-
近海河流是陆地与海洋联系的重要纽带,是城市发展和生物多样性的基础,河流水质是体现城市发展水平和生态环境的重要指标[1-2]. 近年来,随着城市的快速发展,各种点源污染(工业污染、生活污染等)、面源污染(农业污染)及城市本身遗留的污染已经对河流水环境稳定及生物健康构成了威胁[3-4],大量N、P等污染物随着污水输入到河流中,超出河流的自净能力,引起水体富营养化,造成水体溶解氧降低、水体酸化、生物栖息地退化、有毒有害藻类大量繁殖[5-7]、生物多样性减少、水生生态系统的结构和功能发生异常等问题[8-9]. 水体富营养化是国际上共同关注的水环境问题[10],针对城市地表水开展调查研究,了解地表水污染现状,对城市水治理、修复等工作有着十分重要的意义.
三亚河由北向南贯穿三亚市,注入三亚港入海,对城市居民生活及旅游业的发展具有十分重要的意义. 2015年三亚市自然资源和规划局出台《三亚市中心城区水系综合规划》,提出改善三亚河水环境状况,然而三亚人口众多,城市废水的排放、土地利用的改变给三亚河水环境治理带来严峻的挑战. 2018—2019年,三亚河的水质为仍为Ⅲ、Ⅳ类,主要污染指标为氨氮[11].
本文通过对三亚河进行调查,旨在系统地探究三亚河营养盐的时空分布特征,评价水体富营养化现状,为相关部门围绕海南“三区一中心”的战略定位,稳步有效推进三亚河流域水环境综合治理提供基础数据,丰富对三亚河营养盐分布的认识.
三亚河营养盐时空分布及富营养化研究
Study on temporal and spatial distribution and eutrophication of nutrients in Sanya River
-
摘要: 为了解三亚河营养盐污染状况,于2018年6月—2019年5月对三亚河流域进行逐季调查,分析水体中氮磷营养盐的时空分布特征及影响因素,评估河流富营养化状况,并进一步估算三亚河营养盐入海通量. 结果表明,三亚河水体中营养盐浓度季节变化显著,三亚河水体中DIN的浓度范围为0.028—2.096 mg·L−1,平均浓度为(0.700±0.279)mg·L−1,冬季>秋季>夏季>春季,
${\rm{NO}}_3^{-} $ –N和${\rm{NH}}_4^{+} $ –N是水体中DIN的主要存在形式. DIP浓度范围为0.007—0.442 mg·L−1,平均浓度为(0.140±0.066)mg·L−1,夏季>春季>冬季>秋季. 空间分布上,N、P营养盐均呈现出上游及入海口河段浓度低,中下游河段浓度高的特点. 河段环境特征、人为活动、降雨、潮汐作用是影响三亚河营养盐分布的主要因素. 综合富营养盐指数(EI)结果显示,各季节三亚河上游及入海口河段均处于中富营养化状态,中下游河段均处于富营养化和重富营养化状态. 春、夏、秋季N/P值表明河流多处于N限制状态,冬季大部分河段适合藻类生存,有发生藻华的风险. 根据营养盐浓度和三亚河年平均径流量估算出,DIN、${\rm{NO}}_3^{-} $ –N、${\rm{NO}}_2^{-} $ –N、${\rm{NH}}_4^{+} $ –N、DIP年入海通量分别为118.37、70.93、11.18、38.67、23.75 t.Abstract: To understand the nutrient pollution status of Sanya River, a seasonal survey was conducted in the Sanya River basin from June 2018 to May 2019 to analyze the spatial and temporal distribution characteristics and influencing factors of nitrogen and phosphorus nutrient salts in the water column. The state of eutrophication was evaluated, and further the flux of nutrients into the sea through Sanya River was estimated. The results show that the seasonal variation of nutrient concentration in Sanya River is significant. The concentrations of DIN ranged from 0.028 mg·L−1 to 2.096 mg·L−1, with an average concentration of(0.700±0.279) mg·L−1, with a sequential increase in spring, summer, autumn and winter${\rm{NO}}_3^{-} $ -N and NH4+-N are the main forms of DIN present in the water column. The concentrations of DIP ranged from 0.007 mg·L−1 to 0.442 mg·L−1, with an average concentration of(0.140±0.066)mg·L−1, with a sequential increase in autumn, winter, spring, and summer. The spatial distribution of N and P nutrients was similar, with low concentration in the upstream and estuaries and high concentrations in the middle and downstream. The environmental characteristics of river sections, anthropogenic activities, rainfall and tide are the main factors affecting the nutrient distribution in the Sanya River. The results of eutrophication index(EI)evaluation showed that the upper reaches and estuaries of Sanya River are moderately eutrophic in all seasons, while the middle and lower reaches are eutrophic and heavily eutrophic. The N/P in spring, summer and autumn indicate that most rivers are in nitrogen limitation, and most of the river were suitable for algal survival in winter, with the risk of algal blooms. Based on nutrient concentrations and the average annual runoff of Sanya River, it was estimated that the annual flux of DIN,${\rm{NO}}_3^{-} $ –N,${\rm{NO}}_2^{-} $ –N,${\rm{NH}}_4^{+} $ –N and DIP into the sea are 118.37, 70.93, 11.18, 38.67 and 23.75 t, respectively.-
Key words:
- sanya river /
- nutrients /
- spatio-temporal distribution /
- eutrophication.
