微生物燃料电池-零价铁耦合工艺的构建及除砷性能

申中正, 赵华章, 薛安. 微生物燃料电池-零价铁耦合工艺的构建及除砷性能[J]. 环境工程学报, 2013, 7(5): 1646-1650.
引用本文: 申中正, 赵华章, 薛安. 微生物燃料电池-零价铁耦合工艺的构建及除砷性能[J]. 环境工程学报, 2013, 7(5): 1646-1650.
Shen Zhongzheng, Zhao Huazhang, Xue An. Construction of a microbial fuel cell-zerovalent iron hybrid process and its application in arsenite removal[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1646-1650.
Citation: Shen Zhongzheng, Zhao Huazhang, Xue An. Construction of a microbial fuel cell-zerovalent iron hybrid process and its application in arsenite removal[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1646-1650.

微生物燃料电池-零价铁耦合工艺的构建及除砷性能

  • 基金项目:

    国家自然科学基金资助项目(21077001)

    "十二五"国家科技支撑计划项目(2011BAJ07B04)

  • 中图分类号: X52

Construction of a microbial fuel cell-zerovalent iron hybrid process and its application in arsenite removal

  • Fund Project:
  • 摘要: 为了更为有效地利用微生物燃料电池(MFC)所产电能并提高零价铁(ZVI)去除污染物工艺的效率,构建了微生物燃料电池-零价铁(MFC-ZVI)耦合工艺,并将其应用在三价砷水溶液的处理中。实验结果表明,在该耦合系统中,ZVI直接利用了MFC所产生的低压电能,铁腐蚀速率和除砷效率因此得到显著提高。实验所用MFC的最高稳定产电电压为0.52 V,电解过程中MFC的库伦效率为4.59%,以二价铁离子计算的电流效率为72.74%。反应结束后,溶液的pH值由反应前的8.0升高到8.5。两体系中铁氧化物产生量的差异以及铁氧化物形态分布的不同可能是导致其除砷效果不同的主要原因。
  • [1] Logan, B. E., Hamelers, B., Rozendal, R. A., et al. Microbial fuel cells: Methodology and technology. Environ. Sci. Technol., 2006, 40 (17): 5181-5192
    [2] Liu H., Cheng S. A., Logan B. E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell. Environ. Sci. Technol., 2005, 39 (2): 658-662
    [3] Logan B. E., Kim Y. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol., 2011, 45 (13): 5834-5839
    [4] Aelterman P., Rabaey K., Pham H. T., et al. Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol., 2006, 40 (10): 3388-3394
    [5] Oh S. E., Logan B. E. Voltage reversal during microbial fuel cell stack operation. Journal of Power Sources, 2007, 167 (1): 11-17
    [6] Kim B. H., Chang I. S., Gil G. C., et al. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 2003, 25 (7): 541-545
    [7] Donovan C., Dewan A., Heo D., et al. Batteryless, wireless sensor powered by a sediment microbial fuel cell. Environ. Sci. Technol., 2008, 42 (22): 8591-8596
    [8] Gong Y. M., Radachowsky S. E., Wolf M., et al. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system. Environ. Sci. Technol., 2011, 45 (11): 5047-5053
    [9] Katsoyiannis I. A., Ruettimann T., Hug S. J. pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water. Environ. Sci. Technol., 2008, 42 (19): 7424-7430
    [10] Ivanov V., Kuang S. L., Stabnikov V., et al. The removal of phosphorus from reject water in a municipal wastewater treatment plant using iron ore. J. Chem. Technol. Biot., 2009, 84 (1): 78-82
    [11] Kushwaha J. P., Srivastava V. C., Mall I. D. Organics removal from dairy wastewater by electrochemical treatment and residue disposal. Separation and Purification Technology, 2010, 76 (2): 198-205
