宁夏典型工业场地多环芳烃的来源解析及特定源的毒理学风险评估

毕思琪, 张博晗, 李恺庆, 董海波, 韩增玉, 于青春, 曹红斌, 田林锋. 宁夏典型工业场地多环芳烃的来源解析及特定源的毒理学风险评估[J]. 生态毒理学报, 2023, 18(1): 308-323. doi: 10.7524/AJE.1673-5897.20220530004
引用本文: 毕思琪, 张博晗, 李恺庆, 董海波, 韩增玉, 于青春, 曹红斌, 田林锋. 宁夏典型工业场地多环芳烃的来源解析及特定源的毒理学风险评估[J]. 生态毒理学报, 2023, 18(1): 308-323. doi: 10.7524/AJE.1673-5897.20220530004
Bi Siqi, Zhang Bohan, Li Kaiqing, Dong Haibo, Han Zengyu, Yu Qingchun, Cao Hongbin, Tian Linfeng. Source Apportionment and Source-specific Toxicological Risk Assessment of PAHs in a Typical Industrial Site in Ningxia[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 308-323. doi: 10.7524/AJE.1673-5897.20220530004
Citation: Bi Siqi, Zhang Bohan, Li Kaiqing, Dong Haibo, Han Zengyu, Yu Qingchun, Cao Hongbin, Tian Linfeng. Source Apportionment and Source-specific Toxicological Risk Assessment of PAHs in a Typical Industrial Site in Ningxia[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 308-323. doi: 10.7524/AJE.1673-5897.20220530004

宁夏典型工业场地多环芳烃的来源解析及特定源的毒理学风险评估

    作者简介: 毕思琪(1997—),女,硕士,研究方向为多环芳烃污染与健康风险评价,E-mail:201921051206@mail.bnu.edu.cn
    通讯作者: 曹红斌, E-mail: caohongbin@bnu.edu.cn 田林锋, E-mail: tianlinfeng448@126.com
  • 基金项目:

    宁夏重点研发计划项目(2019BFG02020);国家自然科学基金面上项目(42077392)

  • 中图分类号: X171.5

Source Apportionment and Source-specific Toxicological Risk Assessment of PAHs in a Typical Industrial Site in Ningxia

    Corresponding authors: Cao Hongbin, caohongbin@bnu.edu.cn ;  Tian Linfeng, tianlinfeng448@126.com
  • Fund Project:
  • 摘要: 人类大规模的工业活动是环境污染物的重要来源之一,工业场地及其周边环境污染问题较其他环境更为典型和突出。为探究宁夏某典型工业园区土壤中多环芳烃(PAHs)的污染状况、组成、来源及毒理学风险,本研究采集了冶金、化学农药制造和化学制品制造等不同行业的企业及其厂区周边的108个表层土壤样本。采用气相色谱-质谱法(GC-MS)分析了16种PAHs的浓度,用正定矩阵因子分解法(PMF)进行来源解析,使用毒性当量浓度(TEQ)、诱变当量浓度(MEQ)和终生致癌风险(ILCR)3个指标进行了毒理学风险评估,并进一步评估特定来源的致癌和致突变风险贡献,以促进在风险基础上的排放源管理和控制。结果表明,该工业园区表层土壤中PAHs的平均浓度为(2 029.1±5 585.9) μg·kg-1,在全国和宁夏区内均处于较高污染水平。园区内土壤PAHs主要来源为交通源(53.9%)、重油燃烧源(27.0%)、煤和生物质燃烧源(14.9%)和钢铁工业来源(4.2%),主要污染行业为活性炭制造、石灰氮制造和冶金工业。PAHs对成人的ILCR为4.5×10-6,潜在致癌风险主要来源于经口摄入和皮肤接触。交通源贡献了最大的致癌(45.4%)和致突变风险(43.4%)。
  • 加载中
  • Allen J O, Durant J L, Dookeran N M, et al. Measurement of C24H14 polycyclic aromatic hydrocarbons associated with a size-segregated urban aerosol [J]. Environmental Science & Technology, 1998, 32(13): 1928-1932
    Thyssen J, Althoff J, Kimmerle G, et al. Inhalation studies with benzopyrene in Syrian golden hamsters [J]. Journal of the National Cancer Institute, 1981, 66(3): 575-577
    Agarwal T, Khillare P S, Shridhar V, et al. Pattern, sources and toxic potential of PAHs in the agricultural soils of Delhi, India [J]. Journal of Hazardous Materials, 2009, 163(2-3): 1033-1039
    Wang X T, Miao Y, Zhang Y, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: Occurrence, source apportionment and potential human health risk [J]. The Science of the Total Environment, 2013, 447: 80-89
    Callén M S, López J M, Mastral A M. Characterization of PM10-bound polycyclic aromatic hydrocarbons in the ambient air of Spanish urban and rural areas [J]. Journal of Environmental Monitoring, 2011, 13(2): 319-327
    夏子书, 王玉玉, 钟艳霞, 等. 基于GIS和PMF模型的石嘴山市土壤多环芳烃空间分布及来源解析[J]. 环境科学, 2020, 41(12): 5656-5667

