-
邻苯二甲酸酯(phthalate esters,PAEs)是邻苯二甲酸形成的酯的统称,近年来因其在塑料、建筑材料、个人护理品、食品包装和医疗产品中的广泛使用而受到越来越多的关注[1]. 由于PAEs与聚合物之间没有化学键合,因此很容易从产品中释放出来. 目前PAEs已经在多种环境基质中检测到,包括空气[2]、水[3]、土壤[4]和生物群体[5]. 作为典型的内分泌干扰物,PAEs具有致畸、致癌和致突变“三致”效应[6],长期接触会带来许多不良后果. 由于PAEs的广泛应用、大规模生产和对人类健康的不利影响,美国环境保护署(USEPA)已将邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)、邻苯二甲酸二丁酯(DBP)、邻苯二甲酸丁苄酯(BBP)、邻苯二甲酸(2-乙基己基)(DEHP)和邻苯二甲酸二辛酯(DnOP)列为6种“优先控制的有毒污染物”,随后我国环境保护局也将DMP、DBP和DnOP列入重点控制污染物黑名单[7].
土壤是重要的环境介质,也是污染物的主要储存库[8]. 近年来,PAEs在土壤中的污染越来越突出,在我国个别地区甚至达到mg·kg−1级别[9],通过食物链对人类健康构成风险,这使它们成为土壤中最受关注的有机污染物之一. 农用薄膜(棚膜和地膜)是我国农业土壤中PAEs污染的重要来源,随着设施农业规模的不断扩大,我国己成为世界上最大的农膜覆盖区[10]. 土壤中的PAEs还与农业实践活动有关,通过各种方式进入土壤环境,例如有机肥料,地表径流,废水灌溉和大气沉降等[11].
目前,国内外很多学者已经开始关注PAEs在土壤中的污染,这些研究涵盖了不同的耕地,包括塑料温室[8, 12]、菜地[13 − 14]、果园[13]、和农田作物[15]等等,然而大多数只分析了一种类型的土地. 农业实践类型受人类活动的影响,并决定了区域环境的植被覆盖和耕作方式,因此PAEs的含量可能与不同的农业类型有关. 事实上,农药、有机肥以及农膜的施用,土壤深度,土壤理化性质及周边污染源的影响均有可能导致不同类型土壤中PAEs的差异[13]. 目前少有关于农业土壤与PAEs污染综合分析的研究.
洋河位于中国北方的胶东半岛,发源于青岛市黄岛区北部,于胶州湾入海. 地处北温带季风区域,降雨主要发生在夏季. 河流两岸主要是村庄、农业区和产业园,农业基础雄厚,粮食生产和经济作物的种植占据主要地位. 同时也有其自身的特点,例如不同的作物种植和不同的覆盖类型. 农田土壤附近多有农药瓶、化肥包装袋、垃圾堆放和农膜残留等现象,“白色污染”不容小觑. 所有这些因素都可能对土壤中PAEs的残留产生影响,目前尚未有关于该地区土壤中PAEs污染的相关报道. 因此,本论文研究了洋河农业区不同实践类型的农业土壤中PAEs的分布模式以及土壤理化性质与PAEs的关系,进一步分析潜在的污染源,为建立农业生态系统中PAEs控制措施提供支持.
