纯种氨氧化菌短程反硝化特性

周莉, 李正魁, 王易超, 范念文. 纯种氨氧化菌短程反硝化特性[J]. 环境工程学报, 2013, 7(4): 1219-1224.
引用本文: 周莉, 李正魁, 王易超, 范念文. 纯种氨氧化菌短程反硝化特性[J]. 环境工程学报, 2013, 7(4): 1219-1224.
Zhou Li, Li Zhengkui, Wang Yichao, Fan Nianwen. Shortcut denitrification characterization of immobilized AOB[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1219-1224.
Citation: Zhou Li, Li Zhengkui, Wang Yichao, Fan Nianwen. Shortcut denitrification characterization of immobilized AOB[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1219-1224.

纯种氨氧化菌短程反硝化特性

  • 基金项目:

    国家水体污染控制与治理科技重大专项 (2012ZX07101-006, 2013ZX07101-014)

    江苏省自然科学基金资助项目(BK2010056)

    江苏省环保厅项目(201108)

  • 中图分类号: X703

Shortcut denitrification characterization of immobilized AOB

  • Fund Project:
  • 摘要: 以Comamonas aquatica LNL3为研究对象,根据其既能短程硝化又能短程反硝化的特性,采用好氧方式富集和固定化菌种,再以厌氧方式驯化,得到具有高效短程反硝化特性的纯种氨氧化菌。采用扫描电镜对固定化前后的载体进行表征,且用正交试验考察了不同环境因子(温度、pH、碳氮比、溶解氧)对Comamonas aquatica LNL3短程反硝化的影响。结果表明,所用载体与Comamonas aquatica LNL3有良好的亲和性,适于微生物的固定化;环境因子对Comamonas aquatica LNL3短程反硝化影响大小顺序为:温度>pH>DO>C/N;在环境条件改变过程中当温度为35℃,pH=8,C/N=3,DO=2.5 mg/L时,Comamonas aquatica LNL3 短程反硝化速率达到最大,为32.63 mg/(L·h);研究结果还表明,Comamonas aquatica LNL3具有好氧反硝化特性,适宜处理低碳氮比废水。
  • [1] FdzPolanco F., Villaverde S., Garcia P. A. Temperature effect on nitrifying bacteria activity in biofilters: Activation and free ammonia inhibition. Water Science and Technology, 1994,30(11):121-130
    [2] 曾薇, 张悦, 李磊,等.生活污水常温处理系统中AOB与NOB竞争优势的调控.环境科学, 2009,30(5):1430-1436 Zeng W., Zhang Y., Li L., et al. Competition and optimization of AOB and NOB for domestic wastewater treatment at normal temperature. Environmental Science, 2009,30(5):1430-1436(in Chinese)
    [3] 张小玲,李斌,杨永哲,等.低DO下的短程硝化及同步硝化反硝化.中国给水排水,2004,20(5): 13-16 Zhang X. L., Li B., Yang Y. Z., et al. Short-cut nitrification and simultaneous nitrification and denitrification in SBR at low DO. China Water & Wastewater, 2004,20(5):13-16(in Chinese)
    [4] 袁林江,彭党聪, 王志盈.短程硝化-反硝化生物脱氮.中国给水排水,2000,16(2):29-31 Yuan L. J., Peng D. C., Wang Z. Y. Short-cut nitrification and denitrification. China Water & Wastewater, 2000,16(2):29-31(in Chinese)
    [5] Julio P., Engracia C., Jan U. K. Conditions for partial nitrification in biofilm reactors and a kinetic explanation. Biotechnology and Bioengineering, 2009,103(2):282-295
    [6] 张云霞, 周集体,袁守志. 高效亚硝酸型反硝化菌生长特性及脱氮研究.大连理工大学学报,2009,49(2):180-186 Zhang Y. X., Zhou J. T., Yuan S. Z. Study on the growth characterization and denitrification for efficient nitrite denitrifiers. Journal of Dalian University of Technology, 2009,49(2):180-186(in Chinese)
    [7] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术.北京:科学出版社,2004
    [8] 罗固源,汤丽娟,许晓毅,等.好氧反硝化菌筛选及强化OGO反应器脱氮的研究.中国给水排水,2010,26(1):16-19 Luo G. Y., Tang L. J., Xu X. Y., et al. Screening of aerobic denitrifying bacteria and enhancement of nitrogen removal in OGO reactor. China Water & Wastewater, 2010,26(1):16-19(in Chinese)
    [9] 王娟,于水利,张德祥,等.好氧颗粒污泥低温反硝化除磷的影响因素研究.给水排水,2010,36(S1):93-96 Wang J., Yu S. L., Zhang D.X. et al. Study on influencing factors of denitrify phosphorous remove at low temperature by aerobic granular sludge. Water & Wastewater, 2010,36(S1):93-96(in Chinese)
    [10] 丁文川,李桥,吉芳英,等.双泥SBR系统的短程硝化反硝化和反硝化除磷研究.中国给水排水,2010,26(13):11-14 Ding W. C., Li Q., Ji F. Y., et al. Shortcut nitrification-denitrification and denitrifying phosphorus removal in two-sludge SBR system. China Water & Wastewater, 2010,26(13):11-14(in Chinese)
    [11] Cheneby D., Philoppot L., Hartmann A., et al. 16S rDNA analysis for characterization of denitrifying bacteria isolated from three agricultural soils. FEMS Microbiology Ecology, 2000,34(2):121-128
    [12] 李正魁,石鲁娜,杨竹攸,等.纯种氨氧化细菌Comamonas aquatica LNL3的固定化及短程硝化性能研究.环境科学,2009,30(10):2952-2957 Li Z. K., Shi L. N., Yang Z. Y., et al. Immobilized ammonia-oxidizing bacteria Comamonas aquatic LNL3 and its partial nitrification characterization. Environmental Science, 2009,30(10):2952-2957(in Chinese)
    [13] 李正魁, 濮培民. 固定化增殖氮循环细菌群SBR法净化富营养化湖水. 核技术, 2001,24(8):674-679 Li Z. K., Pu P. M. Immobilized proliferation of nitrogen cycling bacteria used to purify the water eutrophication in SBR reactor. Nuclear Techniques, 2001,24(8):674-679(in Chinese)
    [14] Ikada Y. Surface modification of polymers for medical application. Biomaterials, 1994,15(10):725-736
    [15] Almeida J. S., Julio S. M., Reis M. A. M., et al. Nitrite inhibition of denitrification by Pseudomonas fluorescens. Biotechnology and Bioengineering, 1999,46(3):194-201
    [16] Glass C., Silverstein J. Denitriflcation kinetics of high nitrate concentration water, pH effect on inhibition and nitrite accumulation. Water Research, 1998,32(3):831-839
    [17] Abeling U., Seyfried C. F. Anaerobic-aerobic treatment of high strength ammonium wastewater nitrogen removal via nitrite. Water Science and Technology, 1992,26(5-6):1007-1015
    [18] 马娟,彭永臻,王丽,等. 温度对反硝化过程的影响以及pH值变化规律. 中国环境科学, 2008,28(11):1004-1008 Ma J., Peng Y. Z., Wang L., et al. Effect of temperature on denitrification and profiles of pH during the process. China Environmental Science, 2008,28(11):1004-1008(in Chinese)
    [19] Mulder J. W., Van Loosdrecht M. C. M., Hellinga C., et al. Full-scale application of the SHARON process for the treatment of rejection water of digested sludge dewatering. Water Science and Technology, 2001,43(11):127-134
    [20] Camilla G., Gunnel D. Development of nitrification inhibition assays using pure cultures of Nitrosomonas and Nitrobacter. Water Research, 2001,35(2):433-440
    [21] 杨莎莎,宋英豪,赵宗升,等. pH值和碳氮比对亚硝酸型反硝化影响的研究. 环境工程学报, 2007,1(12):15-19 Yang S. S., Song Y. H., Zhao Z. S., et al. Study on the influence of pH values and C/N ratio on the denitrification via nitrite. Chinese Journal of Environmental Engineering, 2007,1(12):15-19 (in Chinese)
    [22] Van Benthum W. A. J., Derissen B. P., Van Loosdrecht M. C. M. Nitrogen removal using nitrifying biofilm growth and denitrifying suspended growth in a biofilm airlift suspension reactor coupled with a chemostat.Water Research, 1998,32(7):2009-2018
    [23] Yong Z. P., Gui B. Z. Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology, 2006,73(1):15-26
    [24] 王丽丽, 赵林,谭欣,等.不同碳源以及碳氮比对反硝化的影响. 环境保护科学, 2004,30(2):15-18 Wang L. L., Zhao L., Tan X., et al. Influence of different carbon source and ratio of carbon and nitrogen for water denitrification. Environmental Protection Science, 2004,30(2):15-18(in Chinese)
    [25] Picioreanu C, Van Loosdrecht M. C. M., Heijnen J.J. Modeling of the effect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Water Science and Technology, 1997,36(1):147-156
  • 加载中
计量
  • 文章访问数:  2467
  • HTML全文浏览数:  1296
  • PDF下载数:  1687
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-24
  • 刊出日期:  2013-04-09
周莉, 李正魁, 王易超, 范念文. 纯种氨氧化菌短程反硝化特性[J]. 环境工程学报, 2013, 7(4): 1219-1224.
引用本文: 周莉, 李正魁, 王易超, 范念文. 纯种氨氧化菌短程反硝化特性[J]. 环境工程学报, 2013, 7(4): 1219-1224.
Zhou Li, Li Zhengkui, Wang Yichao, Fan Nianwen. Shortcut denitrification characterization of immobilized AOB[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1219-1224.
Citation: Zhou Li, Li Zhengkui, Wang Yichao, Fan Nianwen. Shortcut denitrification characterization of immobilized AOB[J]. Chinese Journal of Environmental Engineering, 2013, 7(4): 1219-1224.

