旁路微氧池污泥停留时间对污泥减量化的影响

刘宇星, 刘东方, 张忠品, 唐云鹭, 于洁, 陈瑞萍, 李克勋. 旁路微氧池污泥停留时间对污泥减量化的影响[J]. 环境工程学报, 2013, 7(2): 507-512.
引用本文: 刘宇星, 刘东方, 张忠品, 唐云鹭, 于洁, 陈瑞萍, 李克勋. 旁路微氧池污泥停留时间对污泥减量化的影响[J]. 环境工程学报, 2013, 7(2): 507-512.
Liu Yuxing, Liu Dongfang, Zhang Zhongpin, Tang Yunlu, Yu Jie, Chen Ruiping, Li Kexun. Effect of retention time on sidestream bypass oxygen-limited sludge reduction process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 507-512.
Citation: Liu Yuxing, Liu Dongfang, Zhang Zhongpin, Tang Yunlu, Yu Jie, Chen Ruiping, Li Kexun. Effect of retention time on sidestream bypass oxygen-limited sludge reduction process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 507-512.

旁路微氧池污泥停留时间对污泥减量化的影响

  • 基金项目:

    国家水体污染控制与治理科技重大专题项目(2008ZX07314-002)

  • 中图分类号: X703.1

Effect of retention time on sidestream bypass oxygen-limited sludge reduction process