-
表 1 水样中各营养盐要素的分析方法
Table 1. Analysis methods of nutrient elements in water samples
表 2 地表水富营养化状态等级划分
Table 2. The classification of surface water eutrophication status
营养化程度
Eutrophication degree贫营养
Oligotrophic中营养
Mesotrophic富营养
Eutrophic重富营养
Hypereutrophic极富营养
Extreme eutrophic等级 ≤20 20—39.42 39.42—61.29 61.29—76.28 76.28—99.77 表 3 2018—2019年四个季度三亚河营养盐氮、磷含量及理化参数的变化范围及平均值1)
Table 3. Variation range and average value of nitrogen and phosphorus contents and physicochemical parameters in Sanya River from 2018 to 2019
季节
SeasonNH4+-N /(mg·L−1) NO3−-N/(mg·L−1) NO2−-N/ (mg·L−1) DIP/(mg·L−1) T/℃ S/‰ DO/(mg·L−1) 春季
Spring范围 0.014—0.448 0.007—0.830 0.001—0.197 0.007—0.391 24.5—31.3 0.06—32.81 2.69—8.42 均值±SD 0.186±0.109 0.216±0.162 0.073±0.052 0.156±0.120 27.1±0.9 14.63±11.0 5.16±1.43 夏季
Summer范围 0.026—0.434 0.006—1.212 0.002—0.104 0.008—0.442 15.8—32.0 0.05—31.56 0.96—8.38 均值±SD 0.209±0.093 0.364±0.133 0.043±0.024 0.180±0.072 25.7±0.7 7.13±7.91 5.02±1.62 秋季
Autumn范围 0.003—0.445 0.134—0.868 0.001—0.122 0.008—0.215 7.9—17.8 0.05-32.37 0.12—8.05 均值±SD 0.240±0.103 0.543±0.112 0.063±0.033 0.099±0.042 12.6±0.5 5.91±8.42 5.40±1.48 冬季
Winter范围 0.013—1.321 0.017—1.600 0.001—0.272 0.009—0.295 4.1—28.0 0.06—32.65 2.75—8.75 均值±SD 0.264±0.156 0.495±0.327 0.087±0.054 0.132±0.094 19.0±0.4 12.30±11.3 5.17±1.47 1) SD标准偏差. SD: Standard deviation. 表 4 三亚河与其他河流营养盐含量对比
Table 4. Comparison of nutrient content between Sanya River and other rivers
流域
Basin –N/(mg·L−1)${\rm{NH}}_4^{+} $ –N/(mg·L−1)${\rm{NO}}_3^{-} $ –N/(mg·L−1)${\rm{NO}}_2^{-} $ DIP/(mg·L−1) 参考文献
Reference三亚河 0.229±0.104 0.420±0.171 0.066±0.038 0.140±0.066 本研究 珠江广州段 3.380 1.510 0.340 0.130 [26] 黄河 0.074 3.770 0.069 0.003 [27] 长江 0.010 1.148 0.020 0.038 [28] 万泉河 0.076 0.640 0.016 0.022 [29] 图尔河 1.380 0.620 0.056 0.110 [30] 石狩河 0.167 0.932 0.011 0.026 [31] 海河市区段 1.480 1.995 — — [32] 渭河咸阳段 2.43 — — — [33] 香溪河 0.061 0.740 — 0.060 [34] 斯兹雷尼亚瓦河 0.230 3.440 — 0.320 [35] 表 5 营养盐与环境因子的相关性分析1)
