-
随着人民的生活水平不断提高,由家庭生活和工业生产带来的油水混合物的产量急剧增加,含油废水的排放和无数的漏油事件不仅对生态系统造成破坏,威胁人类健康,还浪费了宝贵的资源[1-3]. 含油废水一般可以分为两类:不相溶的油水混合物及油水乳液. 不相溶的油水混合物包含较大的分散液滴(> 20 μm)[4],可以随着时间的推移自然分层,密度较大的逐渐沉降,密度较小的漂浮到顶部[5]. 油水乳液属于胶体分散体,由连续相中的微米级和纳米级液滴组成,乳液的成分比单纯的油水两相混合物更复杂[6]. 油水乳液中包含各种分子相互作用和界面活性成分,因此形成的系统也更稳定.
能够处理不相溶油水混合物和油水乳化液的膜分离技术具有很大的应用前景. 改变膜表面的润湿性可以赋予膜对连续相的润湿性和对分散相的排斥性[7],使油水分离具有高效率和高选择性. Jiang等[8-9] 提出,分离油水混合物的方法理论上可分为两类:除水和除油. 具有疏水/亲油性的油水分离膜允许油相通过而阻止水相通过,在分离水包轻油(ρoil<ρwater)乳液时,由于膜表面会形成一层水膜,阻碍油相与分离膜的接触,导致分离受阻[10-12],并且由于含油黏度的不同,分离水包重油(ρoil > ρwater) 乳液时会对膜产生不同程度的污染和堵塞,这些问题限制了疏水/亲油性膜在油水分离领域的应用[13]. 因此,具有允许水相通过同时阻碍油相渗透性能的亲水/水下疏油性分离膜更适合实际应用[14-15].
将纳米材料在基底膜上均匀分散,调整膜表面润湿性及多孔结构[16],可以开发出具有亲水/水下疏油特性的油水分离膜. 迄今为止,已经开发了各种纳米材料修饰膜表面以获得所需的润湿性,如羟基磷灰石纳米管[17]、活性炭[18]、金属有机框架[19]、二硫化钨[20]、硝化纤维[21],二氧化钛(TiO2)[22]和氧化石墨烯[23]等. 其中,TiO2因成本低、无毒、化学稳定性高而被广泛应用于油水分离体系中. Chen等[24]制备出TiO2涂层的剥离纤维膜呈亲水/亲油/水下疏油性,水下油接触角达157°,对水包硅油乳液的分离效率为94%;Fazli Wahid等[25]将细菌纤维素与 TiO2纳米材料混合制备膜,并通过ZnO纳米材料的原位生长进一步改性,所制备的复合膜呈亲水性,水下油接触角为145°,对水包甲苯乳液的分离效率达到99%;Feng等[26]通过TiO2的自组装制备出二维层状MXene/聚亚芳基醚腈(PEN)纤维复合膜,空气中呈亲水性,对石油醚的水下油接触角为155°,对水包石油醚乳液分离效率达99%. 这些工作代表了油水分离材料开发的重大进展,但由于实际油水混合物油相的密度多样性,以上工作还存在局限性,制备出能同时处理水包轻质油和水包重质油的油水分离膜十分重要. 部分学者研究了同时处理水包轻/重质油乳液的材料[13, 27-30],但是制备方式复杂,需要额外搭建处理装置,且处理量有限,还有学者研究了表面润湿性不对称的Janus膜,但其结构小、分批分离工艺、处理能力低等仍限制了其性能和应用[31]. 因此,开发出一种能同时处理水包轻/重质油,且制备方法简便,无需进行预处理,无需额外搭建装置的油水分离膜十分有必要.
二硫化钼(MoS2)作为过渡金属二硫化物的热门研究材料之一,已被广泛应用于催化剂、润滑剂、石油添加剂、氢存储体、电子器件等各个领域[32-33]. 除了上述应用外,其化学稳定性、剥离可行性和表面功能化潜力等显著特性使MoS2成为混合改性膜中新型纳米添加剂的合适候选材料[34-35]. MoS2具有强共价键合的 S—Mo—S结构,不同层之间通过范德华力连接,因此它具有类石墨烯的二维层状形态[36-38],其特有的晶相、层间距和空位缺陷等结构特征为膜处理技术在废水处理领域的应用提供了广阔的前景[39]. 一些学者将MoS2与其他二维材料(如石墨烯、氮化硼)相比,证实MoS2具有出色的性能[39]. 国外研究学者将MoS2掺入到PES膜处理炼油厂废水[36]. 结果表明过滤160 min后,COD从240 mg·L−1 降低到40.8 mg·L−1,浊度也从12.2 NTU降低到2.1 NTU. 因此MoS2具有显著改善膜基水处理的潜力. 并且天然辉钼矿中含有大量的MoS2,有利于降低生产成本.
多功能纳米材料的混合有利于提高膜的性能[13]. 将花球状纳米结构MoS2与具有高表面能的TiO2纳米材料复合制备MoS2-TiO2材料,通过真空抽滤制备出MoS2-TiO2/PVDF复合膜. MoS2-TiO2 /PVDF复合膜呈现出亲水/亲油/水下疏油性,可以实现不混溶油水、水包轻油(石油醚)乳液及水包重油(1,2-二氯乙烷)乳液的多任务分离性能.
-
TiO2/PVDF膜: 称取80 mg 硫酸氧钛(TiOSO4)加入200 mL纯水中搅拌2 h,TiOSO4溶液在水中水解后变为偏钛酸(TiO(OH)2). 之后在2000 r·min−1下离心,真空烘干,再在马弗炉中300 ℃热处理2 h后得到TiO2材料. 称取0.02 g TiO2加入20 mL乙醇中,超声1 h,得到TiO2制膜液. 将制膜液真空抽滤到PVDF膜基底上即得TiO2/PVDF膜.
MoS2/PVDF膜: 采用十六烷基三甲基溴化铵(CTAB)辅助水热法制备疏水性MoS2. 将1 mmol 钼酸钠(Na2MoO4)和3 mmol 硫脲(C2H5NS)溶于50 mL去离子水中,磁力搅拌至完全溶解,然后加入0.5 mmol CTAB搅拌10 min,将混合物密封在100 mL特氟龙衬里不锈钢高压釜中,在220 ℃下保持24 h,自然冷却至室温. 最终产品用蒸馏水和无水乙醇反复离心洗涤多次,真空干燥后得到MoS2材料. 称取0.02 g MoS2加入20 mL乙醇中,超声1 h,得到MoS2制膜液. 将制膜液真空抽滤到PVDF膜基底上即得MoS2/PVDF膜.
TiO2-MoS2 /PVDF复合膜:由于MoS2材料不溶于水,将制备完成的MoS2在纯水中磁力搅拌2 h,以达到分散均匀状态. 加入TiOSO4继续搅拌2 h,过程中硫酸氧钛发生水解,之后将复合材料离心洗涤并烘干,放入马弗炉在300 ℃热处理2 h,取出研磨即得到TiO2-MoS2复合材料. 称取0.02 g TiO2-MoS2加入20 mL乙醇中,超声1 h,得到TiO2-MoS2制膜液. 将制膜液真空抽滤到PVDF膜基底上即得TiO2-MoS2/PVDF膜.
-
使用德国Bruker D8 Advance X射线衍射仪(XRD)对TiO2、MoS2及TiO2-MoS2复合材料的物相结构和结晶度进行分析;使用德国ZEISS Sigma 300 扫描电子显微镜(SEM)探究材料及膜的微观形貌;使用LaB6透射电子显微镜(TEM)观察材料的微观结构;使用美国Thermo Scientific K-AlphaX射线光电子能谱(XPS)对膜表面元素及元素价态进行分析;使用美国Thermo Nicolet傅里叶红外光谱仪(FTIR)对膜分离水包油乳液前后表面化学结构进行表征,使用德国布鲁克的原子力显微镜(AFM)观察膜表面形貌及粗糙度.
本实验采用重量分析法[40]和Guerout-Elfprd-Ferry方程[41]来分别计算膜的孔隙率及平均孔径,其计算公式如方程1和2所示.
将剪好的膜样品浸入水中,称出其润湿状态下的质量w1 (g);随后将其置于真空干燥箱中烘干至恒重,得到其在干燥状态下的质量w2 (g);式中A代表膜的有效面积 (m2);l代表膜的厚度 (m),在膜浸湿前用游标卡尺测量;dw是超纯水的密度,取1 g·cm−3.
