絮体性质对纳滤膜污染的影响

于洋, 赵长伟, 王艳贵, 范卫红, 栾兆坤. 絮体性质对纳滤膜污染的影响[J]. 环境工程学报, 2013, 7(2): 427-432.
引用本文: 于洋, 赵长伟, 王艳贵, 范卫红, 栾兆坤. 絮体性质对纳滤膜污染的影响[J]. 环境工程学报, 2013, 7(2): 427-432.
Yu Yang, Zhao Changwei, Wang Yangui, Fan Weihong, Luan Zhaokun. Effect of floc characteristics on nanofiltration membrane fouling[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 427-432.
Citation: Yu Yang, Zhao Changwei, Wang Yangui, Fan Weihong, Luan Zhaokun. Effect of floc characteristics on nanofiltration membrane fouling[J]. Chinese Journal of Environmental Engineering, 2013, 7(2): 427-432.

絮体性质对纳滤膜污染的影响

  • 基金项目:

    国家自然科学基金资助项目(21176245,50978245)

    国家科技支撑计划课题(2012BAJ25B02,2012BAJ25B06)

    国家水体污染控制与治理科技重大专项(2008ZX07101-006)

  • 中图分类号: X520.5

Effect of floc characteristics on nanofiltration membrane fouling

  • Fund Project:
  • 摘要: 混凝过程产生的絮体会对后续膜过滤性能产生一定的影响。实验中利用激光粒度仪研究2种混凝剂(AlCl3和PAC)在不同投加量下的絮体性质,混凝出水(不经过沉淀)直接进入纳滤膜(NF270)装置进行过滤实验。研究表明,投加量低(<0.20 mmol/L)的情况下,混凝出水反而使纳滤通量衰减发生恶化,随着投加量的增加,纳滤膜通量衰减得到有效的减缓。直接过滤腐殖酸(HA)的膜通量衰减(J/J0)为0.65,投加量为0.50 mmol/L时,AlCl3和PAC 2种混凝剂产生的通量衰减(J/J0)分别为0.78和0.75。滤饼层阻力受到絮体尺寸的影响较大,絮体尺寸越大,形成的滤饼层透水性更好。通过污染模型分析,混凝出水的纳滤膜污染机理主要是滤饼层阻力。
  • 加载中
  • [1] Steinle D.E., Reinhard M. Nanofiltration for trace organic contaminant removal: Structure, solution, and membrane fouling effects on the rejection of perfluoro chemicals. Environmental Science and Technology, 2008,42(3):5292-5297
    [2] Wu M., Sun D.D. Characterization and reduction of membrane fouling during nanofiltration of semiconductor indium phosphide(InP) wastewater. Journal of Membrane Science, 2005,259(1-2):135-144
    [3] Wu M., Sun D.D., Tay J.H. Effect of operating variables on rejection of indium using nanofiltration membranes. Journal of Membrane Science, 2004,240(1-2):105-111
    [4] Kabsch K. Effect of Al coagulant type on natural organic matter removal efficiency in coagulation/ultrafiltration process. Desalination, 2005,185(1-3):327-333
    [5] Tang C.Y., Kwon Y.N., Leckie J.O. Characterization of humic acid fouled reverse osmosis and nano?ltration membranes by transmission electron microscopy and streaming potential measurements. Environmental Science and Technology, 2007,41(3):942-949
    [6] Kimura K., Hane Y., Watanabe Y. Effect of pre-coagulation on mitigatingirre-versible fouling during ultrafiltration of a surface water. Water Science and Technology,2005,51(6-7):93-100
    [7] Listiarini K., Sun D. D., Leckie J. O., et al. Organic fouling of nanofiltration membranes: Evaluating the effects of humic acid, calcium, alum coagulant and their combinations on the specific cake resistance. Journal of Membrane Science, 2009,332(1-2):56-62
    [8] Tang C.Y., Fu Q.S., Criddle C.S., et al. Effect of flux (transmembrane pressure) and membrane properties on fouling and rejection of reverse osmosis and nanofiltration membranes treating perfluorooctane sulfonate containing wastewater. Environmental Science and Technology, 2007,41(6):2008-2014
    [9] Tang C.Y., Kwon Y.N., Leckie J.O. Characterization of humic acid fouled reverse osmosis and nanofiltration membranes by transmission electron microscopy and streaming potential measurements. Environmental Science and Technology, 2007,290(1-2):942-949
    [10] 刘百仓,黄尔,鲁金凤, 等. 混凝工艺水力条件的优化与絮体尺寸的研究. 环境工程学报, 2010,3(9):1968-1972 Liu B.C., Huang R., Lu J.F., et al. Optimization of hydrodynamic conditions in coagulation process and study of floc size characteristics. Chinese Journal of Environmental Engineering, 2010,3(9): 1968-1972(in Chinese)
    [11] Schippers J.C., Verdouw J. The modified fouling index, a method of determining the fouling characteristics of water. Desalination, 1980,32(3):137-148
    [12] 王洪杰,王毅力,Dentel Steven K. 调理污泥在剪切测试过程中的絮体与聚集体之间的转化研究. 环境工程学报,2010,4(12):2662-2668 Wang H.J., Wang Y.L., Dentel S. K. Study on transformation between flocs and aggregates in conditioned anaerobic digested sludge(ADS) suspensions during a shear test. Chinese Journal of Environmental Engineering, 2010,4(12):2662-2668(in Chinese)
    [13] Kim S.H., Moon B.H., Lee H.I. Effects of pH and dosage on pollutant removal and floc structure during coagulation. Journal of Microbial Chemistry, 2001,81(2):197-203
    [14] Wang J., Guan J.,Santiwong S.R., et al. Effect of aggregate characteristics under different coagulation mechanisms on microfiltration membrane fouling. Desalination, 2010,258(1-3):19-27
    [15] Hong S.K., Elimelech M. Chemical and physical aspects of natural organic matter(NOM) fouling of nanofiltration membranes. Journal of Membrane Science, 1997,132(2):159-181
    [16] Jarusutthirak C., Mattaraj S., Jiraratananon R. Influence of inorganic scalants and natural organic matter on nanofiltration membrane fouling. Journal of Membrane Science, 2007,287(1):138-145
    [17] Guan J., Amal R., Waite T. Effect of aggregate size and structure on specific resistance of biosolids filter cakes. Water Science and Technology,2001,44(10):215-220
    [18] Lee S.A., Fane A. G., Amal R., et al. The effect of floc size and structure on specific cake resistance and compressibility in deadend microfiltration. Separation Science and Technology, 2003,38(4):869-887
    [19] Cho M.H., Lee C.H., Lee S. Influence of floc structure on membrane permeability in the coagulation-MF process. Water Science and Technology, 2005 ,51(6-7):143-150
  • 加载中
计量
  • 文章访问数:  2415
  • HTML全文浏览数:  1055
  • PDF下载数:  1305
  • 施引文献:  0
出版历程
  • 收稿日期:  2012-03-07
  • 刊出日期:  2013-02-02