Table 5. Correlation analysis between nutrients and environmental factors
季节
SeasonT S DO –N${\rm{NH}}_4^{+} $ –N${\rm{NO}}_3^{-} $ –N${\rm{NO}}_2^{-} $ DIN DIP 春季 T 1 S −0.226 1 DO −0.373 0.900** 1 –N${\rm{NH}}_4^{+} $ 0.285 −0.728* −0.768* 1 –N${\rm{NO}}_3^{-} $ 0.274 −0.144 −0.319 0.673* 1 –N${\rm{NO}}_2^{-} $ 0.556 −0.66 −0.679* 0.864** 0.735* 1 DIN 0.348 −0.446 −0.57 0.888** 0.933** 0.897** 1 DIP 0.472 −.866** −.767* 0.855** 0.383 0.865** 0.670* 1 夏季 T 1 S −0.635 1 DO −0.388 0.899** 1 –N${\rm{NH}}_4^{+} $ 0.488 −0.741* −.708* 1 –N${\rm{NO}}_3^{-} $ 0.191 −0.107 −0.232 0.166 1 –N${\rm{NO}}_2^{-} $ 0.193 −0.157 −0.355 0.599 0.65 1 DIN 0.373 −0.34 −0.439 0.579 0.887** 0.864** 1 DIP 0.39 −0.879** −0.939** 0.831** 0.296 0.438 0.544 1 秋季 T 1 S −0.437 1 DO −0.042 0.673 1 –N${\rm{NH}}_4^{+} $ 0.088 0.008 −0.048 1 –N${\rm{NO}}_3^{-} $ −0.265 −0.501 −0.575 −0.468 1 –N${\rm{NO}}_2^{-} $ −0.656 −0.246 −0.521 −0.097 0.779* 1 DIN −0.536 −0.163 −0.365 −0.067 0.782* 0.923** 1 DIP −0.469 −0.401 −0.692* 0.073 0.753* 0.942** 0.882** 1 冬季 T 1 S −0.571 1 DO −0.549 0.858** 1 –N${\rm{NH}}_4^{+} $ 0.424 −0.591 −0.472 1 –N${\rm{NO}}_3^{-} $ −0.411 −0.065 −0.161 0.221 1 –N${\rm{NO}}_2^{-} $ 0.06 −0.512 −0.584 0.495 0.842** 1 DIN −0.144 −0.331 −0.365 0.595 0.914** 0.919** 1 DIP 0.271 −0.929** −0.792* 0.602 0.247 0.57 0.481 1 1) *表示P<0.05,**表示P<0.01 -
[1] 陈雯, 吴亚, 张宏鑫, 等. 北海冯家江流域地表水体中氮磷营养盐的时空分布特征 [J]. 安全与环境工程, 2022, 29(1): 169-175,188. CHEN W, WU Y, ZHANG H X, et al. Spatial and temporal distribution of nitrogen and phosphorus nutrients in surface water of Fengjiajiang River watershed, Beihai [J]. Safety and Environmental Engineering, 2022, 29(1): 169-175,188(in Chinese).
[2] 刘静, 杨福霞, 王俊杰, 等. 灌河下游营养盐浓度的季节变化及其入海通量研究 [J]. 中国海洋大学学报(自然科学版), 2021, 51(5): 72-80. LIU J, YANG F X, WANG J J, et al. Seasonal variation and fluxes of nutrients in the lower reaches of the Guanhe River [J]. Periodical of Ocean University of China, 2021, 51(5): 72-80(in Chinese).
