铁碳布空气阴极微生物燃料电池的产电性能

唐玉兰, 何亚婷, 于鹏飞, 孙红, 于燕, 彭漫. 铁碳布空气阴极微生物燃料电池的产电性能[J]. 环境工程学报, 2013, 7(4): 1241-1244.
引用本文: 唐玉兰, 何亚婷, 于鹏飞, 孙红, 于燕, 彭漫. 铁碳布空气阴极微生物燃料电池的产电性能[J]. 环境工程学报, 2013, 7(4): 1241-1244.
Tang Yulan, He Yating, Yu Pengfei, Sun Hong, Yu Yan, Peng Man. Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1241-1244.
Citation: Tang Yulan, He Yating, Yu Pengfei, Sun Hong, Yu Yan, Peng Man. Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1241-1244.

铁碳布空气阴极微生物燃料电池的产电性能

  • 基金项目:

    国家自然科学基金资助项目(50876070)

    辽宁环境科研教育"123工程"资助项目(CEPF2009-123-2-7)

  • 中图分类号: TM911.45

Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst

  • Fund Project:
  • 摘要: 使用铁代替铂作为阴极催化剂,制作含铁碳布空气阴极并构建单室MFC(Fe-C-ACMFC)。以乙酸钠为燃料,通过稳态放电法和循环伏安测试等测试手段,分析了不同铁含量对Fe-C-ACMFC产电性能的影响以及性能最优Fe-C-ACMFC的连续运行稳定性。结果表明,随着铁含量的增加,Fe-C-ACMFC启动期开路电压(OCV)逐步提高,达到峰值后,随着铁含量的增加而降低;同样,Fe-C-ACMFC极化性能和功率密度等产电性能也随铁含量的增加先升高再降低;当铁含量为0.7 mg/cm2时,MFC的产电性能最优,最大开路电压为593 mV,表观内阻为89 Ω,最大功率密度达到12 907 mW/m3,并且经循环伏安测试,电池放电容量几乎没有变化,表明Fe-C-ACMFC的性能比较稳定,能够长期运行。由于铁催化剂价格远远低于铂催化剂,因此,铁碳布空气阴极MFC更利于推广应用。
  • [1] Bruce E. L. , John M. R. Microbial fuel cell-challenges and application. Environmental Science & Technology, 2006,40(17):5172-5180
    [2] Kazuya W. Recent developments in microbial fuel cell technologies for sustainable bioenergy. Journal of Bioscience and Bioengineering, 2008,106(6):528-536
    [3] 冯玉杰, 王鑫译.微生物燃料电池. 北京:化学工业出版社, 2009
    [4] Du Zhuwei, Li Qinghai, Tong Meng, et al. Electricity generation using membrane-less microbial fuel cell during wastewater treatment. Chinese Journal of Chemical Engineering, 2008,16(5):772-777
    [5] Feng Zhao, Falk Harnisch, Uwe Schröder, et al. Challenges and constraint of using oxygen cathodes in microbial fuel cells. Environmental Science & Technology, 2006,40(17):5193-5199
    [6] Li Fengxiang, Sharma Yogesh, Lei Yu, et al. Microbial fuel cells: The effects of configurations, electrolyte solutions, and electrode materials on power generation. Appl. Biochem. Biotechnol., 2010,160(1):168-181
    [7] Li Xiang, Hu Boxun, Suib Steven, et al. Manganese dioxide as a new cathode catalyst in microbial fuel cells. Journal of Power Sources, 2010,195(1):2586-2591
    [8] 温青, 刘智敏, 陈野,等. 空气阴极生物燃料电池电化学性能. 物理化学学报, 2008,24(6):1063-1067 Wen Q., Liu Z. M., Chen Y., et al. Electrochemical performance of microbial fuel cell with air-cathode. Acta Phys.Chim. Sin., 2008,24(6):1063-1067(in Chinese)
    [9] 祝学远, 冯雅丽, 李少华,等. 单室直接微生物燃料电池的阴极制作及构建. 过程工程学报, 2007,7(3):594-597 Zhu X. Y. , Feng Y. L. , Li S. H. et al. Construction of a single-chamber direct microbial fuel cell and preparation of cathode electrode. The Chinese Journal of Process Engineering, 2007,7(3):594-597(in Chinese)
    [10] Peter Aelterman, Mathias Versichele, Ellen Genettello, et al. Microbial fuel cells operated with iron-chelated air cathodes. Electrochimica Acta, 2009,54(1):5754-5760
    [11] Peter Aelterman, Mthias Versichele, Massimo Marzorati, et al. Loading rate and external resistance control the electricity generation of microbial fuel cells with different three-dimensional anodes. Bioresource Technology, 2008,99(1):8895-8902
    [12] 梁鹏, 范明志, 曹效鑫,等. 填料型微生物燃料电池产电特性的研究. 环境科学, 2008,29(2):512-517 Liang P., Fan M. Z., Cao X. X., et al. Electricity generation using the packing-type microbial fuel cells. Environmental Science, 2008,29(2):512-517(in Chinese)
    [13] 梁鹏, 范明志, 曹效鑫,等. 微生物燃料电池表观内阻的构成和测量. 环境科学, 2007,28(8):1894-1898 Liang P., Fan M. Z., Cao X. X., et al. Composition and measurement of the apparent internal resistance in microbial fuel cell. Environmental Science, 2007,28(8):1894-1898(in Chinese)
    [14] 国家环境保护总局. 水和废水监测方法(第4版). 北京: 中国环境科学出版社, 2002
  • 加载中
计量
  • 文章访问数:  1990
  • HTML全文浏览数:  888
  • PDF下载数:  1670
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-18
  • 刊出日期:  2013-04-09
唐玉兰, 何亚婷, 于鹏飞, 孙红, 于燕, 彭漫. 铁碳布空气阴极微生物燃料电池的产电性能[J]. 环境工程学报, 2013, 7(4): 1241-1244.
引用本文: 唐玉兰, 何亚婷, 于鹏飞, 孙红, 于燕, 彭漫. 铁碳布空气阴极微生物燃料电池的产电性能[J]. 环境工程学报, 2013, 7(4): 1241-1244.
Tang Yulan, He Yating, Yu Pengfei, Sun Hong, Yu Yan, Peng Man. Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1241-1244.
Citation: Tang Yulan, He Yating, Yu Pengfei, Sun Hong, Yu Yan, Peng Man. Electricity generation performance of microbial fuel cells with carbon cloth as air-cathode and iron as cathode catalyst[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1241-1244.