式中,μ指常温下水的黏度,取值0.00089 Pa·s;J表示膜的水通量(L·m−2·h−1);l是膜的厚度 (m),经测量TiO2/PVDF,MoS2/PVDF和TiO2-MoS2/PVDF分别为0.000173 m、0.00017 m和0.000179 m;TMP指渗透过程的跨膜压差,取值0.1 MPa.
膜通量计算:采用公式(3)计算:
式中,V为渗透体积(L);A为膜的有效面积(m2),有效直径为36 mm;Δt为过滤时间(h);ΔP为跨膜压差(Pa). 油水分离实验操作压力为0.08 MPa.
不相溶油水分离:采用真空抽滤装置进行. 用油红对石油醚进行染色,用硫酸铜对水进行染色,将它们1:1混合形成石油醚/水混合物. 并称取过滤前后纯水的质量以计算油水分离效率. 截留效率采用公式(4)计算:
式中,m1表示分离前纯水质量(g);m2表示分离后纯水质量(g).
水包油乳液分离:采用真空抽滤装置进行,取1 mL石油醚(1,2-二氯乙烷),1 g吐温80乳化剂加入120 mL纯水中,超声2 h,获得均匀的水包油乳液,能稳定存在3h以上.
-
图1所示为TiO2、MoS2及TiO2-MoS2材料的X射线衍射图谱. 可以看出,纯TiO2 粉末在2θ为25.28°、37.80°、48.05°、53.89°、62.69°和75.03°处出现衍射峰,分别对应于锐钛矿TiO2 (JCPDS CARD No.21-1272) 的 (101)、(004)、(200)、(105)、(204)、(215) 晶面. 纯MoS2粉末在2θ为15.28°、32.68°、33.51°、35.87°、39.54°、44.15°、55.98°和58.33°处出现衍射峰,分别对应于2H-MoS2 (JCPDS CARD No.37-1492) 的 (002)、(100)、(101)、(102)、(103)、(006)、(106) 和 (110) 晶面. 其中,(100)、(101)、(102)、(103)、(006)几处的峰出现了并峰且峰变宽的现象,这是晶面结构缺陷产生的. 在标准卡片中MoS2的(002)晶面对应的峰位置应为14.38°,明显看出,所制备的纯MoS2于(002)晶面的峰位置向大角度发生偏移,这是由于样品的择优取向,同时峰强度变弱,是由于晶格缩小[42]. 对于TiO2-MoS2复合材料,(100)和(103)处的峰变窄且强度变强,说明与TiO2材料复合之后晶体结晶度变好. 多层MoS2纳米花聚集在TiO2纳米棒上(图2(c)、(d)). 在12.69°出现了2H-MoS2 (JCPDS CARD No.37-1492) 的(101)晶面衍射峰,左移1.69°,晶格常数变大,掺入TiO2导致. TiO2的各衍射峰也受到MoS2的复合的影响而被弱化.
图2所示为TiO2、MoS2及TiO2-MoS2材料的表面形貌表征图. 图2(a)、(d)可以看出,所制备的TiO2由不同长短的棒状结构紧密堆积而成. 图2b显示水热法制备的疏水MoS2由不规则大小的球形花状纳米颗粒聚集在一起形成. 颗粒大小在几百纳米到几微米不等,且形成的花球很容易聚集到一起,独立的二硫化钼纳米片几乎没有观察到. 使用TEM进一步表征了合成的MoS2纳米花的形态. 如图2(e)所示,经超声弥散处理后,本来密切堆积的二硫化钼纳米花球发生分散,在边缘处能清楚地看到多层MoS2纳米薄片组成的波纹,呈卷曲状. 这种具有波纹和波纹表面的球形结构是由于表面活性剂CTAB的协同作用,CTAB通过成核和聚集-自组装生长过程促进了分层微纳米结构的形成[43-45]. 这种结构可以促使二硫化钼的比表面积增加,在本研究中,MoS2具有层次微/纳米织构结构的特殊形态是表面润湿性的关键. 图2(c)、(f)可以看出,MoS2纳米花附着在TiO2纳米棒的表面上,MoS2和TiO2之间存在紧密的界面,复合材料边缘褶皱明显. 样品的EDX元素映射如图2(g)—(h)所示. Mo、S、Ti和O元素在所选区域内分布明显.
-
通过X射线光电子能谱 (XPS) 进一步对材料的元素性质进行测试分析,从而确定材料的化学成分以及表面化学态. 图3(a) 为3种膜的XPS全谱图,MoS2/PVDF膜在229.2 eV和162.2 eV处出现了特征峰,分别对应于Mo 3d和S 2p. TiO2/PVDF膜在485.9 eV和530.4 eV处存在特征峰,对应于Ti 2p和O 1s. TiO2-MoS2/PVDF复合膜,在相应的峰位置分别对应Mo,S,Ti和O在内的所有元素,这与EDS结果相符合.
为了进一步确定Mo、S、Ti、O这4种元素的化学态,图3(b)—(e) 分别对一系列样品的Mo 3d、S 2p、Ti 2p和O1s进行了精细谱测试分析. 在图3(b) 所示的Mo 3d 精细谱中,对于MoS2/PVDF,其Mo 3d精细谱出现两个双峰,在228.7 eV和232.0 eV处的特征峰分别对应于Mo4+ 3d5/2和Mo4+ 3d3/2,在229.5 eV以及231.9 eV处的特征峰对应于Mo5+ 3d5/2和Mo5+ 3d3/2,而226.2 eV处的峰是由S 2s产生的[46]. TiO2-MoS2/PVDF复合膜出现3个双峰,在229.2 eV和232.7 eV处的峰对应于Mo4+ 3d5/2 和Mo4+ 3d3/2 ,在232.4 eV和235.6 eV处的双峰对应于Mo5+ 3d5/2 和Mo5+ 3d3/2 ,在232.8 eV和235.9 eV处的特征峰对应于Mo6+ 3d5/2和Mo6+ 3d3/2. 根据资料显示,Mo5+ 的存在是伴随着S22- 物种的存在[47]. 相应的,图3(b) 显示了TiO2-MoS2/PVDF样品的S 2p光谱,其中162.2 eV和163.8 eV的特征峰分别对应于S2- 2p 3/2和S2- 2p1/2,而162.1 eV和163.2 eV处的特征峰分别属于S22- 2p 3/2和S22- 2p1/2 . 同样的,在MoS2 /PVDF样品的Mo 3d精细谱中存在的Mo5+ 与其S 2p精细谱中S22- 相对应,结合之前的研究结果, Mo5+ 和S22-都可能是源自少层MoS2的边缘缺陷位点,异质结的构建不仅增加了有活性的缺陷结构数量,也改变了Mo和S局部电子的分布[48]. 从Mo元素的化合价来看,在复合TiO2材料后,Mo4+ 3d5/2和Mo4+ 3d3/2 的峰位置分别向高结合能方向移动了0.7 eV和0.5 eV,Mo5+ 3d5/2和Mo5+ 3d3/2 的峰位置分别向高结合能方向移动了3.7 eV和2.9 eV. 从S元素的化合价来看,各特征峰位置也发生一定程度的偏移,二氧化钛和二硫化钼异质结的形成,也会对复合材料的光催化性能产生影响[49]. 同时,复合材料的Mo4+ 峰强度有所降低,Mo6+ 峰出现且有一定强度,这表面在合成TiO2-MoS2材料过程中Mo被氧化或受到含氧官能团的影响. 结合能的变化意味着MoS2与TiO2之间的电子相互作用. TiO2-MoS2/PVDF样品在464.6 eV和458.9 eV处出现的特征峰为Ti4+ 2p 1/2和 Ti4+ 2p 3/2 ,相较于纯的TiO2而言便宜到更高的结合能,表明电子从Ti物种迁移到Mo和S. TiO2-MoS2/PVDF样品的O 1s光谱中,531.1 eV对应着Ti-O键,530.4 eV对应吸附水MoS2/TiO2复合材料的O 1s光谱.