青岛典型农业区土壤中邻苯二甲酸酯污染特征及健康风险评估
Pollution characteristics and health risk assessment of phthalate esters(PAEs)in soils of typical agricultural areas in Qingdao
-
摘要: 为评估邻苯二甲酸酯(phthalate esters,PAEs)对农业土壤的影响,本研究调查了青岛市洋河流域5种农业类型的两个土层(0—10 cm、10—20 cm),利用气相色谱-质谱分析了56个土壤样品中6种PAEs的含量,研究了土壤中PAEs的污染水平、构成特征、环境来源以及健康风险. 结果表明,洋河农业土壤中Σ6PAEs含量范围在183.63—780.50 ng·g−1,平均值为396.75 ng·g−1. 其中,DEHP和DBP是研究区土壤中最主要的单体,分别占6种PAEs总量的55.45%和28.74%. 根据美国纽约州土壤PAEs控制标准,DMP和DBP的超标率分别为32%和48%. 5种农业土壤Σ6PAEs平均值大小顺序依次为:温室土壤>蔬菜地>覆膜耕地>玉米地>林地. 不同农业土壤中PAEs组成由于其来源不同而具有差异性. 蔬菜地、玉米地和林地表层中6种PAEs总量高于深层,温室和覆膜耕地则相反,5种土壤类型各层间PAEs含量均不存在显著差异. 主成分分析和聚类分析表明,洋河农业区PAEs主要来源于农用塑料、化肥与农药杀虫剂. 风险评估显示,洋河流域农业区6种单体对人体产生的非致癌风险很低,但对于DEHP而言,居民通过饮食途径引起的致癌风险为(1.18±0.82)×10−6,超过美国环保署推荐的致癌水平(10−6),应引起足够重视.Abstract: To evaluate the effects of phthalate esters (PAEs) on agricultural soils, fifty-six soil samples with five different agricultural practices were collected from two soil layers (0 to 10 cm, and 10 cm to 20 cm) in Yanghe River Basin of Qingdao. The concentrations of six PAEs in these samples were determined with Gas Chromatography-Mass Spectrometry (GC-MS). The pollution levels, composition characteristics, environmental sources, and health risks of PAEs in soils of the study area were also studied. It was found that the total concentrations of the 6 PAEs (Σ6PAEs) in soil samples ranged from 183.63 ng·g−1 to 780.50 ng·g−1, with an average value of 396.75 ng·g−1. DEHP and DBP, accounting for 55.45% and 28.74% of the total Σ6PAEs respectively, were the major monomers of PAEs for any agricultural practice. According to the standard for the control and cleanup of soil PAEs used in New York State, USA, the concentrations of DBP and DMP exceed the recommended allowable concentrations, with the over-standard rates of 32% and 48%, respectively. For the five agricultural practices, the average values of Σ6PAEs in soils decrease in the order of greenhouse > vegetable field > mulched farmland > woodland > corn field. The composition of PAEs in soils is source-dependent, i.e. it is different for different agricultural practices due to their different sources. For vegetable field, corn field and woodland, the content of Σ6PAEs in the surface layer is higher than that in the deep layer; while the trend reverses for greenhouse and mulched farmland. There was no significant difference in Σ6PAEs contents among the two layers of the soil for any of the five agricultural practices. Principal component analysis and cluster analysis indicated that PAEs in Yanghe agricultural area came mainly from the use of agricultural plastics, chemical fertilizers and pesticides. Human health risk assessment indicated that the non-carcinogenic risk for any of the six PAE monomers is negligible. However, the carcinogenic risk indices to human health via dietary route was (1.18±0.82) ×10−6 for DEHP, which was higher than the recommended value (10−6) set by the USEPA, suggesting that great concerns should be paid for the pollution of DEHP in the area.
-
Key words:
