[1]
|
Logan, B. E., Hamelers, B., Rozendal, R. A., et al. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 2006, 40 (17): 5181-5192
|
[2]
|
Liu H., Cheng S. A., Logan B. E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol., 2005, 39 (2): 658-662
|
[3]
|
Logan B. E., Kim Y. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol., 2011, 45 (13): 5834-5839
|
[4]
|
Aelterman P., Rabaey K., Pham H. T., et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 2006, 40 (10): 3388-3394
|
[5]
|
Oh S. E., Logan B. E. Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 2007, 167 (1): 11-17
|
[6]
|
Kim B. H., Chang I. S., Gil G. C., et al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 2003, 25 (7): 541-545
|
[7]
|
Donovan C., Dewan A., Heo D., et al. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol., 2008, 42 (22): 8591-8596
|
[8]
|
Gong Y. M., Radachowsky S. E., Wolf M., et al. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ. Sci. Technol., 2011, 45 (11): 5047-5053
|
[9]
|
Katsoyiannis I. A., Ruettimann T., Hug S. J. pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol., 2008, 42 (19): 7424-7430
|
[10]
|
Ivanov V., Kuang S. L., Stabnikov V., et al. The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore. J. Chem. Technol. Biot., 2009, 84 (1): 78-82
|
[11]
|
Kushwaha J. P., Srivastava V. C., Mall I. D. Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Separation and Purification Technology, 2010, 76 (2): 198-205
|
[12]
|
Cullen W. R., Reimer K. J. Arsenic speciation in the environment. Chem. Rev.,1989, 89 (4): 713-764
|
[13]
|
Bissen M., Frimmel F. H. Arsenic-a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydroch Hydrob, 2003, 31 (1): 9-18
|
[14]
|
Lovley D. R., Phillips E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol.,1988, 54 (6): 1472-1480
|
[15]
|
Rahimnejad M., Ghoreyshi A. A., Najafpour G., et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 2011, 88 (11): 3999-4004
|
[16]
|
Rao P. H., Mak M. S. H., Liu T. Z., et al. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere, 2009, 75 (2): 156-162
|
[17]
|
Wen Q., Liu Z. M., Chen Y., et al. Electrochemical performance of microbial fuel cell with air-cathode. Acta Physico-Chimica Sinica, 2008, 24 (6): 1063-1067
|
[18]
|
Liu H., Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 2004, 38 (14): 4040-4046
|
[19]
|
Kobya M., Gebologlu U., Ulu F., et al. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochimica Acta, 2011, 56(14): 5060-5070
|
[20]
|
Mansouri K., Elsaid K., Bedoui A., et al. Application of electrochemically dissolved iron in the removal of tannic acid from water. Chemical Engineering Journal, 2011, 172(2-3): 970-976
|
[21]
|
Kanel S. R., Manning B., Charlet L., et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol., 2005, 39(5): 1291-1298
|
[22]
|
Kumar P. R., Chaudhari S., Khilar K. C., et al. Removal of arsenic from water by electrocoagulation. Chemosphere, 2004, 55(9): 1245-1252
|