性温度的升高,350℃改性沸石振荡吸附氮、磷效果最好,较之天然沸石提高了18%,改性温度继续上升则呈下降趋势。不同沸石对氮、磷的吸附特征可用一级动力学方程进行描述,其中350℃改性沸石对氮、磷的吸附特征在不同的固液比情况下均符合一级动力学方程。

English Abstract

参考文献 (24)

返回顶部

目录

/

返回文章
返回