零价铁与双氧水异相Fenton降解活性艳橙X-GN

林光辉, 吴锦华, 李平, 王向德, 杨波. 零价铁与双氧水异相Fenton降解活性艳橙X-GN[J]. 环境工程学报, 2013, 7(3): 913-917.
引用本文: 林光辉, 吴锦华, 李平, 王向德, 杨波. 零价铁与双氧水异相Fenton降解活性艳橙X-GN[J]. 环境工程学报, 2013, 7(3): 913-917.
Lin Guanghui, Wu Jinhua, Li Ping, Wang Xiangde, Yang Bo. Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 913-917.
Citation: Lin Guanghui, Wu Jinhua, Li Ping, Wang Xiangde, Yang Bo. Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 913-917.

零价铁与双氧水异相Fenton降解活性艳橙X-GN

  • 基金项目:

    国家自然科学基金资助项目(50708039)

    国家"863"高技术研究发展计划项目(2009AA063902)

    中央高校基本科研业务费资助项目(2009zm0202)

    教育部新教师基金项目(20070561011)

    广东省自然科学基金资助项目(05300188)

  • 中图分类号: X703

Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2

  • Fund Project:
  • 摘要: 采用Fe0与H2O2构成异相Fenton体系降解偶氮染料活性艳橙X-GN,考察了初始pH、H2O2和Fe0投加量、温度等对反应过程的影响。实验结果表明,在初始pH值为3.0、Fe0投加量为0.8 g/L、H2O2投加量为5 mmol/L和反应温度30℃的条件下,反应60 min后活性艳橙降解率达到96.2%。Fe0与H2O2投加量都存在一个最佳范围,当Fe0与H2O2浓度大于0.8 g/L和5 mmol/L时,羟基自由基会通过其他方式消耗,致使活性艳橙降解率下降。酸性条件和提高温度均有利于反应的进行。反应符合准一级动力学,表观反应速率常数k为0.064 min-1(30℃),反应活化能为80.62 kJ/mol。UV-Vis光谱扫描表明,反应过程中活性艳橙的发色基团及苯环结构均被破坏。
  • [1] Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. Appl. Microbiol. Biotechnol., 2001, 56(1-2):69-80
    [2] Forgacs E., Cserha'ti T., Oros G. Removal of synthetic dyes from wastewater: A review. Environment International, 2004, 30 (7): 953-971
    [3] 丁绍兰, 李郑坤, 王睿. 染料废水处理技术综述. 水资源保护, 2010, 26(3):73-77 Ding X.L., Li Z.K., Wang R. Summary of treatment of dyestuff wastewater. Water Resources Protection, 2010, 26(3):73-77 (in Chinese)
    [4] Deng Y., Englehardt J.D. Treatment of landfill leachate by the Fenton process. Water Research, 2006, 40(20): 3683-3694
    [5] Zeng W.M., Martinuzzi F., MacGregor A. Development and application of a novel UV method for the analysis of ascorbic acid. Journal of Pharmaceutical and Biomedical Analysis, 2005, 36(5):1107-1111
    [6] Pereira W.S., Freire R.S. Azo dye degradation by recycled waste zero-valent iron powder. Journal of the Brazilian Chemical Society, 2006, 17(5): 832-838
    [7] Chen B., Wang X.K., Wang C., et al. Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron. Ultrasonics Sonochemistry, 2011, 18(5):1091-1096
    [8] 国家环境保护总局. 水和废水监测分析方法. 北京: 中国环境科学出版社, 2002
    [9] 叶张荣, 马鲁铭.铁屑内电解法对活性艳红X-3B脱色过程的机理研究.水处理技术,2005,31(8):65-67 Ye Z.R., Ma L.M. Mechanism of reactive brilliant red X-3B decolorization by iron filings inner electrolysis process. Technology of Water Treatment, 2005, 31(8):65-67 (in Chinese)
    [10] Feng J.Y., Hu X.J., Yue P. L. Effect of initial solution pH on the degradation of Orange II using clay-based Fe nanocomposites as heterogeneous photo-Fenton catalyst. Water Research, 2006, 40(4): 641-646
    [11] Kang Y.W., Hwang K.Y. Effects of reaction conditions on the oxidation efficiency in the Fenton process. Water Research, 2000, 34(10): 2786-2790
    [12] 刘中兴, 谢传欣, 石宁, 等. 过氧化氢溶液分解特性研究. 齐鲁石油化, 2009, 37(2): 99-102 Liu Z.X., Xie C.X., Shi N., et al. Study on decomposition behavior of hydrogen peroxide solution. Qilu Petrochemical Technology, 2009, 37(2): 99-102 (in Chinese)
    [13] Koyama O., Kamagata Y., Nakamura K. Degradation of chlorinated aromatics by Fenton oxidation and methanogenic digester sludge. Water Research, 1994, 28(4): 895-899
    [14] Lei P.X., Chen C.C., Yang J., et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environmental Science and Technology, 2005, 39(21): 8466-8474
    [15] Khataee A.R., Vatanpour V., A. R. Amani Ghadim. Decolorization of C.I. Acid Blue 9 solution by UV/Nano-TiO2, Fenton, Fenton-like, electro-Fenton and electrocoagulation processes: A comparative study. Journal of Hazardous Materials, 2009, 161(2-3): 1225-1233
    [16] Luis A.D., Lombra J.I., Varona F., et al. Kinetic study and hydrogen peroxide consumption of phenolic compounds oxidation by Fenton’s reagent. Korean Journal of Chemical Engineering, 2009, 26(1): 48-56
  • 加载中
计量
  • 文章访问数:  2525
  • HTML全文浏览数:  1436
  • PDF下载数:  1158
  • 施引文献:  0
出版历程
  • 收稿日期:  2011-10-10
  • 刊出日期:  2013-03-18
林光辉, 吴锦华, 李平, 王向德, 杨波. 零价铁与双氧水异相Fenton降解活性艳橙X-GN[J]. 环境工程学报, 2013, 7(3): 913-917.
引用本文: 林光辉, 吴锦华, 李平, 王向德, 杨波. 零价铁与双氧水异相Fenton降解活性艳橙X-GN[J]. 环境工程学报, 2013, 7(3): 913-917.
Lin Guanghui, Wu Jinhua, Li Ping, Wang Xiangde, Yang Bo. Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 913-917.
Citation: Lin Guanghui, Wu Jinhua, Li Ping, Wang Xiangde, Yang Bo. Effective degradation of reactive brilliant orange X-GN by heterogeneous Fenton reaction using zero-valent iron and H2O2[J]. Chinese Journal of Environmental Engineering, 2013, 7(3): 913-917.