- phthalate esters /
- agricultural soils /
- pollution characteristics /
- risk assessment /
- Qingdao
-
表 1 健康风险评估模型的参数
Table 1. Parameter factors of the health risk assessment model
参数
Parameter参数含义
Meaning单位
Units取值 Value 参考文献
Reference成人 Adults 儿童 Children IRS 土壤日均摄入量 mg·d−1 100 200 [17] IRF 居民日均摄取食物量 mg·d−1 710000 1/3×710000 [17] EF 暴露土壤频率 d·a−1 350 [17] ED 暴露持续时间 a 24 6 [17] BW 体重 kg 70 15 [17] AT 平均暴露时间 a 致癌风险:25550
非致癌风险:365×ED[17] CF 转换系数 — 10−6 [17] SA 暴露皮肤的表面积 cm2 d−1 57000 28000 [17] AF 土壤-皮肤黏附系数 mg·cm−2 0.07 0.2 [17] ABS 从土壤中吸收的污染物的比例 — 0.1 [17] Ij 呼吸速率 m3·d−1 13.5 [17] PEF 微粒排放因子 m3·kg−1 1.36×109 [17] CFS 致癌率 (mg·kg−1·d−1)−1 BBP:0.0019 DEHP:0.014 [18] RfDi 非致癌物经某种途径摄入的日均推荐剂量 mg·kg−1·d−1 DMP:10 DEP:0.8
DBP:0.1 BBP:0.2
DEHP:0.02 DnOP:0.04[18] BAF PAEs从土壤到食物的富集系数 — DMP:0.108 DEP:0.108
DBP:0.108 BBP:0.166
DEHP:0.166 DnOP:0.166[18] 表 2 洋河流域土壤中PAEs含量、检出率与超标率
Table 2. Concentration, detected ratio and excess ratio of soil PAEs in Yanghe River Basin
化合物
CompoundDMP DEP DBP BBP DEHP DnOP Σ6PAEs 最小值/(ng·g−1) nd 7.30 46.87 nd 70.77 nd 183.63 最大值/(ng·g−1) 61.65 45.24 284.24 36.53 473.15 23.40 780.50 中值/(ng·g−1) 23.33 19.82 107.06 11.40 176.04 nd 365.87 平均值/(ng·g−1) 24.65 22.21 114.04 10.57 219.98 5.30 396.75 检出率/% 91.07 100 100 80.36 100 39.29 100 USEPA控制标准/(ng·g−1) 20 71 81 1215 4350 1200 — 超标率/% 32.00 0 48.00 0 0 0 — 注:“nd”表示未检出. Note: “nd” means no detect. 表 3 不同地区不同土地利用类型中PAEs含量 (ng·g−1)
Table 3. Comparison of concentration of PAEs in different land use types soils from different regions (ng·g−1)
地点
Location土地类型
Land typeDMP DEP DBP BBP DEHP DnOP Σ6PAEs 参考文献
Reference北京 温室 8.0 20.0 440.0 4.0 380.0 2.0 850.0 [8] 杭州西湖 景区 432.8 41.0 519.9 2.1 1964.2 3.3 2963.3 [23] 天津 农田 3—88 3—81 7—189 nd—1790 39—2370 nd—647 91—2740 [13] 果园 3—32 3—30 20—138 nd—125 26—358 nd—728 53—1080 菜地 2—101 2—114 13—285 nd—385 28—4170 nd—9780 50—10400 黄河三角洲 乡村 1—5 nd—1 136—1039 nd 431—2449 nd—68 716—3251 [24] 公园 6—16 1—6 15—141 nd—1 43—801 0—16 70—923 咸阳 蔬菜基地 53.3 19.5 316.6 42.3 166.2 39.5 639.3 [14] 三江平原 蔬菜 12—34 20—46 22—209 nd—5317 34—218 nd—54 163—469 [25] 水稻 13—49 33—97 15—354 nd—72 77—583 nd—163 268—947 银川 蔬菜 89—3293 210—1381 139—2653 nd—1055 330—6017 nd—1713 1997—11659 [26] 泰安 温室 nd nd 110—166 19—22 199—564 20—27 350—767 [12] 印度 城市土壤 nd—8 9—12 8—36 20—35 16—30 nd—33 53—154 [27] 英格兰 城市黏土 0.1 0.9 8 0.6 76 14 92.6 [28] 青岛洋河 农业土壤 nd—61.7 7.3—45.2 46.9—284.2 nd—36.5 70.8—473.2 nd—23.4 183.6—780.5 本研究 注:“nd”表示未检出. Note: “nd” means no detect. 表 4 洋河农业区不同土地类型土壤中PAEs的含量 (ng·g−1)
Table 4. The PAEs concentration in soil of different types of land in Yanghe River Basin (ng·g−1)
土地类型
Land typeΣ6PAEs 范围
Range平均值±标准差
Mean±SD中值
Median总数(n=56) 183.63—780.50 396.75±146.35 365.87 温室土壤(n=22) 191.51—780.50 518.38±155.71 467.12 覆膜耕地(n=8) 241.47—482.69 331.02±75.69 330.63 玉米地(n=12) 183.63—377.91 295.74±69.48 299.29 蔬菜地(n=8) 277.62—404.34 341.13±46.28 348.17 林地(n=6) 278.38—415.48 314.56±50.93 298.34 表 5 洋河农业区土壤PAEs主成分分析结果
Table 5. Results of principal component analysis of PAEs in soils of Yanghe agricultural area