[3] 陈明霞, 熊贵耀, 张佳鹏, 等. 湘江流域水质综合评价及其时空演变分析 [J]. 环境工程, 2019, 37(10): 83-90,104. CHEN M X, XIONG G Y, ZHANG J P, et al. Comprehensive evaluation of water quality in Xiangjiang River Basin from multi-dimensional perspective and its spatial-temporal evolution analysis [J]. Environmental Engineering, 2019, 37(10): 83-90,104(in Chinese).
[4] 余丽燕, 杨浩, 黄昌春, 等. 夏季滇池和入滇河流氮、磷污染特征 [J]. 湖泊科学, 2016, 28(5): 961-971. doi: 10.18307/2016.0505 YU L Y, YANG H, HUANG C C, et al. Characteristic of nitrogen and phosphorous pollution in Lake Dianchi and its inflow rivers in summer [J]. Journal of Lake Sciences, 2016, 28(5): 961-971(in Chinese). doi: 10.18307/2016.0505
[5] ZHANG P, CHEN Y, PENG C H, et al. Spatiotemporal variation, composition of DIN and its contribution to eutrophication in coastal waters adjacent to Hainan Island, China [J]. Regional Studies in Marine Science, 2020, 37: 101332. doi: 10.1016/j.rsma.2020.101332 [6] 李昂臻, 陈思旭, 李海燕, 等. 北方某省会城市主要水库富营养化程度、特征和防治对策 [J]. 环境化学, 2020, 39(9): 2529-2539. doi: 10.7524/j.issn.0254-6108.2020040902 LI A Z, CHEN S X, LI H Y, et al. Characteristics and evaluation of eutrophication in major reservoirs of a northern city in China [J]. Environmental Chemistry, 2020, 39(9): 2529-2539(in Chinese). doi: 10.7524/j.issn.0254-6108.2020040902
[7] 周坤朋, 刘阳春, 王崇臣. 北京什刹海区域水体富营养化时空演变特征分析 [J]. 环境化学, 2016, 35(4): 703-712. doi: 10.7524/j.issn.0254-6108.2016.04.2015093001 ZHOU K P, LIU Y C, WANG C C. Analysis on temporal-spatial variation of eutrophication in Shichahai area, Beijing [J]. Environmental Chemistry, 2016, 35(4): 703-712(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.04.2015093001
[8] WANG X L, CUI Z G, GUO Q, et al. Distribution of nutrients and eutrophication assessment in the Bohai Sea of China [J]. Chinese Journal of Oceanology and Limnology, 2009, 27(1): 177-183. doi: 10.1007/s00343-009-0177-x [9] 张美, 毛硕乾, 楼巧婷, 等. 2018年梅山湾营养盐的时空变化及富营养化分析 [J]. 海洋环境科学, 2020, 39(6): 853-859. doi: 10.12111/j.mes.20190210 ZHANG M, MAO S Q, LOU Q T, et al. Spatial-temporal variations and eutrophication analysis of nutrients in Meishan Bay in 2018 [J]. Marine Environmental Science, 2020, 39(6): 853-859(in Chinese). doi: 10.12111/j.mes.20190210
[10] 卢龙, 谢芳立. 赣江水体氮磷营养盐分布特征及影响因素 [J]. 南昌大学学报(理科版), 2017, 41(6): 567-571. LU L, XIE F L. Research on the factors of Ganjiang River water nitrogen and phosphorus distribution characteristics and influence [J]. Journal of Nanchang University (Natural Science), 2017, 41(6): 567-571(in Chinese).
[11] 三亚市生态环境局. 三亚市生态环境局关于2019年三亚市环境状况的公报[EB/OL]. [2022-3-2]. http://hbj.sanya.gov.cn/sthjsite/tzgg/202006/10ff196e4e884549a564e4475e9f9963.shtml. Sanya Ecological Environment Bureau. Bulletin of Sanya Ecological Environment Bureau on the environmental condition of Sanya City in 2019 [EB/OL]. [2022-3-2]. http://hbj.sanya.gov.cn/sthjsite/tzgg/202006/10ff196e4e884549a564e4475e9f9963.shtml.
[12] 车志伟, 史云峰, 曲江勇, 等. 三亚河口叶绿素a含量及其与环境因子的关系 [J]. 琼州学院学报, 2014, 21(2): 88-92. CHE Z W, SHI Y F, QU J Y, et al. The content of chlorophyll - a and its relationship with the environmental factors in the Sanya Estuary [J]. Journal of Qiongzhou University, 2014, 21(2): 88-92(in Chinese).