如图4为PVDF膜,TiO2/PVDF膜 ,MoS2/PVDF膜 和TiO2-MoS2/PVDF膜的FTIR图谱. 原始的PVDF基底膜在616 cm−1和762 cm−1处的吸收带归因于PVDF结晶结构中的α相晶型,874 cm−1处的特征峰属于β相晶型,1070 cm−1、1180 cm−1和1400 cm−1处的吸收峰分别对应PVDF的C—C、C—F的伸缩振动和C—H的变形振动[50]. 对比另外3种复合膜,PVDF基底膜的特征峰几乎消失,说明材料的成功负载. 对于MoS2/PVDF膜,图4(b)中689 cm−1处对应于Mo—O键[51],900—1100 cm−1处的宽峰带对应于CTAB改性后MoS2的C—H振动峰[52],1120 cm−1处对应于S=O键[51]. TiO2/PVDF膜在525—700 cm−1处存在的宽带可归因于Ti—O—Ti 伸缩振动模式[53],并且1140 cm−1处出现SO42-的特征峰. 同样的,在TiO2-MoS2/PVDF上也能观察到这两处的峰,而MoS2/PVDF膜的特征峰几乎没有. 由于膜表面的亲疏水性主要取决于膜表面材料的化学特性,不妨推测,TiO2-MoS2/PVDF复合膜的的亲疏水性与TiO2/PVDF膜相似.
为了解基底及负载不同材料后的膜表面形貌的变化,采用FESEM分别对PVDF,TiO2/PVDF ,MoS2/PVDF 和TiO2-MoS2/PVDF进行表征,结果如图5所示. 由图5(a1)—(a3)可以看到,原始PVDF基底膜表面光滑,具有多孔结构. 在负载TiO2材料后(图5(b1)—(b3)),表面出现不规则长短的棒状结构,与图2(a)相比,团聚现象明显减轻,这是纯二氧化钛制膜液超声所致,但是由于尺寸呈棒状,TiO2材料并未下渗到膜基底的孔隙中. 当仅负载MoS2纳米材料时(图5(c1)—(c3)),膜表面布满了不同尺寸的MoS2纳米花,与图2(b)中MoS2结构相比,经过超声处理后的MoS2/PVDF膜也出现同样的团聚减轻现象,并且从截面图中可以看出,部分尺寸较小的纳米花下渗到膜基底的孔隙中,负载效果更好.
当负载TiO2-MoS2复合材料时,膜表面的MoS2纳米花与棒状TiO2相互交错,负载层与基底结合紧密.
通过原子力显微镜(AFM)观察膜的3D形貌及表面平均粗糙度Ra大小. 如图6所示,图中颜色由深到浅表示膜表面由“凹陷”到 “凸起”. 通过真空抽滤将不同的制膜液抽滤到基底膜上,负载材料结构大小不同,会导致不同的粗糙度. 可以看出,PVDF基底膜由于表面平滑(图6(a2)),测得的粗糙度最低,其Ra值为41 nm. 负载材料后,其表面疏散多孔结构被覆盖,与SEM结果一致. TiO2/PVDF膜的粗糙度(Ra=37 nm)低于MoS2/PVDF膜的粗糙度(Ra=225 nm),这也能从图6(b3)、(c3)截面图中看出,这是因为制膜液经过超声处理后,团聚现象减弱,纳米材料分散均匀,并且二硫化钼纳米花球表面存在明显褶皱,而短棒状二氧化钛表面相对光滑. TiO2-MoS2/PVDF复合膜的粗糙度明显增加(Ra=317 nm)是因为TiO2-MoS2制膜液经超声抽滤到膜上后,材料分散更加均匀,膜表面凹凸性更明显. 根据Cassie-Baxter’s理论[54],提高表面粗糙度会增加表面作用面积,过滤中的有效面积也得到提高. 提高膜表面粗糙度可以提高膜的亲水性和水下疏油性. 在亲水膜表面,会使水分子与膜表面亲水分子结合形成水化层,防止油渗透通过膜.
由表1 孔隙率和平均孔径分布可以看出,TiO2-MoS2/PVDF膜孔隙率最小,孔隙率是指多孔膜中孔隙的体积占膜表观体积的百分数,结合SEM图所示,推测是因为短棒状二氧化钛与花球状二硫化钼连接处十分紧密,孔隙结构减少,而MoS2/PVDF膜由于二硫化钼的花球状结构,球与球之间孔隙多,所以它的孔隙率最高. 有趣的是,平均孔径的分布却恰恰相反,TiO2-MoS2/PVDF膜平均孔径最大,这可能与AFM图像中TiO2-MoS2/PVDF膜的表面粗糙度最大有关. 推测由于膜表面起伏程度较大,凸起和凹陷处形成一个个大的“孔”,从而增大了平均孔径. 平均孔径最小的是MoS2/PVDF膜,小的孔径易引起较大的水流阻力和较低的膜通量.
-
油水分离膜对水和油的亲疏性是影响油水分离效率和水通量的重要因素,本研究分别对TiO2/PVDF,MoS2/PVDF及TiO2-MoS2/PVDF膜的水接触角 (water contact angle ,WCA)、油接触角(oil contact angle ,OCA) 及水下油接触角(under water oil contact angle ,UWCA)进行探究,如图7所示. TiO2/PVDF膜在空气中具有两亲性,即亲水性和亲油性,在水下呈疏油性;MoS2/PVDF膜由于制备的二硫化钼经过CTAB疏水改性,所以其在空气中具有疏水性,亲油性及水下亲油性,这与Wan等[43]的研究结果一致;将TiO2和MoS2复合之后,所制备的TiO2-MoS2/PVDF膜在空气中呈两亲性,水下与TiO2/PVDF膜保持一致呈疏油性,而MoS2/PVDF膜在空气中的疏水性并没有在复合膜中表现出来. 说明二氧化钛在复合膜的润湿性上起主导作用. 复合膜水下油接触角略大于TiO2/PVDF膜的水下油接触角,这归因于复合膜表面粗糙度比TiO2/PVDF膜大. 亲水性官能团有助于在膜表面形成稳定的水化层,同时TiO2-MoS2/PVDF膜具有较高的表面粗糙度,进一步增强了复合膜的亲水性,一定程度上阻碍了油滴和膜表面的接触,减轻膜孔被油滴堵塞. 从图8可以看出,即使油滴在水下被挤压或重复与TiO2-MoS2/PVDF膜接触后,油滴也能很好的从膜表面分离,说明膜表面具有较低的黏附性.
-
使用真空抽滤装置对3种膜油水分离效果进行探究,实验前后照片如图9(a)所示. 数据结果如图9(b) 所示. 可以看出,所制备的3种膜都具有很好的过水阻油性能,这与它们的表面接触角测量结果相呼应. 相比较于MoS2/PVDF膜仅约872 L·m−2·h−1的分离通量,TiO2材料的加入使TiO2-MoS2/PVDF复合膜的分离通量提高到1392 L·m−2·h−1. 截留效率按从高到低排列分别是TiO2-MoS2/PVDF复合膜(97.4%),MoS2/PVDF膜(96.6%)及TiO2/PVDF膜(95.7%),虽然图9(b)中TiO2/PVDF膜分离通量较高,但是TiO2-MoS2/PVDF复合膜的截留效率最高. 综合以上分析,TiO2-MoS2/PVDF复合膜对不相容油水分离性能最好.
-
为了解3种膜对水包油乳液的分离性能,分别选择石油醚(轻油,密度为0.66 g·cm−3)、1,2-二氯乙烷(重油,密度为1.26 g·cm−3)以及乳化剂吐温80制备水包轻油乳液和水包重油乳液进行探究. 图10(a)—(c)为TiO2/PVDF膜,MoS2/PVDF膜及TiO2-MoS2/PVDF膜对水包石油醚乳液的分离实验结果. 图10(d)—(f)为TiO2/PVDF膜,MoS2/PVDF膜及TiO2-MoS2/PVDF膜对水包1,2-二氯乙烷乳液的分离实验结果. 可以看出经过3种膜分离之后水包油乳浊液肉眼可见的变清晰,但是粒度分布情况有所区别.