  • Fund Project:
  • 摘要: 研究了新型工艺——侧流式旁路微氧污泥减量工艺在不同微氧污泥停留时间下的污泥减量效果,监测了COD去除率、污泥产率和污泥性能的变化,并探索了微氧污泥回流后曝气池内兼性菌溶胞过程。结果表明,新工艺COD去除率高于传统工艺,但随停留时间延长而降低,微氧污泥停留3 d时高达93.59%,11 d时降至89.25%;新工艺表观污泥产率(MLSS/COD)低于传统工艺,其降幅随停留时间延长而增大,停留时间由3 d延长到11 d,降幅由50.14%升到58.59%;回流后第4小时,曝气池内COD骤然上升,MLSS和MLVSS都大幅度增加,推断此时为曝气池内兼性菌大量溶胞时间点;新工艺SVI值低于传统工艺,MLVSS/MLSS值高于传统工艺,改善了污泥沉降性能,提高了污泥活性。综合考虑COD去除率和污泥产率等方面后,确定新工艺微氧池的最佳污泥停留时间为3 d。
  • 加载中
  • [1] 韩振宇. 中国2020年城市生活污水排放量预测及淡水资源财富GDP指标的建立. 环境科学研究, 2005,18(5):88-90 Han Zhenyu. Domestic sewage discharge forecast and countermeasures for Chinese cities in 2020. Research of Environmental Sciences, 2005,18(5):88-90(in Chinese)
    [2] 徐强. 污泥处理处置技术及装置. 北京:化学工业出版社, 2003
    [3] Liu Y., Tay J. H. Strategy for minimization of excess sludge production from the activated sludge process. Biotechnology Advances, 2001,19(2):97-107
    [4] Winkler M. Wastewater biosolids to compost. Process Safety and Environmental Protection, 1998,76(1):70-71
    [5] Stouthamer A. H. A theoretical study on the amount of ATP required for synthesis of microbial cell material.Antonie van Leeuwenhoek, 1973,39(1):545-565
    [6] Weia Y., Houtenb R. T. V., Borgerb A. R., et al. Minimization of excess sludge production for biologicalwastewater treatment. Water Research, 2003,37(18):4453-4467
    [7] Pirt S. J. The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London, 1965,163(991):224-231
    [8] Russell J. B., Cook G. M. Energetics of bacterial growth:Balance of anabolic and catabolic reaction. Micobiological Review, 1995,59(1):48-62
    [9] Chudoba P., Morel A., Capdevillea B. The case of both energetic uncoupling and metabolic selection of microorganisms in the OSA activated sludge system. Environmental Technology, 1992,13(8):761-770
    [10] Sabya S., Djafera M., Chen G. H. Effect of low ORP in anoxic sludge zone on excess sludge production in oxic-settling-anoxic activated sludge process. Water Research, 2003,37(1):11-20
    [11] 魏巍. 侧流式OSA污泥减量工艺的试验研究. 重庆:重庆大学硕士学位论文, 2010 Wei Wei. Study of sidestream oxic-settling-anaerobic process for excess sludge reduction. Chongqing: Master’s Degree Thesis of Chongqing University, 2010(in Chinese)
    [12] 唐悦恒, 方闻, 罗莹, 等. SBR/OSA工艺的污泥减量化运行机理研究. 中国给水排水, 2011,27(5):104-108 Tang Yueheng, Fang Wen, Luo Ying, et al. Operation mechanism of SBR/OSA process for sludge reduction. China Water & Wastewater, 2011,27(5):104-108(in Chinese)
    [13] 金文标, 王建芳, 赵庆良, 等. 好氧-沉淀-厌氧工艺剩余污泥减量性能和机理研究. 环境科学, 2008,29(3):726-732 Jin Wenbiao, Wang Jianfang, Zhao Qingliang, et al. Performance and mechanism of excess sludge reduction in an OSA(oxic-settling-anaerobic) process. Environmental Science, 2008,29(3):726-732(in Chinese)
    [14] 国家环境保护总局. 水和废水监测分析方法(第4版). 北京:中国环境科学出版社, 2002
    [15] 宋仁元, 张亚杰, 王维一, 等. 水和废水标准检验法(第15版). 北京:中国建筑工业出版社, 1985
    [16] Chen G. H., Yip W. K., Mo H. K., et al.Effect of sludge fasting/feasting on sludge growth in activated sludge cultures. Water Research, 2001,35(4):1029-1037
    [17] Low E. U., Chase H. A. Reducing production of excess biomass during wastewater treatment. Water Research, 1999,33(5):1119-1132
    [18] Van Loosdrecht M. C. M., Henze M. Maintenance,endogenous respiration,lysis,decay and predation. Water Science and Technology, 1999,39(1):107-117
    [19] Chudoba P., Chudoba J., Capdeville B. The aspect of energetic uncoupling of microbial growth in the activated sludge process: OSA system. Water Scicence and Technology, 1992,26(9-11):2477-2480
    [20] Rensink J. H., Rulkens W. H. Using metazoa to reduce sludge production. Water Science and Technology, 1997,36(11):171-179
  • 加载中
计量
  • 文章访问数:  2361
  • HTML全文浏览数:  1156
  • PDF下载数:  1051
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-02-20
  • 刊出日期:  2013-02-02
刘宇星, 刘东方, 张忠品, 唐云鹭, 于洁, 陈瑞萍, 李克勋. 旁路微氧池污泥停留时间对污泥减量化的影响[J]. 环境工程学报, 2013, 7(2): 507-512.
引用本文: 刘宇星, 刘东方, 张忠品, 唐云鹭, 于洁, 陈瑞萍, 李克勋. 旁路微氧池污泥停留时间对污泥减量化的影响[J]. 环境工程学报, 2013, 7(2): 507-512.
Liu Yuxing, Liu Dongfang, Zhang Zhongpin, Tang Yunlu, Yu Jie, Chen Ruiping, Li Kexun. Effect of retention time on sidestream bypass oxygen-limited sludge reduction process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 507-512.
Citation: Liu Yuxing, Liu Dongfang, Zhang Zhongpin, Tang Yunlu, Yu Jie, Chen Ruiping, Li Kexun. Effect of retention time on sidestream bypass oxygen-limited sludge reduction process[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 507-512.

旁路微氧池污泥停留时间对污泥减量化的影响

  • 1. 南开大学环境科学与工程学院,天津 300071
基金项目:

国家水体污染控制与治理科技重大专题项目(2008ZX07314-002)

摘要: 研究了新型工艺——侧流式旁路微氧污泥减量工艺在不同微氧污泥停留时间下的污泥减量效果,监测了COD去除率、污泥产率和污泥性能的变化,并探索了微氧污泥回流后曝气池内兼性菌溶胞过程。结果表明,新工艺COD去除率高于传统工艺,但随停留时间延长而降低,微氧污泥停留3 d时高达93.59%,11 d时降至89.25%;新工艺表观污泥产率(MLSS/COD)低于传统工艺,其降幅随停留时间延长而增大,停留时间由3 d延长到11 d,降幅由50.14%升到58.59%;回流后第4小时,曝气池内COD骤然上升,MLSS和MLVSS都大幅度增加,推断此时为曝气池内兼性菌大量溶胞时间点;新工艺SVI值低于传统工艺,MLVSS/MLSS值高于传统工艺,改善了污泥沉降性能,提高了污泥活性。综合考虑COD去除率和污泥产率等方面后,确定新工艺微氧池的最佳污泥停留时间为3 d。

English Abstract

参考文献 (20)

返回顶部

目录

/

返回文章
返回