    [12] Cullen W. R., Reimer K. J. Arsenic speciation in the environment. Chem. Rev.,1989, 89 (4): 713-764
    [13] Bissen M., Frimmel F. H. Arsenic-a review. Part I: Occurrence, toxicity, speciation, mobility. Acta Hydroch Hydrob, 2003, 31 (1): 9-18
    [14] Lovley D. R., Phillips E. J. P. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol.,1988, 54 (6): 1472-1480
    [15] Rahimnejad M., Ghoreyshi A. A., Najafpour G., et al. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy, 2011, 88 (11): 3999-4004
    [16] Rao P. H., Mak M. S. H., Liu T. Z., et al. Effects of humic acid on arsenic(V) removal by zero-valent iron from groundwater with special references to corrosion products analyses. Chemosphere, 2009, 75 (2): 156-162
    [17] Wen Q., Liu Z. M., Chen Y., et al. Electrochemical performance of microbial fuel cell with air-cathode. Acta Physico-Chimica Sinica, 2008, 24 (6): 1063-1067
    [18] Liu H., Logan B. E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol., 2004, 38 (14): 4040-4046
    [19] Kobya M., Gebologlu U., Ulu F., et al. Removal of arsenic from drinking water by the electrocoagulation using Fe and Al electrodes. Electrochimica Acta, 2011, 56(14): 5060-5070
    [20] Mansouri K., Elsaid K., Bedoui A., et al. Application of electrochemically dissolved iron in the removal of tannic acid from water. Chemical Engineering Journal, 2011, 172(2-3): 970-976
    [21] Kanel S. R., Manning B., Charlet L., et al. Removal of arsenic(Ⅲ) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol., 2005, 39(5): 1291-1298
    [22] Kumar P. R., Chaudhari S., Khilar K. C., et al. Removal of arsenic from water by electrocoagulation. Chemosphere, 2004, 55(9): 1245-1252
  • 加载中
计量
  • 文章访问数:  1728
  • HTML全文浏览数:  885
  • PDF下载数:  987
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-14
  • 刊出日期:  2013-05-22
申中正, 赵华章, 薛安. 微生物燃料电池-零价铁耦合工艺的构建及除砷性能[J]. 环境工程学报, 2013, 7(5): 1646-1650.
引用本文: 申中正, 赵华章, 薛安. 微生物燃料电池-零价铁耦合工艺的构建及除砷性能[J]. 环境工程学报, 2013, 7(5): 1646-1650.
Shen Zhongzheng, Zhao Huazhang, Xue An. Construction of a microbial fuel cell-zerovalent iron hybrid process and its application in arsenite removal[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1646-1650.
Citation: Shen Zhongzheng, Zhao Huazhang, Xue An. Construction of a microbial fuel cell-zerovalent iron hybrid process and its application in arsenite removal[J]. Chinese Journal of Environmental Engineering, 2013, 7(5): 1646-1650.

微生物燃料电池-零价铁耦合工艺的构建及除砷性能

  • 1.  北京大学环境工程系,北京 100871
  • 2.  教育部水沙科学重点实验室,北京 100871
基金项目:

国家自然科学基金资助项目(21077001)

"十二五"国家科技支撑计划项目(2011BAJ07B04)

摘要: 为了更为有效地利用微生物燃料电池(MFC)所产电能并提高零价铁(ZVI)去除污染物工艺的效率,构建了微生物燃料电池-零价铁(MFC-ZVI)耦合工艺,并将其应用在三价砷水溶液的处理中。实验结果表明,在该耦合系统中,ZVI直接利用了MFC所产生的低压电能,铁腐蚀速率和除砷效率因此得到显著提高。实验所用MFC的最高稳定产电电压为0.52 V,电解过程中MFC的库伦效率为4.59%,以二价铁离子计算的电流效率为72.74%。反应结束后,溶液的pH值由反应前的8.0升高到8.5。两体系中铁氧化物产生量的差异以及铁氧化物形态分布的不同可能是导致其除砷效果不同的主要原因。

English Abstract

参考文献 (22)

返回顶部

目录

/

返回文章
返回