根据DLS测试结果,按照平均粒径分布计算出截留效率,如图11所示. 图11可以看出,对于水包石油醚乳液,具有亲水性/水下疏油特性的TiO2/PVDF膜(63%)和TiO2-MoS2/PVDF膜(92%)分离效率要高于疏水性/水下亲油性的MoS2/PVDF膜(49%);这是由于水包轻油乳液在分离过程中,在疏水膜表面存在水层,阻碍了油相与膜接触,从而影响了分离效率. 但是作为同种润湿性的膜,MoS2材料的复合使TiO2-MoS2/PVDF膜对水包石油醚乳液的分离效果大大高于TiO2/PVDF膜,这得益于MoS2材料加入改变了膜表面的孔隙结构. 同样的,对于水包1,2-二氯乙烷乳液,具有疏水性/水下亲油性的MoS2/PVDF膜(68%)分离效率高于TiO2/PVDF膜(38%),有趣的是,具有相反润湿性的TiO2-MoS2/PVDF膜(72%)截留效率要略高于MoS2/PVDF膜,推测一方面得益于复合膜表面的孔结构提高了分离性能,另一方面因为纳米花球状MoS2与TiO2复合之后,在超声作用下,纳米花球状MoS2边缘褶皱散开,MoS2片状结构更加明显,在边缘处产生多层MoS2纳米薄片组成的波纹,使二硫化钼的比表面积增加(图2(e—f)),在分离水包油乳液的同时吸附性能也增加了. 实验发现,在水包油乳液制备方法相同的情况下,同一种膜对水包石油醚乳液的截留效率比对水包1,2-二氯乙烷乳液的截留效率高,这是因为油相密度不同. 石油醚的密度为0.66 g·cm−3 ,1,2-二氯乙烷密度为1.26 g·cm−3,对应的水包1,2-二氯乙烷乳液液滴的密度大于水包石油醚乳液液滴密度,更容易下沉到膜表面,造成膜孔堵塞,导致截留效率下降,这与Wang等[55]研究结果一致. 但是实验所制备的TiO2-MoS2/PVDF膜相比于仅负载MoS2或TiO2的膜对任一种水包油乳液的分离效率都要高,进一步说明了TiO2-MoS2/PVDF复合膜具有很好的油水分离性能.
为了进一步了解分离水包油乳液之后膜表面的变化,对分离后的膜进行了FTIR测试,结果如图12所示.
图12可以看出,在截留水包油乳液之后,位于900—1160 cm−1处的峰加强,说明C—H振动加强[52],膜表面残留油滴引起. 在1630 cm−1和3000—3460 cm−1处产生了新的峰,这分别归因于吸附水分子的拉伸振动和O—H拉伸振动[56]. 并且,峰的强度与截留效果也比较类似,TiO2/PVDF膜对水包油乳液截留效率最低,峰强度变化最弱(图12(a)). MoS2/PVDF膜对水包1,2-二氯乙烷乳液的截留效率高于水包石油醚乳液,图12(b)红色曲线存在的峰强度高于蓝色曲线. 在图12(c)中,在分离水包油乳液之后,TiO2-MoS2/PVDF膜位于1160 cm−1附近的峰C—H振动加强,并且这与分离效率相关,对水包石油醚乳液分离效率高于水包1,2-二氯乙烷乳液,其C—H振动就更强. 以上结果说明,所制备的亲水性/亲油性/水下疏油性TiO2-MoS2/PVDF膜对水包轻油乳液和水包重油乳液有较出色的分离效果,在油水分离领域具有很大的应用前景.
-
综上所述,通过真空抽滤分别制备出TiO2/PVDF膜,MoS2/PVDF膜,及 TiO2-MoS2/PVDF复合膜. TiO2-MoS2/PVDF复合膜具有超亲水/超亲油/水下超疏油性质,无需预润湿即可实现油水混合物的分离. 与TiO2/PVDF膜、MoS2/PVDF膜相比,TiO2-MoS2/PVDF复合膜对油水不相溶混合物、水包轻油(石油醚)乳液和水包重油(1,2-二氯乙烷)乳液都具有较高的分离效率. 通过膜表面接触角及过滤后膜表面红外光谱分析,这归因于膜表面润湿性的改变、MoS2材料本身存在的吸附性能及结构特征. 该复合膜分离性能的提升克服了传统油水分离过程中分离水包轻/重质油乳液对膜表面润湿性的选择性问题,这可能会启发新的油水分离材料的制造.
TiO2-MoS2/PVDF复合膜的制备及油水分离性能
Preparation of TiO2-MoS2/PVDF composite membrane and study on its oil-water separation performance
-
摘要: 随着工业废水和生活污水排放的增加,含油废水和乳化油水混合物的分离引起社会的广泛关注. 然而,克服油水密度的限制,开发出可以分别过滤油水混合物、水包轻油乳液及水包重油乳液的分离膜具有挑战性,但迫在眉睫. 将亲水/水下疏油性的棒状TiO2与疏水/水下亲油性的MoS2纳米花球复合后制备TiO2-MoS2材料,再以PVDF为基底真空抽滤制备出TiO2-MoS2/PVDF复合膜,所制备的复合膜呈超亲水/超亲油/水下疏油性,且水下油滴附着力低. 在不进行任何预润湿处理的情况下,TiO2-MoS2/PVDF复合膜对油水两相混合物,水包轻油乳液和水包重油乳液的分离与TiO2/PVDF膜和MoS2/PVDF膜相比效率均有不同程度的提高. 本研究克服了分离不同密度的水包油乳液对膜的选择性,为油水分离膜在同时过滤水包轻质/重质油乳液上提供了新的思路.Abstract: With the increase in industrial and domestic wastewater discharges, the separation of oily wastewater and emulsified water/oil mixtures has attracted widespread social attention. However, overcoming the limitation of oil density, developing separation membranes, which can filter oil water mixture, light oil in water emulsion and heavy oil in water emulsion is challenging and urgent. After we composited the hydrophilic/underwater oleophobic rod-like TiO2 with the hydrophobic/underwater oleophilic MoS2 nanospheres, the TiO2-MoS2/PVDF composite membrane was produced by vacuum filtration with PVDF as the substrate. The composite membrane we produced is superhydrophilic/superoleophilic/underwater oleophobic, with low underwater oil droplet adhesion. Compared with TiO2/PVDF membrane and MoS2/PVDF membrane, the TiO2-MoS2/PVDF composite membrane has improved the separation efficiency of oil water mixture, light oil in water emulsion and heavy oil in water emulsion without any pre-wetting treatment. This study overcomes the selectivity of membrane for separating oil in water emulsion with different densities, which provides a new idea for separation membrane to filter light/heavy oil in water emulsion at the same time.