零价铁与双氧水异相Fenton降解活性艳橙X-GN

  • 1. 华南理工大学环境科学与工程学院,污染控制与生态修复广东省普通高等学校重点实验室, 工业聚集区污染控制与生态修复教育部重点实验室,广州510006
  • 2. 深圳大学化学与化工学院,深圳518060
基金项目:

国家自然科学基金资助项目(50708039)

国家"863"高技术研究发展计划项目(2009AA063902)

中央高校基本科研业务费资助项目(2009zm0202)

教育部新教师基金项目(20070561011)

广东省自然科学基金资助项目(05300188)

摘要: 采用Fe0与H2O2构成异相Fenton体系降解偶氮染料活性艳橙X-GN,考察了初始pH、H2O2和Fe0投加量、温度等对反应过程的影响。实验结果表明,在初始pH值为3.0、Fe0投加量为0.8 g/L、H2O2投加量为5 mmol/L和反应温度30℃的条件下,反应60 min后活性艳橙降解率达到96.2%。Fe0与H2O2投加量都存在一个最佳范围,当Fe0与H2O2浓度大于0.8 g/L和5 mmol/L时,羟基自由基会通过其他方式消耗,致使活性艳橙降解率下降。酸性条件和提高温度均有利于反应的进行。反应符合准一级动力学,表观反应速率常数k为0.064 min-1(30℃),反应活化能为80.62 kJ/mol。UV-Vis光谱扫描表明,反应过程中活性艳橙的发色基团及苯环结构均被破坏。

English Abstract

参考文献 (16)

返回顶部

目录

/

返回文章
返回