[13] 三亚市统计年鉴(2020年)[EB/OL]. [2022-3-20]. http://tjj.sanya.gov.cn/tjjsite/2020nnjf/tjnj.shtml. Statistical Yearbook of Sanya City (2020)[EB/OL]. [2022-3-20]. http://tjj.sanya.gov.cn/tjjsite/2020nnjf/tjnj.shtml (in Chinese).
[14] 陈文术, 王胜男, 杨波. 三亚绿地系统中海绵城市建设的思考 [J]. 安徽农业科学, 2017, 45(17): 153-154,192. doi: 10.3969/j.issn.0517-6611.2017.17.055 CHEN W S, WANG S N, YANG B. The construction of sponge city in Sanya green space system [J]. Journal of Anhui Agricultural Sciences, 2017, 45(17): 153-154,192(in Chinese). doi: 10.3969/j.issn.0517-6611.2017.17.055
[15] 车志伟. 三亚河入海口与感潮河段悬浮物分布特征及潮汐之影响 [J]. 广东海洋大学学报, 2007, 27(6): 89-92. doi: 10.3969/j.issn.1673-9159.2007.06.021 CHE Z W. Suspension distributing characteristics of Sanya River Estuary and tide-induced effects [J]. Journal of Guangdong Ocean University, 2007, 27(6): 89-92(in Chinese). doi: 10.3969/j.issn.1673-9159.2007.06.021
[16] 李晨曦. 红树林的生态修复与滨海城市的景观营造: 以三亚河红树林自然保护区生态修复为例 [J]. 林业科技情报, 2017, 49(4): 88-89,93. doi: 10.3969/j.issn.1009-3303.2017.04.032 LI C X. Ecological restoration of mangrove and landscape construction of coastal city—A case study of ecological restoration of mangrove nature reserve in Sanya River [J]. Forestry Science and Technology Information, 2017, 49(4): 88-89,93(in Chinese). doi: 10.3969/j.issn.1009-3303.2017.04.032
[17] 杨星, 邱彭华, 钟尊倩. 三亚河红树林自然保护区水环境-红树植物-沉积物重金属污染综合分析 [J]. 环境污染与防治, 2020, 42(9): 1163-1170. YANG X, QIU P H, ZHONG Z Q. Comprehensive analysis of heavy metal pollution of water-mangrove plants-sediments system in Sanya River mangrove nature reserve [J]. Environmental Pollution & Control, 2020, 42(9): 1163-1170(in Chinese).
[18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋监测规范 第4部分: 海水分析: GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The specification for marine monitoring—Part 4: Seawater analysis: GB 17378.4—2007[S]. Beijing: Standards Press of China, 2008(in Chinese).
[19] 李祚泳, 汪嘉杨, 郭淳. 富营养化评价的对数型幂函数普适指数公式 [J]. 环境科学学报, 2010, 30(3): 664-672. LI Z Y, WANG J Y, GUO C. A universal index formula for eutrophic evaluation using a logarithmic power function [J]. Acta Scientiae Circumstantiae, 2010, 30(3): 664-672(in Chinese).
[20] 李洪涛, 刘阳, 于国庆, 等. 威海南部近岸海域表层海水化学要素时空变化及富营养化研究 [J]. 应用海洋学学报, 2016, 35(3): 356-363. doi: 10.3969/J.ISSN.2095-4972.2016.03.006 LI H T, LIU Y, YU G Q, et al. Spatial-temporal distribution of sea water chemicals and eutrophication evaluation in surface water of southern Weihai coastal area [J]. Journal of Applied Oceanography, 2016, 35(3): 356-363(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2016.03.006
[21] 陈攀, 李晓梅, 王梅, 等. 旅游旺季三亚河水体中有机物含量的分析 [J]. 琼州学院学报, 2014, 21(5): 93-98. CHEN P, LI X M, WANG M, et al. Analysis of organic matters content in water of Sanya River in tourist season [J]. Journal of Qiongzhou University, 2014, 21(5): 93-98(in Chinese).