-
2018年,我国城市生活垃圾焚烧处理量已达1.02×108 t。垃圾焚烧会带来污染物形态的转移。其中,NOx是垃圾焚烧过程中产生的最主要气体污染物之一,会引起酸雨、光化学烟雾等环境问题[1-2]。目前,垃圾焚烧烟气的脱硝手段包括选择性催化还原(selective catalytic reduction,SCR)和选择性非催化还原(selective non-catalytic reduction,SNCR)2种。SCR催化剂在垃圾焚烧烟气中变性失活严重且工艺运行成本过高,故其应用相对较少;SNCR技术具有设备投资低、适应性强及经济性较好等优势,故在垃圾焚烧处理中得到广泛应用[3-4]。然而,受化学反应动力学限制,SNCR脱硝技术存在温度窗口。在理想情况下,将反应温度控制在窗口(875~1 050 ℃)内可达到60%~80%的脱硝效率[5],而当反应温度偏离此脱硝温度窗口时,脱硝效率将大幅降低[6]。由于垃圾焚烧烟气温度较低,且烟气中含有的O2、H2O及飞灰等成分均会影响SNCR脱硝效率,因此,在实际工程中,常规SNCR脱硝技术仅有约30%~50%的脱硝效率,无法满足我国日趋严苛的NOx排放标准[7-8]。因此,拓宽垃圾焚烧烟气SNCR的温度窗口、强化SNCR脱硝是垃圾焚烧行业亟待解决的问题。
近年来,研究者主要通过加入各种添加剂来改善SNCR脱硝特性,以提升其脱硝效率。所采用的添加剂包括小分子气体、碱金属化合物、有机含氧化合物及其他新型添加剂。在气体添加剂方面,张彦文等[9-10]通过对添加甲烷的SNCR脱硝实验研究及CHEMKIN模拟研究,证明了添加CH4能提高低温时的脱硝效率,并可拓宽温度窗口。这是由于CH4的氧化反应使得反应氛围中的OH和HO2等基元含量增加,促进了NH3反应形成NH2,从而促进脱硝过程。HAO等[5]发现,Na/K添加剂在850~1 150 ℃都能起到明显提升SNCR脱硝效率的作用,促进效果Na2CO3 > KCl > NaCl。ROTA等[11]通过实验研究证明了添加醇、酯、酚、羧酸、醛及醚等6类典型含氧化合物后,SNCR脱硝温度窗口均不同程度地拓宽至原来的1.5~2倍,且促进作用的强弱与含氧化合物的种类没有必然联系。在150 kW中试实验台上,JAVED等[12]研究了添加H2O2、C2H5OH、C2H4(OH)2和C3H5(OH)3对SNCR脱硝的影响,发现4种添加剂都能使最佳脱硝温度大幅度向低温区移动。其中,[C3H5(OH)3]/[NO]为2.0时,最佳脱硝温度降低了330 ℃。
不同添加剂均可不同程度地影响SNCR温度窗口和脱硝特性,但碱金属化合物的引入则可能带来烟气颗粒物浓度提升及换热器结焦问题[13-14]。气体添加剂因其在工艺实际中的存储问题等限制了其应用,而有机含氧化合物可被直接喷入炉膛SNCR反应区域,在高温烟气中会被分解氧化成无害气体排出,故可行性较好。截至目前,已有大量研究者认为,添加单一组分有机含氧化合物能拓宽SNCR温度窗口[11-12, 15]。生物油作为一种生物质热利用过程中的副产品,其成本低廉且含有丰富有机含氧化合物,但将其作为SNCR添加剂的研究相对较少。张波[16]将生物油作为循环流化床燃煤锅炉SNCR脱硝添加剂,结果表明,添加1%质量比例谷壳油会使SNCR脱硝窗口向低温方向移动约50 ℃,并拓宽了窗口宽度。
本研究针对垃圾焚烧烟气的SNCR脱硝,利用高温管式炉研究了生物油添加比例(β)、氨氮比(NSR)与氧浓度对生物油强化垃圾焚烧烟气SNCR脱硝特性及CO排放的影响,并分析了其作用机理,旨在为以生物油作为添加剂的SNCR技术的工业化应用提供参考。
1. 材料与方法
1.1 实验原料
本研究中所使用的生物油取自湖北某热解多联产示范基地,由农林废弃物白杨木屑和竹屑经烘焙1 h,在600 ℃移动床热解后经空冷和水冷后得到[17]。考虑到木焦油富含酚类有机物,可能带来二次污染,故本研究仅添加生物质热解油的上清液(后简称“生物油”,bio-oil,BO)来进行研究。生物油的pH为2~3,其成分由气相色谱-质谱联用(GC-MS,Aligent,7890A/5975C)分析。分析结果表明,该生物油由有机酸(乙酸38.56%、丙酸3%)、糠醛3.1%、酚类(苯酚4.45%、2-甲氧基苯酚3.74%)及少量醇、酮类等组成。
1.2 实验装置与方法
实验台架装置主要由模拟烟气发生系统、高温管式炉、尿素及生物油喷射系统与烟气在线分析系统组成(见图1)。模拟烟气采用NO、O2、CO2和N2标准钢瓶气配制,通过质量流量计精确控制各气体流量。所有气体经过混气瓶混合均匀后,送入反应器内进行脱硝反应。在高温电加热管式炉内,配置内径50 mm、长900 mm的圆柱形刚玉反应器。实验时,通过程序控温保证炉内温度在700~1 200 ℃,实验前采用标准K型热电偶对反应区域温度进行标定。尿素及生物油的混合液采用微量注射泵匀速注入毛细石英管初步预热分解后,进入反应器恒温段并发生SNCR脱硝反应。模拟烟气与尿素混合液对冲设计,目的是强化烟气与还原剂之间的混合,促进脱硝反应的发生。出口烟气中NO及CO气体浓度由Testo350烟气分析仪在线测量,取反应稳定后5 min内目标气体浓度的平均值作为最终稳定的浓度值。
实验模拟烟气总流量为2 L·min−1,成分参考实际垃圾焚烧炉烟气,O2体积分数为4%~12%、CO2体积分数为15%、NO初始体积浓度为CNO, in= 600 μL·L−1,N2为平衡气。尿素与生物油混合液以0.4 mL·min−1速率匀速喷射,保证反应区域水蒸气体积分数约为15%。通过改变尿素溶液的浓度控制NSR,生物油按照指定比例,在尿素溶液定容前添加至尿素溶液中。反应器中恒温段长度约为450 mm。在设计烟气流量下,反应气体在恒温段停留时间为2.0 s以上。
在生物油热分解特性实验中,由微量注射泵精确控制,使生物油以0.2 mL·min−1速率匀速注入反应器,并在反应器中恒温区进行热分解,同时通入流量为1.5 L·min−1的N2作为吹扫气体。分解过程中,采用Testo350烟气分析仪在线监测CO等气体体积浓度,待反应稳定后由气袋收集尾气并通过气相色谱(Panna A91 GC)进行成分分析。
反应过程中SNCR脱硝效率通过式(1)进行计算。
ηNO=CNO,in−CNO,outCNO,in×100% (1) 式中:CNO, in和CNO, out分别为反应前NO体积浓度和反应稳定后的出口NO体积浓度,μL·L−1;ηNO为SNCR的脱硝效率。
定义温度窗口宽度(Tw)为脱硝效率达到本工况下最佳脱硝效率80%以上的温度区间长度[11]。为比较低温条件下生物油对SNCR脱硝效率的提升效果,定义低温范围脱硝效率提升平均值(ηpro)为700~900 ℃时脱硝效率相比空白实验提升的平均值。
2. 结果与讨论
2.1 生物油添加比例对SNCR脱硝特性的影响
在氧气体积分数为6%,NSR为1.5的条件下,分别进行了空白及不同生物油添加比例下的SNCR脱硝实验。脱硝效率随温度变化情况如图2所示。图2表明,所有脱硝效率曲线均呈倒“V”型。其中,不添加生物油时最佳脱硝效率为67.7%,700 ℃时脱硝效率基本为0,与文献[12, 18]实验结果一致。添加生物油后,最佳脱硝温度明显向低温移动,生物油按质量分数5%、10%和15%添加时,Topt从1 061 ℃分别降低为1 027、963和969 ℃。900 ℃以下时,脱硝效率明显提高,而在1 000 ℃以上时,脱硝效率却有所降低。这是由于:在SNCR过程中,还原NOx的核心反应(式(3)、式(4))的发生严重依赖于·OH的质量浓度。在无任何添加剂的情况下,·OH主要通过系统中H2O分解产生(式(2))。在温度较低(< 900 ℃)时,O2分解产生O原子的反应受限,反应氛围中·OH质量浓度极低[19]。因此,NH2来源(式(3))受限,系统中NO无法得到充分还原(式(4)、(5))[20-21],故脱硝效率较低。而添加的生物油会在较低温度下迅速分解,产生较多的O·、·OH及CHi·等自由基,·OH促进了NH2的生成来将大量NO还原,CHi同时也能还原部分NO(式(6)~(8))[15],从而使得低温段脱硝效率明显提升。
O+H2O↔OH+OH (2) NH3+OH↔NH2+H2O (3) NH2+NO↔N2+H2O (4) NH2+NO↔NNH+OH (5) CHi+NO⟶HCN+O⟶HNCO (6) HNCO+OH⟶NCO+H2O (7) NCO+NO⟶N2+CO2 (8) 在较高温度(>1 000 ℃)下,生物油和H2O分解生成·OH,使其浓度迅速增加。系统生成的NH2(式(3))会与NH3竞争部分·OH生成NH·(式(9))。NH·在高温下会被氧化成NO(式(10)~(12))[12]。然而,随着温度升高,氧化反应逐渐增强。因此,在温度较高时,脱硝效率反而下降。整体来看,添加生物油强化了温度在900 ℃以下的脱硝反应,而温度在1 000 ℃以上又会促进NH3的氧化,因此,脱硝效率曲线与Topt往低温移动。
NH2+OH↔NH+H2O (9) NH+O2↔HNO+O (10) NH+OH↔HNO+H (11) HNO+O↔NO+OH (12) 在不同生物油添加比例下,ηopt、Tw及ηpro的变化如图3所示。由图3可知,添加5%和10%生物油时,ηopt都略微降低。这是由于最佳脱硝温度往低温移动后,NH2还原NO的反应速率有所降低[12]。而添加比例为15%时,ηopt降低约12%。这可能是由于生物油添加比例过高,导致·OH过量,促进了NH2氧化生成NO。在3种添加比例下,Tw分别从210 ℃拓宽到262、254和256 ℃。这表明添加生物油对SNCR脱硝效率在低温下的提升效果大于高温下的降低效果,对整体脱硝特性是优化提升的。另外,在700~900 ℃时,ηpro分别为16.78%、21.30%和19.14%。因此,对于相对较低的垃圾焚烧烟气温度而言,通过在900 ℃及以下区域适当添加生物油来提升SNCR脱硝效率是可行的。
2.2 生物油添加比例对CO排放的影响
SNCR反应过程中NCO还原NO及其氧化过程(式(13)和式(14))会生成二次污染物CO[21]。图4显示了当
为6%时,添加不同比例生物油的SNCR脱硝过程中CO的排放情况。由图4可知,在700 ℃时,添加生物油会明显增加CO的排放,而且排放的体积分数随着添加比例的增加而增加。当β为 15%时,CO排放量达到了510 μL·L−1。这是由于:在700 ℃下,生物油中的有机化合物通过脱羰基及脱甲基等反应生成CO和低碳烃类(式(15))[15, 22];在温度为700 ℃、ϕO2 为 6%的条件下,CHi的不完全氧化也会产生CO[23]。添加生物油比例越高,产生的CO越多。而当温度高于800 ℃时,CO及CHi能够被完全氧化成CO2,CO排放量则迅速减少为0。因此,在实际添加生物油强化SNCR脱硝时,应注意加入区域的温度要保持在800 ℃以上。ϕO2 NCO+NO↔N2O+CO (13) NCO+O↔NO+CO (14) CmHnO⟶CH4+CO+CO2+H2O+C2/C3 (15) 2.3 NSR对生物油强化SNCR脱硝的影响
图5为添加10%生物油时,脱硝效率随NSR的变化情况。图5表明,在700~1 200 ℃时,脱硝效率均随NSR的增加而明显增加。在温度T为900 ℃,NSR为2.5的条件下,ηopt为92.84%,最佳脱硝温度及温度窗口均不同程度地往低温移动。对比NSR为0.75和空白样可知,NSR为0.75时,添加10%生物油,在900 ℃以下可将脱硝效率提升到与NSR为1.5时的空白相当,在700 ℃时甚至还要高些。这表明,当温度低于900 ℃时,可通过添加少量生物油来代替提高NSR实现的脱硝效率提升效果。同时,添加生物油不会出现高NSR时的氨逃逸问题[24-25]。另外,从高温段脱硝效率曲线来看,当NSR为0.75、1.5和2.5时,脱硝效率曲线下降均变得相对平缓。这是由于,加入的生物油在高温下所产生的大量CHi会与NH2竞争·OH,而CHi还原能力强于NH2[10],因此弱化了NH2向NH的转化(式(9)),减少了NH3的氧化,在高温下缓冲了脱硝效率的下降,故导致温度窗口向高温拓展。
2.4 氧浓度对生物油强化SNCR脱硝的影响
图6反映了氧浓度对生物油强化SNCR脱硝效率的影响。由图6可知,
为0%时,添加生物油的SNCR脱硝效率随着温度升高明显升高。一般情况下,氧气是SNCR脱硝过程中的必须成分[26],在没有任何添加剂的情况下,SNCR脱硝过程中·OH主要来自O与H2O的反应(式(2)),在没有氧气或温度较低的情况下,该反应基本不会发生[27]。ϕO2 图6还表明,在β 为 15%、