化合物
PAEs主成分因子
Principal component factorsPC1 PC2 PC3 PC4 DMP 0.13 0.93 0.12 0.09 DEP 0.34 0.55 0.57 0.13 DBP 0.14 0.12 0.95 0.08 BBP 0.05 0.10 0.10 0.99 DEHP 0.68 0.33 0.23 -0.03 DnOP 0.90 0.03 0.08 0.09 方差贡献率/% 43.75 15.82 12.96 11.19 方差累计贡献率/% 43.75 59.57 72.52 83.71 表 6 不同暴露途径下成人和儿童对PAEs的日均摄入量(mg·kg−1·d−1)
Table 6. The ADD values of PAEs for adults and children via different exposure pathway(mg·kg−1·d−1)
化合物
PAEs类别
Type饮食途径
Dietary routes非饮食途径
Non-Dietary routes饮食摄入
Intake土壤摄入
Ingest皮肤接触
Dermal呼吸摄入
InhaleDMP 成人 2.59×10−5 3.37×10−8 1.35×10−7 2.35×10−7 儿童 4.02×10−5 3.16×10−7 8.83×10−7 2.35×10−7 DEP 成人 2.33×10−5 3.04×10−8 1.21×10−7 2.11×10−7 儿童 3.62×10−5 2.84×10−7 7.95×10−7 2.11×10−7 DBP 成人 1.20×10−4 1.56×10−7 6.23×10−7 1.09×10−6 儿童 1.86×10−4 1.46×10−6 4.08×10−6 1.09×10−6 BBP 成人 1.71×10−5 1.45×10−8 5.78×10−8 1.00×10−7 儿童 2.65×10−5 1.35×10−7 3.78×10−7 1.00×10-7 DEHP 成人 3.55×10−4 3.01×10−7 1.20×10−6 2.09×10−6 儿童 5.51×10−4 2.81×10−6 7.88×10−5 2.09×10−6 -
[1] ABDEL DAIEM M M, RIVERA-UTRILLA J, OCAMPO-PÉREZ R, et al. Environmental impact of phthalic acid esters and their removal from water and sediments by different technologies - A review[J]. Journal of Environmental Management, 2012, 109: 164-178. [2] 徐圣辰. 杭州市大气细颗粒物中邻苯二甲酸酯与正构烷烃的污染状况分析[D]. 杭州: 浙江工业大学, 2015. XU S C. Pollution situation analysis of PAEs and n-alkanes in atmospheric fine particles of Hangzhou[D]. Hangzhou: Zhejiang University of Technology, 2015 (in Chinese).
[3] LI R L, LIANG J, GONG Z B, et al. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China[J]. Science of the Total Environment, 2017, 580: 388-397. doi: 10.1016/j.scitotenv.2016.11.190 [4] LÜ H X, MO C H, ZHAO H M, et al. Soil contamination and sources of phthalates and its health risk in China: A review[J]. Environmental Research, 2018, 164: 417-429. doi: 10.1016/j.envres.2018.03.013 [5] HUANG Y F, PAN W C, TSAI Y A, et al. Concurrent exposures to nonylphenol, bisphenol A, phthalates, and organophosphate pesticides on birth outcomes: A cohort study in Taipei[J]. Science of the Total Environment, 2017, 607/608: 1126-1135. doi: 10.1016/j.scitotenv.2017.07.092 [6] WANG J, CHEN G C, CHRISTIE P, et al. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015, 523: 129-137. doi: 10.1016/j.scitotenv.2015.02.101 [7] 周文敏, 傅德黔, 孙宗光. 中国水中优先控制污染物黑名单的确定[J]. 环境科学研究, 1991, 4(6): 9-12. doi: 10.3321/j.issn:1001-6929.1991.06.003 ZHOU W M, FU D Q, SUN Z G. Determination of black list of China’s priority pollutants in water[J]. Research of Environmental Sciences, 1991, 4(6): 9-12 (in Chinese). doi: 10.3321/j.issn:1001-6929.1991.06.003
[8] LI C, CHEN J Y, WANG J H, et al. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment[J]. Science of the Total Environment, 2016, 568: 1037-1043. doi: 10.1016/j.scitotenv.2016.06.077 [9] 王凯荣, 崔明明, 史衍玺. 农业土壤中邻苯二甲酸酯污染研究进展[J]. 应用生态学报, 2013, 24(9): 2699-2708. WANG K R, CUI M M, SHI Y X. Phthalic acid esters (PAEs) pollution in farmland soils: A review[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2699-2708 (in Chinese).