    Xia Z S, Wang Y Y, Zhong Y X, et al. Spatial distribution characteristics and source apportionment of soil PAHs in Shizuishan City based on GIS and PMF model [J]. Environmental Science, 2020, 41(12): 5656-5667 (in Chinese)

    Khalili N R, Scheff P A, Holsen T M. PAH source fingerprints for coke ovens, diesel and, gasoline engines, highway tunnels, and wood combustion emissions [J]. Atmospheric Environment, 1995, 29(4): 533-542
    Li C, Mi H, Lee W, et al. PAH emission from the industrial boilers [J]. Journal of Hazardous Materials, 1999, 69(1): 1-11
    Zeiger E. Mutagens that are not carcinogens: Faulty theory or faulty tests? [J]. Mutation Research, 2001, 492(1-2): 29-38
    DeMarini D M, Brooks L R, Warren S H, et al. Bioassay-directed fractionation and salmonella mutagenicity of automobile and forklift diesel exhaust particles [J]. Environmental Health Perspectives, 2004, 112(8): 814-819
    丁润梅, 田大年, 李兆君, 等. 宁东工业园区土壤多环芳烃的污染特征与来源[J]. 环境与健康杂志, 2018, 35(10): 909-912

    Ding R M, Tian D N, Li Z J, et al. Pollution characteristics and sources of polycyclic aromatic hydrocarbons in soil of Ningdong Industrial Park [J]. Journal of Environment and Health, 2018, 35(10): 909-912 (in Chinese)

    中国生态环境部. 土壤环境监测技术规范: HJ/T 166—2004 [S]. 北京: 中国标准出版社, 2004
    中国生态环境部. 土壤和沉积物多环芳烃的测定气相色谱质谱法: HJ 805—2016 [S]. 北京: 中国标准出版社, 2016
    Paatero P, Tapper U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126
    Nisbet I C T, LaGoy P K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs) [J]. Regulatory Toxicology and Pharmacology, 1992, 16(3): 290-300
    Durant J L, Busby W F Jr, Lafleur A L, et al. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols [J]. Mutation Research, 1996, 371(3-4): 123-157
    中国生态环境部. 建设用地土壤污染风险评估技术导则 污染场地风险评估技术导则: HJ 25.3—2019 [S]. 北京: 中国标准出版社, 2019
    U.S. Environmental Protection Agency (US EPA). Risk assessment guidance for Superfund, Volume 1, human health evaluation manual (part B, development of risk-based preliminary goals) EPA/540/R-92/003. Publication 9285.7-01B [R]. Washington DC: US EPA, 1991
    赵秀阁, 段小丽. 中国人群暴露参数手册(成人卷)概要[M]. 北京: 中国环境出版社, 2014
    U.S. Environmental Protection Agency (US EPA). Supplemental guidance for developing soil screening levels for Superfund sites [R]. Washington DC: Office of Emergency and Remedial Response, 2002
    Knafla A, Phillipps K A, Brecher R W, et al. Development of a dermal cancer slope factor for benzopyrene [J]. Regulatory Toxicology and Pharmacology, 2006, 45(2): 159-168
    Office of Environmental Health Hazard Assessment (OEHHA). The air toxics hot spots program guidance manual for preparation of health risk assessment [S]. Oakland, CA: California Environmental Protection Agency, USA, 2003
    王震. 辽宁地区土壤中多环芳烃的污染特征、来源及致癌风险[D]. 大连: 大连理工大学, 2007: 89-91 Wang Z. Regional study on soil polycyclic aromatic hydrocarbons in Liaoning: Patterns, sources and cancer risks [D]. Dalian: Dalian University of Technology, 2007: 89

    -91 (in Chinese)