为 0的情况下,温度为900℃和1 100 ℃时的脱硝效率分别为29.71%和65.78%。这说明添加生物油能分解产生·OH来维持SNCR脱硝反应的进行,而在温度为700 ℃时,受限于生物油的分解及脱硝反应速率,脱硝效率无法明显提升。温度为700 ℃和900 ℃时,脱硝效率随着氧气的体积分数增加先迅速增加后降低,而温度为1 100 ℃时的SNCR脱硝效率一直降低。其原因在于:添加生物油较常规烟气会产生更多的·OH,在较低温度下受温度限制,无氧或低氧下产生的·OH仍无法满足需求;当氧气的体积分数升高时,·OH增加,SNCR效率提升;但过高时,·OH过量,效率下降。1 100 ℃时,添加了生物油的烟气氛围中·OH充足,随氧气的体积分数升高,·OH逐渐过量,脱硝效率下降。ϕO2 2.5 氧气体积分数对CO排放的影响
生物油中的有机成分在高温下分解成小分子气体后,会被烟气中的O2氧化,故氧气体积分数对于烟气中的CO排放起到关键影响作用。图7为不同氧气体积分数下,添加15%生物油的SNCR脱硝反应过程中CO的排放情况。由图7可知,氧气体积分数的升高会降低CO排放。温度为700 ℃时,受化学反应动力学限制,在氧气体积分数为12%时,CO仍无法完全被氧化;而在温度为900 ℃和1 100 ℃时,氧气体积分数为4%即可将CO基本氧化完全。因此,在垃圾焚烧烟气中,氧气体积分数为6%~12%时[28],将生物油作为添加剂时,不应从温度700 ℃及低于700 ℃的区域加入。
2.6 生物油强化SNCR脱硝机理
在温度为700~1 100 ℃时,进行了生物油热分解实验。图8为生物油在各温度下分解产生的气体产物图。由图8可知,生物油分解产生的气体产物主要是CO、H2及CH4、C2H4等低碳烃类。这与张谋等[29]的研究相吻合,即富钙生物油温度高于320 ℃时会分解产生大量有机气体CHi,且随着温度的升高,总气体产量增加。这是由于高温促进了生物油中有机大分子化合物化学键的断裂,造成小分子气体产量增加。生物油易受热分解,生成小分子气体的同时使反应氛围中H·、O·、·OH及CHi·等自由基的浓度上升。另外,添加H2、CO及CH4等对于SNCR脱硝影响的研究亦表明,CO、H2和CH4的添加会不同程度拓宽SNCR脱硝温度窗口,降低最佳脱硝温度,并在较低温度时提升脱硝特性[30-32]。因此,添加生物油强化低温段脱硝作用主要是通过促进O·、·OH等自由基的生成和产生小分子气体来实现的,其机理如图9所示。
3. 结论
1)对于垃圾焚烧烟气而言,将生物油作为添加剂,能拓宽SNCR脱硝反应的温度窗口,可促使最佳脱硝温度往低温移动30~100 ℃。生物油添加比例在10%以下时,最大脱硝效率基本保持不变;添加比例为10%时,在温度低于900 ℃时,SNCR脱硝效率平均提升21%。
2)低温段可通过添加适量生物油来代替提升NSR带来的脱硝效率的提升。在较高NSR下,生物油分解产生的CHi会与NH2竞争·OH,约束了NH3的氧化路径,缓冲了高温段脱硝效率的下降。
3)生物油会分解产生高浓度CO,但当温度在800 ℃以上、氧气体积分数在4%以上时,CO能被完全氧化,不会带来CO二次污染。生物油在温度高于700 ℃时会分解生成H2、CO及CH4等气体,同时使反应氛围中H·、O·、·OH等自由基浓度增加,从而促进低温下的SNCR脱硝反应。
-
图 5 (a1)—(a3) PVDF膜的表面、横截面及放大后横截面SEM图;(b1)—(b3) TiO2/PVDF膜的表面、横截面及放大后横截面SEM图;(c1)—(c3) MoS2/PVDF膜的表面、横截面及放大后横截面SEM图;(d1)—(d3) TiO2-MoS2/PVDF膜的表面、横截面及放大后横截面SEM图;(e)—(h) TiO2-MoS2/PVDF膜中 Ti、O、Mo、S的EDS mapping图
Figure 5. (a1)—(a3) SEM images of PVDF membrane surface, cross section and enlarged cross section; (b1)—(b3) SEM images of TiO2/PVDF membrane surface, cross section and cross section after amplification; (c1)—(c3) SEM images of surface, cross section and enlarged cross section of MoS2/PVDF membrane; (d1)—(d3) SEM images of surface, cross section and enlarged cross section of TiO2-MoS2/PVDF membrane; (e)—(h) EDS mapping of Ti, O, Mo and S in TiO2-MoS2/PVDF membrane
图 9 (a) TiO2/PVDF,MoS2/PVDF及TiO2-MoS2/PVDF膜分离不相容油水前后照片(右侧:硫酸铜染色的超纯水,左侧:油红染色的石油醚);(b) TiO2/PVDF,MoS2/PVDF及TiO2-MoS2/PVDF膜对不相容油水的截留效率及截留通量
Figure 9. (a) Before and after TiO2/PVDF, MoS2/PVDF and TiO2-MoS2/PVDF membranes separation of incompatible oil and water (blue: ultra-pure water stained with copper sulfate, red: petroleum ether stained with oil red O); (b) Interception efficiency and flux of TiO2/PVDF, MoS2/PVDF and TiO2-MoS2/PVDF membranes on incompatible oil and water
图 10 (a) TiO2/PVDF,(b) MoS2/PVDF及(c) TiO2-MoS2/PVDF膜分离水包轻油(石油醚)乳液前后的粒径分布图;(d) TiO2/PVDF,(e) MoS2/PVDF及(f) TiO2-MoS2/PVDF膜分离水包重油(1,2-二氯乙烷)乳液前后的粒径分布图
Figure 10. Particle size distributions of (a) TiO2/PVDF, (b) MoS2/PVDF and (c) TiO2-MoS2/PVDF films before and after separation of light oil-in-water (petroleum ether) emulsion; Particle size distribution of (d) TiO2/PVDF, (e) MoS2/PVDF and (f) TiO2-MoS2/PVDF films before and after separation of heavy oil-in-water (1, 2-dichloroethane) emulsion
表 1 膜的孔隙率及平均孔径
Table 1. The porosity and average pore size of the membrane
膜样 Types of membranes 孔隙率/% Porosity 平均孔径/μm Mean aperture TiO2/PVDF 膜 10.4(±1.2) 0.2989(±0.0010) MoS2/PVDF 膜 11.5(±1.8) 0.1486(±0.0009) TiO2-MoS2/PVDF 膜 3.7(±0.5) 0.3942(±0.0001) -
[1] LIAN Z X, XU J K, WANG Z B, et al. Nanosecond laser-induced underwater superoleophobic and underoil superhydrophobic mesh for oil/water separation [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2018, 34(9): 2981-2988. doi: 10.1021/acs.langmuir.7b03986 [2] ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux [J]. Advanced Materials, 2013, 25(14): 2071-2076. doi: 10.1002/adma.201204520 [3] YUAN J K, LIU X G, AKBULUT O, et al. Superwetting nanowire membranes for selective absorption [J]. Nature Nanotechnology, 2008, 3(6): 332-336. doi: 10.1038/nnano.2008.136 [4] CHEN C L, WENG D, MAHMOOD A, et al. Separation mechanism and construction of surfaces with special wettability for oil/water separation [J]. ACS Applied Materials & Interfaces, 2019, 11(11): 11006-11027. [5] ZHANG W F, LIU N, CAO Y Z, et al. Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation [J]. Advanced Materials Interfaces, 2017, 4(10): 1600029. doi: 10.1002/admi.201700029 [6] GUHA I F, VARANASI K K. Separating nanoscale emulsions: Progress and challenges to date [J]. Current Opinion in Colloid & Interface Science, 2018, 36: 110-117. [7] BAO Z, CHEN D Y, LI N J, et al. Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation [J]. Journal of Membrane Science, 2020, 598: 117804. doi: 10.1016/j.memsci.2019.117804 [8] FAN J B, SONG Y Y, WANG S T, et al. Directly coating hydrogel on filter paper for effective oil–water separation in highly acidic, alkaline, and salty environment [J]. Advanced Functional Materials, 2015, 25(33): 5368-5375. doi: 10.1002/adfm.201501066 [9] LIU M J, WANG S T, JIANG L. Nature-inspired superwettability systems [J]. Nature Reviews Materials, 2017, 2(7): 1-17. [10] ZHANG M J, MA W J, WU S T, et al. Electrospun frogspawn structured membrane for gravity-driven oil-water separation [J]. Journal of Colloid and Interface Science, 2019, 547: 136-144. doi: 10.1016/j.jcis.2019.03.099 [11] LUO W J, SUN D W, CHEN S S, et al. Robust microcapsules with durable superhydrophobicity and superoleophilicity for efficient oil–water separation [J]. ACS Applied Materials & Interfaces, 2020, 12(51): 57547-57559. [12] SHAMI Z, DELBINA S, AMININASAB