絮体性质对纳滤膜污染的影响

  • 1.  中国科学院生态环境研究中心环境水质学国家重点实验室,北京 100085
  • 2.  中国矿业大学化学与环境工程学院, 北京 100083
  • 3.  北京化工大学生命科学与技术学院,北京 100029
基金项目:

国家自然科学基金资助项目(21176245,50978245)

国家科技支撑计划课题(2012BAJ25B02,2012BAJ25B06)

国家水体污染控制与治理科技重大专项(2008ZX07101-006)

摘要: 混凝过程产生的絮体会对后续膜过滤性能产生一定的影响。实验中利用激光粒度仪研究2种混凝剂(AlCl3和PAC)在不同投加量下的絮体性质,混凝出水(不经过沉淀)直接进入纳滤膜(NF270)装置进行过滤实验。研究表明,投加量低(<0.20 mmol/L)的情况下,混凝出水反而使纳滤通量衰减发生恶化,随着投加量的增加,纳滤膜通量衰减得到有效的减缓。直接过滤腐殖酸(HA)的膜通量衰减(J/J0)为0.65,投加量为0.50 mmol/L时,AlCl3和PAC 2种混凝剂产生的通量衰减(J/J0)分别为0.78和0.75。滤饼层阻力受到絮体尺寸的影响较大,絮体尺寸越大,形成的滤饼层透水性更好。通过污染模型分析,混凝出水的纳滤膜污染机理主要是滤饼层阻力。

English Abstract

参考文献 (19)

目录

/

返回文章
返回