[22] GAO Y X, YU J H, SONG Y Z, et al. Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China [J]. Environmental Science and Pollution Research International, 2019, 26(7): 6898-6910. doi: 10.1007/s11356-019-04154-w [23] 任丙南, 耿静. 三亚市水体中PPCPs的污染水平、分布特征及生态风险评价 [J]. 环境科学, 2021, 42(10): 4717-4726. REN B N, GENG J. Occurrence, distribution, and ecological risk assessment of pharmaceutical and personal care products in the aquatic environment of Sanya City, China [J]. Environmental Science, 2021, 42(10): 4717-4726(in Chinese).
[24] de SANTIS BRAGA E, BERBEL G B B, CHIOZZINI V G, et al. Dissolved organic nutrients (C, N, P) in seawater on the continental shelf in the Southwestern South Atlantic with emphasis State Marine Park of Laje de Santos (SMPLS) - São Paulo - Brazil [J]. Brazilian Journal of Oceanography, 2017, 65(4): 614-627. doi: 10.1590/s1679-87592017136506504 [25] 安敏, 文威, 孙淑娟, 等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响 [J]. 环境科学学报, 2009, 29(12): 2616-2622. doi: 10.3321/j.issn:0253-2468.2009.12.021 AN M, WEN W, SUN S J, et al. Effects of pH and salinity on phosphorus sorption and desorption in the surface sediments of the mainstream of the Haihe River [J]. Acta Scientiae Circumstantiae, 2009, 29(12): 2616-2622(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.12.021
[26] LIU Q, HU X J, JIANG J L, et al. Comparison of the water quality of the surface microlayer and subsurface water in the Guangzhou segment of the Pearl River, China [J]. Journal of Geographical Sciences, 2014, 24(3): 475-491. doi: 10.1007/s11442-014-1101-7 [27] 谷文艳, 陈洪涛, 姚庆祯, 等. 黄河下游溶解态营养盐季节变化及入海通量研究 [J]. 中国海洋大学学报(自然科学版), 2017, 47(3): 74-79,86. GU W Y, CHEN H T, YAO Q Z, et al. Seasonal variation and fluxes of dissolved nutrients in the lower reaches of the Huanghe [J]. Periodical of Ocean University of China, 2017, 47(3): 74-79,86(in Chinese).
[28] 江涛, 俞志明, 宋秀贤, 等. 长江水体溶解态无机氮和磷现状及长期变化特点 [J]. 海洋与湖沼, 2012, 43(6): 1067-1075. JIANG T, YU Z M, SONG X X, et al. Analysis of distribution, flux and long-term variations of dissolved inorganic nitrogen and phosphate in the Changjiang River [J]. Oceanologia et Limnologia Sinica, 2012, 43(6): 1067-1075(in Chinese).
[29] LI R H, LIU S M, ZHANG G L, et al. Biogeochemistry of nutrients in an estuary affected by human activities: The Wanquan River estuary, eastern Hainan Island, China [J]. Continental Shelf Research, 2013, 57: 18-31. doi: 10.1016/j.csr.2012.02.013 [30] ALTANSUKH O, WHITEHEAD P, BROMLEY J. Spatial patterns and temporal trends in the water quality of the Tuul River in Mongolia [J]. Energy and Environment Research, 2012, 2(1): 62-78. [31] JHA P K, MASAO M. Factors affecting nutrient concentration and stable carbon and nitrogen isotope ratio of particulate organic matter in the Ishikari River system, Japan [J]. Water, Air, & Soil Pollution, 2013, 224(5): 1-23. [32] 高翔, 蒙海涛, 易晓娟. 天津市主要水体的氮污染特征分析 [J]. 中国给水排水, 2011, 27(15): 51-55. GAO X, MENG H T, YI X J. Analysis of nitrogen pollution characteristics in water bodies of Tianjin [J]. China Water & Wastewater, 2011, 27(15): 51-55(in Chinese).
[33] WANG S J, LU A G, DANG S H, et al. Ammonium nitrogen concentration in the Weihe River, central China during 2005-2015 [J]. Environmental Earth Sciences, 2016, 75(6): 512. doi: 10.1007/s12665-015-5224-7 [34] 谭路, 蔡庆华, 徐耀阳, 等. 三峡水库175m水位试验性蓄水后春季富营养化状态调查及比较 [J]. 湿地科学, 2010, 8(4): 331-338. TAN L, CAI Q H, XU Y Y, et al. Survey of spring eutrophication status after 175 m experimental impoundment of Three Gorges reservoir and comparison [J]. Wetland Science, 2010, 8(4): 331-338(in Chinese).