铁碳布空气阴极微生物燃料电池的产电性能

  • 1. 沈阳建筑大学市政与环境工程学院,沈阳 110168
  • 2. 沈阳建筑大学交通与机械工程学院,沈阳 110168
基金项目:

国家自然科学基金资助项目(50876070)

辽宁环境科研教育"123工程"资助项目(CEPF2009-123-2-7)

摘要: 使用铁代替铂作为阴极催化剂,制作含铁碳布空气阴极并构建单室MFC(Fe-C-ACMFC)。以乙酸钠为燃料,通过稳态放电法和循环伏安测试等测试手段,分析了不同铁含量对Fe-C-ACMFC产电性能的影响以及性能最优Fe-C-ACMFC的连续运行稳定性。结果表明,随着铁含量的增加,Fe-C-ACMFC启动期开路电压(OCV)逐步提高,达到峰值后,随着铁含量的增加而降低;同样,Fe-C-ACMFC极化性能和功率密度等产电性能也随铁含量的增加先升高再降低;当铁含量为0.7 mg/cm2时,MFC的产电性能最优,最大开路电压为593 mV,表观内阻为89 Ω,最大功率密度达到12 907 mW/m3,并且经循环伏安测试,电池放电容量几乎没有变化,表明Fe-C-ACMFC的性能比较稳定,能够长期运行。由于铁催化剂价格远远低于铂催化剂,因此,铁碳布空气阴极MFC更利于推广应用。

English Abstract

参考文献 (14)

返回顶部

目录

/

返回文章
返回