    Division of Waste Management, Florida Department of Environmental Protection. DERM Technical Report: Development of Cleanup Target Levels (CTLs) for Chapter 24 of the Code of Miami-Dade County [R]. Tallahassee: Division of Waste Management, Florida Department of Environmental Protection, 2005
    U.S. Department of Energy’s Oak Ridge Operations Office (ORO). The Risk Assessment Information System (RAIS) [R]. Knoxville: U.S. Department of Energy’s Oak Ridge Operations Office, 2011
    U.S. Environmental Protection Agency. Guidelines for carcinogen risk assessment: Past and future. EPA/630/P-03/001B [R]. Washington DC: U.S. Environmental Protection Agency, Risk Assessment Forum, 1996
    中国生态环境部. 土壤环境质量建设用地土壤污染风险管控标准(试行): GB 36600—2018 [S]. 北京: 中国生态环境部, 2018
    班艺宁, 王重阳. 我国城市土壤中PAHs时空分布特征[J]. 河南科技, 2022, 41(11): 116-120

    Ban Y N, Wang C Y. Distribution of polycyclic aromatic hydrocarbon pollution in urban soils in China [J]. Henan Science and Technology, 2022, 41(11): 116-120 (in Chinese)

    杨帆, 罗红雪, 钟艳霞, 等. 宁东能源化工基地核心区表层土壤中多环芳烃的空间分布特征、源解析及风险评价[J]. 环境科学, 2021, 42(5): 2490-2501

    Yang F, Luo H X, Zhong Y X, et al. Spatial distribution characteristics, source apportionment, and risk assessment of topsoil PAHs in the core area of the Ningdong Energy and Chemical Industry Base [J]. Environmental Science, 2021, 42(5): 2490-2501 (in Chinese)

    党丽慧. 银川市土壤中多环芳烃污染特征、来源及风险评价[D]. 银川: 宁夏医科大学, 2020: 9-30 Dang L H. Pollution characteristics, sources and risk assessment of the polycyclic aromatic hydrocarbons in the soil in Yinchuan [D]. Yinchuan: Ningxia Medical University, 2020: 9

    -30 (in Chinese)

    蒋煜峰, 胡雪菲, 王蓓蕾, 等. 兰州市西固区土壤中PAHs污染特征及来源解析[J]. 环境科学研究, 2014, 27(10): 1164-1171

    Jiang Y F, Hu X F, Wang B L, et al. Levels, source identification and contamination characteristics of PAHs in soils from Xigu District in Lanzhou, Northwestern China [J]. Research of Environmental Sciences, 2014, 27(10): 1164-1171 (in Chinese)

    丁海霞, 陶雪梅, 吕康乐, 等. 兰州市土壤中PAHs和PCBs的分布特征及风险评价[J]. 环境监测管理与技术, 2018, 30(2): 25-29

    Ding H X, Tao X M, Lv K L, et al. Distribution characteristics and risk analysis of PAHs and PCBs in soils of Lanzhou [J]. The Administration and Technique of Environmental Monitoring, 2018, 30(2): 25-29 (in Chinese)

    管贤贤, 周小平, 雷春妮, 等. 基于GIS及APCS-MLR模型的兰州市主城区土壤PAHs来源解析[J]. 环境科学, 2021, 42(8):3904-3912

    Guan X X, Zhou X P, Lei C N, et al. Source Apportionment of Soil PAHs in Lanzhou Based on GIS and APCS-MLR Model[J]. Environmental Science. 2021, 42(8):3904-3912 (in Chinese)

    陈敏, 陈莉, 黄平. 乌鲁木齐土壤中多环芳烃的污染特征及生态风险评价[J]. 中国环境监测, 2015, 31(2): 84-91

    Chen M, Chen L, Huang P. Concentration and ecological risks of polycyclic aromatic hydrocarbons in the surface soils of Urumqi area, China [J]. Environmental Monitoring in China, 2015, 31(2): 84-91 (in Chinese)

    王飞, 赵颖. 太原市污灌区农田土壤中多环芳烃污染特征及生态风险评价[J]. 生态环境学报, 2022, 31(1): 160-169

    Wang F, Zhao Y. Pollution characteristics and risk assessment of PAHs in agricultural soil from sewage irrigation area of Taiyuan City, Shanxi Province [J]. Ecology and Environmental Sciences, 2022, 31(1): 160-169 (in Chinese)

    陈静. 西安市大气和土壤中多环芳烃的污染特征研究[D]. 西安: 西安建筑科技大学, 2012: 37-48 Chen J. Pollution characterization of polycyclic aromatic hydrocarbons in air and soil in Xi’an [D]. Xi’an: Xi’an University of Architecture and Technology, 2012: 37