[35] KOWALCZYK A, SMOROŃ S, KOPACZ M. Influence of runoff of suspended solids on quality of surface water: Case study of the Szreniawa River [J]. Journal of Water and Land Development, 2019, 41(1): 83-90. doi: 10.2478/jwld-2019-0031 [36] 刘小涯, 潘建明, 张海生, 等. 南海海水中DO的平面、垂直分布以及海-气交换通量 [J]. 海洋学研究, 2005, 23(4): 41-48. doi: 10.3969/j.issn.1001-909X.2005.04.007 LIU X Y, PAN J M, ZHANG H S, et al. Horizontal and vertical distributions of DO content and its flux of ocean-atmosphere exchange in the South China Sea [J]. Journal of Marine Sciences, 2005, 23(4): 41-48(in Chinese). doi: 10.3969/j.issn.1001-909X.2005.04.007
[37] 曹承进, 秦延文, 郑丙辉, 等. 三峡水库主要入库河流磷营养盐特征及其来源分析 [J]. 环境科学, 2008, 29(2): 2310-2315. CAO C J, QIN Y W, ZHENG B H, et al. Analysis of phosphorus distribution characters and their sources of the major input rivers of Three Gorges reservoir [J]. Environmental Science, 2008, 29(2): 2310-2315(in Chinese).
[38] GUILDFORD S J, HECKY R E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? [J]. Limnology and Oceanography, 2000, 45(6): 1213-1223. doi: 10.4319/lo.2000.45.6.1213 [39] 凌娟, 张燕英, 董俊德, 等. 三亚湾珊瑚礁海域蓝藻群落组成的空间分布特征及其与环境因子的关系 [J]. 科学通报, 2013, 58(17): 1610-1619. doi: 10.1360/csb2013-58-17-1610 LING J, ZHANG Y Y, DONG J D, et al. Spatial distribution characteristics of cyanobacteria community in coral reef area of Sanya Bay and its relationship with environmental factors [J]. Chinese Science Bulletin, 2013, 58(17): 1610-1619(in Chinese). doi: 10.1360/csb2013-58-17-1610
[40] 李由明, 刘明, 王平, 等. 旅游旺季三亚湾水体中磷营养盐含量的分析研究 [J]. 海洋信息, 2013(3): 35-37. LI Y M, LIU M, WANG P, et al. Analysis and study on the content of phosphorus nutrients in Sanya Bay in peak tourist season [J]. Marine Information, 2013(3): 35-37(in Chinese).
[41] 孙文凭, 徐继荣, 殷建平, 等. 三亚河与三亚湾溶存N2O分布特征与影响因素研究 [J]. 海洋与湖沼, 2010, 41(2): 266-273. SUN W P, XU J R, YIN J P, et al. N2O distribution and mediating factors in Sanya River and Sanya Bay [J]. Oceanologia et Limnologia Sinica, 2010, 41(2): 266-273(in Chinese).
[42] 劳齐斌, 刘国强, 申友利, 等. 北部湾入海河流营养盐的分布特征及入海通量研究 [J]. 海洋学报, 2020, 42(12): 93-100. LAO Q B, LIU G Q, SHEN Y L, et al. Distribution characteristics and fluxes of nutrients in the rivers of the Beibu Gulf [J]. Haiyang Xuebao, 2020, 42(12): 93-100(in Chinese).
[43] 王汉奎, 董俊德, 王友绍, 等. 三亚湾近3年营养盐含量变化及其输送量的估算 [J]. 热带海洋学报, 2005, 24(5): 90-95. doi: 10.3969/j.issn.1009-5470.2005.05.011 WANG H K, DONG J D, WANG Y S, et al. Variations of nutrient contents and their transportation estimate at Sanya Bay [J]. Journal of Tropical Oceanography, 2005, 24(5): 90-95(in Chinese). doi: 10.3969/j.issn.1009-5470.2005.05.011