[10] HE L Z, GIELEN G, BOLAN N S, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China: a review[J]. Agronomy for Sustainable Development, 2015, 35(2): 519-534. doi: 10.1007/s13593-014-0270-1 [11] ZENG F, LIN Y J, CUI K Y, et al. Atmospheric deposition of phthalate esters in a subtropical city[J]. Atmospheric Environment, 2010, 44(6): 834-840. doi: 10.1016/j.atmosenv.2009.11.029 [12] LI X X, LI N, WANG C, et al. Occurrence of phthalate acid esters (PAEs) in protected agriculture soils and implications for human health exposure[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(3): 548-555. doi: 10.1007/s00128-022-03553-z [13] KONG S F, JI Y Q, LIU L L, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution, 2012, 170: 161-168. doi: 10.1016/j.envpol.2012.06.017 [14] 徐雪, 王利军, 卢新卫. 咸阳市郊菜地土壤中邻苯二甲酸酯(PAEs)污染研究[J]. 农业环境科学学报, 2014, 33(10): 1912-1919. doi: 10.11654/jaes.2014.10.006 XU X, WANG L J, LU X W. Pollution of phthalic acid esters(PAEs)in vegetable soils in Xianyang suburbs, northwest China[J]. Journal of Agro-Environment Science, 2014, 33(10): 1912-1919 (in Chinese). doi: 10.11654/jaes.2014.10.006
[15] 陈玉玉, 张光全, 张杨, 等. 甘肃省农业土壤邻苯二甲酸酯累积特征及来源分析[J]. 环境科学, 2022, 43((10): ): 4622-4629. CHEN Y Y, ZHANG G Q, ZHANG Y, et al. Accumulation characteristics and sources of PAEs in agricultural soils in Gansu Province[J]. Environmental Science, 2022, 43((10): ): 4622-4629 (in Chinese).
[16] MI L J, XIE Z Y, ZHAO Z, et al. Occurrence and spatial distribution of phthalate esters in sediments of the Bohai and Yellow seas[J]. Science of the Total Environment, 2019, 653: 792-800. doi: 10.1016/j.scitotenv.2018.10.438 [17] 王昱文, 柴淼, 曾甯, 等. 典型废旧塑料处置地土壤中邻苯二甲酸酯污染特征及健康风险[J]. 环境化学, 2016, 35(2): 364-372. doi: 10.7524/j.issn.0254-6108.2016.02.2015072005 WANG Y W, CHAI M, ZENG N, et al. Contamination and health risk of phthalate esters in soils from a typical waste plastic recycling area[J]. Environmental Chemistry, 2016, 35(2): 364-372 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.02.2015072005
[18] 梁浩花. 银川市农业土壤中邻苯二甲酸酯污染特征及其污染土壤微生物修复研究[D]. 银川: 宁夏大学, 2019. LIANG H H. Study on pollution characteristics of phthalic acid esters in agricultural soil and it’s microbial remediation in Yinchuan city[D]. Yinchuan: Ningxia University, 2019 (in Chinese).