    -48 (in Chinese)

    王丽. 西安市地表灰尘和表层土壤中PAHs污染研究[D]. 西安: 陕西师范大学, 2017: 1-3 Wang L. Study on PAHs pollution in surface dust and surface soil in Xi’ an City [D]. Xi’an: Shaanxi Normal University, 2017: 1

    -3 (in Chinese)

    Duval M M, Friedlander S X. Source resolution of polycylic aromatic hydrocarbons in Los Angeles atmosphere application of a CMB with first-order decay. EPA-600/2-81-161 [R]. Washington DC: U.S. Government Printing Office, 1981
    Norris G, Duvall R, Brown S, et al. EPA Positive Martrix Factorization (PMF) 5.0 fundamentals and user guide. EPA/600/R-14/108 [R]. Washington DC: Office of Research and Development, U.S. Environmental Protection Agency (US EPA), 2014
    Harrison R M, Smith D J T, Luhana L. Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, U.K. [J]. Environmental Science & Technology, 1996, 30(3): 825-832
    Li C K, Kamens R M. The use of polycyclic aromatic hydrocarbons as source signatures in receptor modeling [J]. Atmospheric Environment Part A General Topics, 1993, 27(4): 523-532
    Rogge W F, Hildemann L M, Mazurek M A, et al. Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks [J]. Environmental Science and Technology, 1993, 27(4): 636-651
    Schauer J J, Kleeman M J, Cass G R, et al. Measurement of emissions from air pollution sources. 5. C1-C32 organic compounds from gasoline-powered motor vehicles [J]. Environmental Science & Technology, 2002, 36(6): 1169-1180
    Simcik M F, Eisenreich S J, Lioy P J. Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan [J]. Atmospheric Environment, 1999, 33(30): 5071-5079
    Teixeira E C, Agudelo-Castañeda D M, Dalla Porta Mattiuzi C. Contribution of polycyclic aromatic hydrocarbon (PAH) sources to the urban environment: A comparison of receptor models [J]. Science of the Total Environment, 2015, 538: 212-219
    Li C, Mi H, Lee W, et al. PAH emission from the industrial boilers [J]. Journal of Hazardous Materials, 1999, 69(1): 1-11
    Committee on Biological Effects of Atmospheric Pollution, United States Naval Air Station (US NAS). Particulate polycyclic organic matter [R]. Washington DC: U.S. Government Printing Office, 1983
    Larsen R K 3rd, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: A comparison of three methods [J]. Environmental Science & Technology, 2003, 37(9): 1873-1881
    Yunker M B, MacDonald R W, Vingarzan R, et al. PAHs in the Fraser River Basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515
    Callén M S, Iturmendi A, López J M, et al. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model [J]. Environmental Science and Pollution Research, 2014, 21(3): 2064-2076
    Lee J H, Gigliotti C L, Offenberg J H, et al. Sources of polycyclic aromatic hydrocarbons to the Hudson River airshed [J]. Atmospheric Environment, 2004, 38(35): 5971-5981
    刘炎坤, 汪青, 刘敏, 等. 上海市大气沉降物中多环芳烃赋存特征及其来源[J]. 中国环境科学, 2015, 35(9): 2605-2614

    Liu Y K, Wang Q, Liu M, et al. Concentration characteristics and potential sources of polycyclic aromatic hydrocarbons in atmospheric deposition in Shanghai [J]. China Environmental Science, 2015, 35(9): 2605-2614 (in Chinese)

    王仲英, 李香兰. GC/MS分析活性炭车间及周围大气中的PAHs[J]. 分析测试技术与仪器, 2000, 6(1): 52-55

    Wang Z Y, Li X L. GC-MS analysing of PAHs from active carbon shop and ambient air [J]. Analysis and Testing Technology and Instruments, 2000, 6(1): 52-55 (in Chinese)

    Canadian Council of Ministers of the Environment (CCME). Polycyclic aromatic hydrocarbons. Canadian soil quality guidelines for protection of environmental and human health [R]. Winnipeg: CCME, 2010
    郭瑾, 葛蔚, 柴超, 等. 化学工业区周边土壤中多环芳烃含量、来源及健康风险评估[J]. 环境化学, 2018, 37(2): 296-309

    Guo J, Ge W, Chai C, et al. Concentrations, sources, and health risk of polycyclic aromatic hydrocarbons in soils around chemical plants [J]. Environmental Chemistry, 2018, 37(2): 296-309 (in Chinese)