S M. Wool-like fibrous nonwoven mesh with ethanol-triggered transition between antiwater and antioil superwetting states for immiscible and emulsified light oil–water separation [J]. Langmuir, 2019, 35(32): 10491-10504. doi: 10.1021/acs.langmuir.9b01032 [13] YIN X L, YU S R, WANG L Y, et al. Dual-functional underliquid superhydrophobic and superoleophobic stainless steel mesh decorated with Ni3S2 nanorods for continuous oil/water separation [J]. Surface and Coatings Technology, 2022, 434: 128177. doi: 10.1016/j.surfcoat.2022.128177 [14] ZHANG L H, YANG X D, JIANG B, et al. Superhydrophilic and underwater superoleophobic Ti foam with robust nanoarray structures of TiO2 for effective oil-in-water emulsion separation [J]. Separation and Purification Technology, 2020, 252: 117437. doi: 10.1016/j.seppur.2020.117437 [15] ZHANG J, ZHANG L, ZHAO J G, et al. A facile and mild strategy to fabricate an underwater superoleophobic and underoil superhydrophobic mesh with outstanding anti-viscous oil-fouling properties for switchable high viscosity oil/water separation [J]. Green Chemistry, 2019, 21(18): 5080-5089. doi: 10.1039/C9GC02129A [16] GHASEMLOU M, DAVER F, IVANOVA E P, et al. Bio-inspired sustainable and durable superhydrophobic materials: From nature to market [J]. Journal of Materials Chemistry A, 2019, 7(28): 16643-16670. doi: 10.1039/C9TA05185F [17] ELAKKIYA S, ARTHANAREESWARAN G. Evaluation of membrane tailored with biocompatible halloysite‒polyaniline nanomaterial for efficient removal of carcinogenic disinfection by‒products precursor from water [J]. Environmental Research, 2022, 204: 112408. doi: 10.1016/j.envres.2021.112408 [18] NAYAB S S, ABBAS M A, MUSHTAQ S, et al. Anti-foulant ultrafiltration polymer composite membranes incorporated with composite activated carbon/chitosan and activated carbon/thiolated chitosan with enhanced hydrophilicity [J]. Membranes, 2021, 11(11): 827. doi: 10.3390/membranes11110827 [19] XUE J J, XU M J, GAO J M, et al. Multifunctional porphyrinic Zr-MOF composite membrane for high-performance oil-in-water separation and organic dye adsorption/photocatalysis [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127288. doi: 10.1016/j.colsurfa.2021.127288 [20] KRASIAN T, PUNYODOM W, WORAJITTIPHON P. A hybrid of 2D materials (MoS2 and WS2) as an effective performance enhancer for poly(lactic acid) fibrous mats in oil adsorption and oil/water separation [J]. Chemical Engineering Journal, 2019, 369: 563-575. doi: 10.1016/j.cej.2019.03.092 [21] GAO X F, XU L P, XUE Z X, et al. Dual-scaled porous nitrocellulose membranes with underwater superoleophobicity for highly efficient oil/water separation [J]. Advanced Materials, 2014, 26(11): 1771-1775. doi: 10.1002/adma.201304487 [22] LI F R, KONG W T, ZHAO X Z, et al. Multifunctional TiO2-based superoleophobic/superhydrophilic coating for oil–water separation and oil purification [J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18074-18083. [23] CHEN X, ZHANG J Y, CHEN X Y, et al. Reduced graphene oxide-doped porous thermoplastic polyurethane sponges for highly efficient oil/water separation [J]. ACS Omega, 2023, 8(11): 10487-10492. doi: 10.1021/acsomega.3c00121 [24] CHEN C L, CHEN L, CHEN S, et al. Preparation of underwater superoleophobic membranes via TiO2 electrostatic self-assembly for separation of stratified oil/water mixtures and emulsions [J]. Journal of Membrane Science, 2020, 602: 117976. doi: 10.1016/j.memsci.2020.117976 [25] WAHID F, ZHAO X Q, CUI J X, et al. Fabrication of bacterial cellulose with TiO2-ZnO nanocomposites as a multifunctional membrane for water remediation [J]. Journal of Colloid and Interface Science, 2022, 620: 1-13. doi: 10.1016/j.jcis.2022.03.108 [26] FENG Q Y, ZHAN Y Q, YANG W, et al. Bi-functional super-hydrophilic/underwater super-oleophobic 2D lamellar Ti3C2Tx MXene/poly (arylene ether nitrile) fibrous composite membrane for the fast purification of emulsified oil and photodegradation of hazardous organics [J]. Journal of Colloid and Interface Science, 2022, 612: 156-170. doi: 10.1016/j.jcis.2021.12.160 [27] WANG M K, ZHANG Z Z, WANG Y L, et al. Durable superwetting materials through layer-by-layer assembly: Multiple separations towards water/oil mixtures, water-in-oil and oil-in-water emulsions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 571: 142-150. [28] YANG S L, SHA S M, LU H, et al. Graphene oxide and reduced graphene oxide coated cotton fabrics with opposite wettability for continuous oil/water separation [J]. Separation and Purification Technology, 2021, 259: 118095. doi: 10.1016/j.seppur.2020.118095 [29] YANG S L, LI J Z, ZHEN C, et al. Graphene-based melamine sponges with reverse wettability for oil/water separation through absorption and filtration [J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107543. doi: 10.1016/j.jece.2022.107543 [30] CAO G L, WANG Y G, WANG C Y, et al. A dually prewetted membrane for continuous filtration of water-in-light oil, oil-in-water, and water-in-heavy oil multiphase emulsion mixtures [J]. Journal of Materials Chemistry A, 2019, 7(18): 11305-11313. doi: 10.1039/C9TA01889A [31] LI H N, YANG J, XU Z K. Hollow fiber membranes with Janus surfaces for continuous deemulsification and separation of oil-in-water emulsions [J]. Journal of Membrane Science, 2020, 602: 117964. doi: 10.1016/j.memsci.2020.117964 [32] YUAN Y, WANG W, SHI Y Q, et al. The influence of highly