[19] WANG L J, LIU M M, TAO W D, et al. Pollution characteristics and health risk assessment of phthalate esters in urban soil in the typical semi-arid city of Xi'an, Northwest China[J]. Chemosphere, 2018, 191: 467-476. doi: 10.1016/j.chemosphere.2017.10.066 [20] 关卉, 王金生, 万洪富, 等. 雷州半岛典型区域土壤邻苯二甲酸酯(PAEs)污染研究[J]. 农业环境科学学报, 2007, 26(2): 622-628. doi: 10.3321/j.issn:1672-2043.2007.02.042 GUAN H, WANG J S, WAN H F, et al. PAEs pollution in soils from typical agriculture area of Leizhou peninsula[J]. Journal of Agro-Environment Science, 2007, 26(2): 622-628 (in Chinese). doi: 10.3321/j.issn:1672-2043.2007.02.042
[21] WANG Y L, YU G Y, CHEN X J, et al. High capacity nano-sized carbon spheres for lithium-ion battery anode materials[J]. Polymers, 2019, 11(4): 645. doi: 10.3390/polym11040645 [22] MAO R F, HU Y Y, ZHANG S Y, et al. Microplastics in the surface water of Wuliangsuhai Lake, Northern China[J]. Science of the Total Environment, 2020, 723: 137820. doi: 10.1016/j.scitotenv.2020.137820 [23] 廖健, 邓超, 陈怡, 等. 西湖景区土壤中邻苯二甲酸酯污染水平、来源分析和空间分布特征[J]. 环境科学, 2019, 40(7): 3378-3387. doi: 10.13227/j.hjkx.201812207 LIAO J, DENG C, CHEN Y, et al. Pollution levels, sources, and spatial distribution of phthalate esters in soils of the west lake scenic area[J]. Environmental Science, 2019, 40(7): 3378-3387 (in Chinese). doi: 10.13227/j.hjkx.201812207
[24] YANG H J, XIE W J, LIU Q, et al. Distribution of phthalate esters in topsoil: a case study in the Yellow River Delta, China[J]. Environmental Monitoring and Assessment, 2013, 185(10): 8489-8500. doi: 10.1007/s10661-013-3190-7 [25] WANG H, LIANG H, GAO D W. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, northeast China[J]. Environmental Science and Pollution Research, 2017, 24(24): 19723-19732. doi: 10.1007/s11356-017-9646-5 [26] 梁浩花, 王亚娟, 陶红, 等. 银川市东郊设施蔬菜基地土壤中邻苯二甲酸酯污染特征及健康风险评价[J]. 环境科学学报, 2018, 38(9): 3703-3713. LIANG H H, WANG Y J, TAO H, et al. Pollution characteristics of phthalate esters(PAEs) in soils of facility vegetable bases and health risk assessment in eastern suburb of Yinchuan[J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3703-3713 (in Chinese).
[27] CHAKRABORTY P, SAMPATH S, MUKHOPADHYAY M, et al. Baseline investigation on plasticizers, bisphenol A, polycyclic aromatic hydrocarbons and heavy metals in the surface soil of the informal electronic waste recycling workshops and nearby open dumpsites in Indian metropolitan cities[J]. Environmental Pollution, 2019, 248: 1036-1045. doi: 10.1016/j.envpol.2018.11.010 [28] WU W, HU J, WANG J Q, et al. Analysis of phthalate esters in soils near an electronics manufacturing facility and from a non-industrialized area by gas purge microsyringe extraction and gas chromatography[J]. Science of the Total Environment, 2015, 508: 445-451. doi: 10.1016/j.scitotenv.2014.11.081 [29] WANG X L, LIN Q X, WANG J, et al. Effect of wetland reclamation and tillage conversion on accumulation and distribution of phthalate esters residues in soils[J]. Ecological Engineering, 2013, 51: 10-15. doi: 10.1016/j.ecoleng.2012.12.079 [30] YADAV I C, DEVI N L, LI J, et al. Organophosphate ester flame retardants in Nepalese soil: Spatial distribution, source apportionment and air-soil exchange assessment[J]. Chemosphere, 2018, 190: 114-123. doi: 10.1016/j.chemosphere.2017.09.112 [31] WU X L, WANG Y Y, LIANG R X, et al. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate by newly isolated Agrobacterium sp. and the biochemical pathway[J]. Process Biochemistry, 2011, 46(5): 1090-1094. doi: 10.1016/j.procbio.2011.01.031 [32] WANG D, XI Y, SHI X Y, et al. Reduction effects of solar radiation, mechanical tension, and soil burial on phthalate esters concentrations in plastic film and soils[J]. Science of the Total Environment, 2021, 778: 146341. doi: 10.1016/j.scitotenv.2021.146341 [33] XIE H J, SHI Y J, ZHANG J, et al. Degradation of phthalate esters (PAEs) in soil and the effects of PAEs on soil microcosm activity[J]. Journal of Chemical Technology and Biotechnology, 2010, 85(8): 1108-1116. doi: 10.1002/jctb.2406 [34] LI K K, MA D, WU J, et al. Distribution of phthalate esters in agricultural soil with plastic film mulching in Shandong Peninsula, East China[J]. Chemosphere, 2016, 164: 314-321. doi: 10.1016/j.chemosphere.2016.08.068 [35] WANG D, XI Y, SHI X Y, et al. Effect of plastic film mulching and film residues on phthalate esters concentrations in soil and plants, and its risk assessment[J]. Environmental Pollution, 2021, 286: 117546. doi: 10.1016/j.envpol.2021.117546 [36] LIU H, LIANG H C, LIANG Y, et al. Distribution of phthalate esters in alluvial sediment: A case study at JiangHan Plain, Central China[J]. Chemosphere, 2010, 78(4): 382-388. doi: 10.1016/j.chemosphere.2009.11.009 [37] 王巧环, 任玉芬, 孟龄, 等. 元素分析仪同时测定土壤中全氮和有机碳[J]. 分析试验室, 2013, 32(10): 41-45. doi: 10.13595/j.cnki.issn1000-0720.2013.0265 WANG Q H, REN Y F, MENG L, et al. Simultaneous determination of total nitrogen and organic carbon in soil with an elemental analyzer[J]. Chinese Journal of Analysis Laboratory, 2013, 32(10): 41-45 (in Chinese). doi: 10.13595/j.cnki.issn1000-0720.2013.0265
[38] LEI B K, FAN M S, CHEN Q, et al. Conversion of wheat-maize to vegetable cropping systems changes soil organic matter characteristics[J]. Soil Science Society of America Journal, 2010, 74(4): 1320-1326. doi: 10.2136/sssaj2009.0222 [39] GOUIN T, HARNER T. Modelling the environmental fate of the polybrominated diphenyl ethers[J]. Environment International, 2003, 29(6): 717-724. doi: 10.1016/S0160-4120(03)00116-8 [40] KATSOYIANNIS A. Occurrence of polychlorinated biphenyls (PCBs) in the Soulou stream in the power generation area of Eordea, northwestern Greece[J]. Chemosphere, 2006, 65(9): 1551-1561. doi: 10.1016/j.chemosphere.2006.04.004 [41] CHAI C, CHENG H Z, GE W, et al. Phthalic acid esters in soils from vegetable greenhouses in Shandong Peninsula, East China[J]. PLOS ONE, 2014, 9(4): e95701. doi: 10.1371/journal.pone.0095701 [42] 任超, 赵祯, 柳金明, 等. 典型废物回收园区土壤中邻苯二甲酸酯分布与风险评价[J]. 环境化学, 2018, 37(8): 1691-1698. doi: 10.7524/j.issn.0254-6108.2017111101 REN C, ZHAO Z, LIU J M, et al. Distribution and risk assessment of phthalic acid ester(PAEs)in soil from a multi-waste recycling area[J]. Environmental Chemistry, 2018, 37(8): 1691-1698 (in Chinese). doi: 10.7524/j.issn.0254-6108.2017111101
[43] 杨婷, 何明靖, 杨志豪, 等. 邻苯二甲酸酯在三峡库区消落带非淹水期土壤中污染特征及健康风险[J]. 环境科学, 2017, 38(10): 4187-4193. YANG T, HE M J, YANG Z H, et al. Occurrence, distribution and health risk of the phthalate esters in riparian soil in the fluctuating zone of the Three Gorges Reservoir[J]. Environmental Science, 2017, 38(10): 4187-4193 (in Chinese).
[44] NIU L L, XU Y, XU C, et al. Status of phthalate esters contamination in agricultural soils across China and associated health risks[J]. Environmental Pollution, 2014, 195: 16-23. doi: 10.1016/j.envpol.2014.08.014 [45] 周斌. 黄淮海地区农田土壤邻苯二甲酸酯污染特征与成因研究[D]. 北京: 中国农业科学院, 2020. ZHOU B. Research on characteristics and mechanism of phthalate acid esters pollution in farmland of the Huang-Huai-Hai region of China[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020 (in Chinese).
[46] WEI L Y, LI Z H, SUN J T, et al. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China[J]. Science of the Total Environment, 2020, 726: 137978. doi: 10.1016/j.scitotenv.2020.137978