    Olson G M, Meyer B M, Portier R J. Assessment of the toxic potential of polycyclic aromatic hydrocarbons (PAHs) affecting Gulf menhaden (Brevoortia patronus) harvested from waters impacted by the BP Deepwater Horizon Spill [J]. Chemosphere, 2016, 145: 322-328
    金银龙, 李永红, 常君瑞, 等. 我国五城市大气多环芳烃污染水平及健康风险评价[J]. 环境与健康杂志, 2011, 28(9): 758-761

    Jin Y L, Li Y H, Chang J R, et al. Atmospheric PAHs levels and health risk assessment in five cities of China [J]. Journal of Environment and Health, 2011, 28(9): 758-761 (in Chinese)

    Tian Y Z, Li W H, Shi G L, et al. Relationships between PAHs and PCBs, and quantitative source apportionment of PAHs toxicity in sediments from Fenhe Reservoir and watershed [J]. Journal of Hazardous Materials, 2013, 248-249: 89-96
    Gdara I, Zrafi I, Balducci C, et al. Seasonal distribution, source identification, and toxicological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Wadi El Bey Watershed in Tunisia [J]. Archives of Environmental Contamination and Toxicology, 2017, 73(3): 488-510
    U.S. Environmental Protection Agency (US EPA). Risk assessment guidance for Superfund Volume Ⅰ human health evaluation manual (part A) interim final [J]. Washington DC: US EPA, 1989
    车凯, 郁金星, 刘松涛, 等. 河北南部变电站场地土壤中PAHs含量、来源及健康风险[J]. 中国环境科学, 2020, 40(11): 4865-4874

    Che K, Yu J X, Liu S T, et al. Distribution, source and risk assessment of PAHs in soil of typical substation sites in south Hebei [J]. China Environmental Science, 2020, 40(11): 4865-4874 (in Chinese)

    晁思宏. 北京市大气颗粒物载带多环芳烃排放源的潜在健康风险评价[D]. 北京: 北京师范大学, 2017: 1-3 Chao S H. Potential health risk assessment of emission sources of PAHs in atmospheric particles in Beijing [D]. Beijing: Beijing Normal University, 2017: 1

    -3 (in Chinese)

  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览数:  1187
  • PDF下载数:  31
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-05-30

宁夏典型工业场地多环芳烃的来源解析及特定源的毒理学风险评估

    通讯作者: 曹红斌, E-mail: caohongbin@bnu.edu.cn ;  田林锋, E-mail: tianlinfeng448@126.com
    作者简介: 毕思琪(1997—),女,硕士,研究方向为多环芳烃污染与健康风险评价,E-mail:201921051206@mail.bnu.edu.cn
  • 1. 北京师范大学地理科学学部, 北京 100875;
  • 2. 中国地质大学(北京)水资源与环境学院, 北京 100083;
  • 3. 石嘴山市生态环境监测站, 石嘴山 753000;
  • 4. 宁夏回族自治区生态环境监测中心, 银川 750000
基金项目:

宁夏重点研发计划项目(2019BFG02020);国家自然科学基金面上项目(42077392)

摘要: 人类大规模的工业活动是环境污染物的重要来源之一,工业场地及其周边环境污染问题较其他环境更为典型和突出。为探究宁夏某典型工业园区土壤中多环芳烃(PAHs)的污染状况、组成、来源及毒理学风险,本研究采集了冶金、化学农药制造和化学制品制造等不同行业的企业及其厂区周边的108个表层土壤样本。采用气相色谱-质谱法(GC-MS)分析了16种PAHs的浓度,用正定矩阵因子分解法(PMF)进行来源解析,使用毒性当量浓度(TEQ)、诱变当量浓度(MEQ)和终生致癌风险(ILCR)3个指标进行了毒理学风险评估,并进一步评估特定来源的致癌和致突变风险贡献,以促进在风险基础上的排放源管理和控制。结果表明,该工业园区表层土壤中PAHs的平均浓度为(2 029.1±5 585.9) μg·kg-1,在全国和宁夏区内均处于较高污染水平。园区内土壤PAHs主要来源为交通源(53.9%)、重油燃烧源(27.0%)、煤和生物质燃烧源(14.9%)和钢铁工业来源(4.2%),主要污染行业为活性炭制造、石灰氮制造和冶金工业。PAHs对成人的ILCR为4.5×10-6,潜在致癌风险主要来源于经口摄入和皮肤接触。交通源贡献了最大的致癌(45.4%)和致突变风险(43.4%)。

English Abstract

参考文献 (62)

目录

/

返回文章
返回