dispersed Cu2O-anchored MoS2 hybrids on reducing smoke toxicity and fire hazards for rigid polyurethane foam [J]. Journal of Hazardous Materials, 2020, 382: 121028. doi: 10.1016/j.jhazmat.2019.121028 [33] ALI A, MANGRIO F A, CHEN X L, et al. Ultrathin MoS2 nanosheets for high-performance photoelectrochemical applications via plasmonic coupling with Au nanocrystals [J]. Nanoscale, 2019, 11(16): 7813-7824. doi: 10.1039/C8NR10320H [34] NGUYEN E P, CAREY B J, OU J Z, et al. Electronic tuning of 2D MoS2 through surface functionalization [J]. Advanced Materials, 2015, 27(40): 6225-6229. doi: 10.1002/adma.201503163 [35] GUPTA A, ARUNACHALAM V, VASUDEVAN S. Liquid-phase exfoliation of MoS2 nanosheets: The critical role of trace water [J]. The Journal of Physical Chemistry Letters, 2016, 7(23): 4884-4890. doi: 10.1021/acs.jpclett.6b02405 [36] AREFI-OSKOUI S, KHATAEE A, SAFARPOUR M, et al. Modification of polyethersulfone ultrafiltration membrane using ultrasonic-assisted functionalized MoS2 for treatment of oil refinery wastewater [J]. Separation and Purification Technology, 2020, 238: 116495. doi: 10.1016/j.seppur.2019.116495 [37] LEI J, GUO Z G. PES asymmetric membrane for oil-in-water emulsion separation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 626: 127096. doi: 10.1016/j.colsurfa.2021.127096 [38] SAMY O, ZENG S W, BIROWOSUTO M D, et al. A review on MoS2 properties, synthesis, sensing applications and challenges [J]. Crystals, 2021, 11(4): 355. doi: 10.3390/cryst11040355 [39] LIU Y, ZHAO Y C, ZHANG X B, et al. MoS2-based membranes in water treatment and purification [J]. Chemical Engineering Journal, 2021, 422: 130082. doi: 10.1016/j.cej.2021.130082 [40] BASRI H, ISMAIL A F, AZIZ M. Microstructure and anti-adhesion properties of PES/TAP/Ag hybrid ultrafiltration membrane [J]. Desalination, 2012, 287: 71-77. doi: 10.1016/j.desal.2011.09.031 [41] KUMAR N, FOSSO-KANKEU E, RAY S S. Achieving controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(Ⅱ) from aquatic systems [J]. ACS Applied Materials & Interfaces, 2019, 11(21): 19141-19155. [42] LI J H, TAO H C, ZHANG Y K, et al. Molybdenum disulfide/reduced graphene oxide nanocomposite with expanded interlayer spacing for sodium ion batteries [J]. Journal of the Electrochemical Society, 2019, 166(15): A3685-A3692. doi: 10.1149/2.0841915jes [43] WAN Z T, LI D, JIAO Y L, et al. Bifunctional MoS2 coated melamine-formaldehyde sponges for efficient oil–water separation and water-soluble dye removal [J]. Applied Materials Today, 2017, 9: 551-559. doi: 10.1016/j.apmt.2017.09.013 [44] TANG G G, SUN J R, CHEN W, et al. Surfactant-assisted hydrothermal synthesis and tribological properties of flower-like MoS2 nanostructures [J]. Micro & Nano Letters, 2013, 8(3): 164-168. [45] TANG G G, SUN J R, WEI C, et al. Synthesis and characterization of flowerlike MoS2 nanostructures through CTAB-assisted hydrothermal process [J]. Materials Letters, 2012, 86: 9-12. doi: 10.1016/j.matlet.2012.07.014 [46] HU X L, LU S C, TIAN J, et al. The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production [J]. Applied Catalysis B:Environmental, 2019, 241: 329-337. doi: 10.1016/j.apcatb.2018.09.051 [47] VRUBEL H, MERKI D, HU X L. Hydrogen evolution catalyzed by MoS3 and MoS2 particles [J]. Energy & Environmental Science, 2012, 5(3): 6136-6144. [48] ZHANG Z, MA X X, TANG J L. Porous NiMoO4−x/MoO2 hybrids as highly effective electrocatalysts for the water splitting reaction [J]. Journal of Materials Chemistry A, 2018, 6(26): 12361-12369. doi: 10.1039/C8TA03047B [49] 卜利果. 二硫化钼—二氧化钛界面结构调控及可见光催化性能研究[D]. 开封: 河南大学, 2018. BU L G. Study on interface structure regulation and visible photocatalytic performance of molybdenum disulfide-titanium dioxide[D]. Kaifeng: Henan University, 2018 (in Chinese).
[50] CAO X C, MA J, SHI X H, et al. Effect of TiO2 nanoparticle size on the performance of PVDF membrane [J]. Applied Surface Science, 2006, 253(4): 2003-2010. doi: 10.1016/j.apsusc.2006.03.090 [51] AMINI M, RAMAZANI S A A, FAGHIHI M, et al. Preparation of nanostructured and nanosheets of MoS2 oxide using oxidation method [J]. Ultrasonics Sonochemistry, 2017, 39: 188-196. doi: 10.1016/j.ultsonch.2017.04.024 [52] 成敏敏. 氧化石墨烯(二硫化钼)/水性聚氨酯复合薄膜的研究[D]. 太原: 中北大学, 2018. CHENG M M. Study on graphene oxide (MoS2)/waterborne polyurethane composite film[D]. Taiyuan: North University of China, 2018 (in Chinese).
[53] MA J, TAN X, YU T, et al. Fabrication of g-C3N4/TiO2 hierarchical spheres with reactive{001}TiO2 crystal facets and its visible-light photocatalytic activity [J]. International Journal of Hydrogen Energy, 2016, 41(6): 3877-3887. doi: 10.1016/j.ijhydene.2015.12.191 [54] LIANG S, XIAO K, ZHANG S, et al. A facile approach to fabrication of super hydrophilic ultrafiltration membranes with surface-tailored nanoparticles [J]. Separation and Purification Technology, 2018, 203: 251-259. doi: 10.1016/j.seppur.2018.04.051 [55] WANG M, XU Z W, GUO Y L, et al. Engineering a super wettable polyolefin membrane for highly efficient oil/water separation with excellent self-cleaning and photo-catalysis degradation property [J]. Journal of Membrane Science, 2020, 611: 118409. doi: 10.1016/j.memsci.2020.118409 [56] PAN Z H, CAO S J, LI J F, et al. Anti-fouling TiO2 nanowires membrane for oil/water separation: Synergetic effects of wettability and pore size [J]. Journal of Membrane Science, 2019, 572: 596-606. doi: 10.1016/j.memsci.2018.11.056 -