纯种氨氧化菌短程反硝化特性

  • 1. 南京大学环境学院污染控制与资源化研究国家重点实验室,南京 210046
基金项目:

国家水体污染控制与治理科技重大专项 (2012ZX07101-006, 2013ZX07101-014)

江苏省自然科学基金资助项目(BK2010056)

江苏省环保厅项目(201108)

摘要: 以Comamonas aquatica LNL3为研究对象,根据其既能短程硝化又能短程反硝化的特性,采用好氧方式富集和固定化菌种,再以厌氧方式驯化,得到具有高效短程反硝化特性的纯种氨氧化菌。采用扫描电镜对固定化前后的载体进行表征,且用正交试验考察了不同环境因子(温度、pH、碳氮比、溶解氧)对Comamonas aquatica LNL3短程反硝化的影响。结果表明,所用载体与Comamonas aquatica LNL3有良好的亲和性,适于微生物的固定化;环境因子对Comamonas aquatica LNL3短程反硝化影响大小顺序为:温度>pH>DO>C/N;在环境条件改变过程中当温度为35℃,pH=8,C/N=3,DO=2.5 mg/L时,Comamonas aquatica LNL3 短程反硝化速率达到最大,为32.63 mg/(L·h);研究结果还表明,Comamonas aquatica LNL3具有好氧反硝化特性,适宜处理低碳氮比废水。

English Abstract

参考文献 (25)

返回顶部

目录

/

返回文章
返回