三亚河营养盐时空分布及富营养化研究

韩玉, 郑忠陆, 陈贤伟, 李霞, 郭雨昂, 公维洁. 三亚河营养盐时空分布及富营养化研究[J]. 环境化学, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104
引用本文: 韩玉, 郑忠陆, 陈贤伟, 李霞, 郭雨昂, 公维洁. 三亚河营养盐时空分布及富营养化研究[J]. 环境化学, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104
HAN Yu, ZHENG Zhonglu, CHEN Xianwei, LI Xia, GUO Yuang, GONG Weijie. Study on temporal and spatial distribution and eutrophication of nutrients in Sanya River[J]. Environmental Chemistry, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104
Citation: HAN Yu, ZHENG Zhonglu, CHEN Xianwei, LI Xia, GUO Yuang, GONG Weijie. Study on temporal and spatial distribution and eutrophication of nutrients in Sanya River[J]. Environmental Chemistry, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104

三亚河营养盐时空分布及富营养化研究

    通讯作者: E-mail:gong.wei.jie@163.com
  • 基金项目:
    海南省自然科学基金青年基金(419QN241),海南省自然科学基金(420MS058),海南热带海洋学院博士研究生科研启动项目(RHDXB201622)和海南热带海洋学院青年专项基金(RHDQN201816)资助

Study on temporal and spatial distribution and eutrophication of nutrients in Sanya River

    Corresponding author: GONG Weijie, gong.wei.jie@163.com
  • Fund Project: Hainan Provincial Natural Science Foundation of China(419QN241), Hainan Provincial Natural Science Foundation of China (420MS058), Scientific Research Foundation of Hainan Tropical Ocean University(RHDXB201622) and Scientific Research Foundation of Hainan Tropical Ocean University (RHDQN201816).
  • 摘要: 为了解三亚河营养盐污染状况,于2018年6月—2019年5月对三亚河流域进行逐季调查,分析水体中氮磷营养盐的时空分布特征及影响因素,评估河流富营养化状况,并进一步估算三亚河营养盐入海通量. 结果表明,三亚河水体中营养盐浓度季节变化显著,三亚河水体中DIN的浓度范围为0.028—2.096 mg·L−1,平均浓度为(0.700±0.279)mg·L−1,冬季>秋季>夏季>春季,NO3–N和NH+4–N是水体中DIN的主要存在形式. DIP浓度范围为0.007—0.442 mg·L−1,平均浓度为(0.140±0.066)mg·L−1,夏季>春季>冬季>秋季. 空间分布上,N、P营养盐均呈现出上游及入海口河段浓度低,中下游河段浓度高的特点. 河段环境特征、人为活动、降雨、潮汐作用是影响三亚河营养盐分布的主要因素. 综合富营养盐指数(EI)结果显示,各季节三亚河上游及入海口河段均处于中富营养化状态,中下游河段均处于富营养化和重富营养化状态. 春、夏、秋季N/P值表明河流多处于N限制状态,冬季大部分河段适合藻类生存,有发生藻华的风险. 根据营养盐浓度和三亚河年平均径流量估算出,DIN、NO3–N、NO2–N、NH+4–N、DIP年入海通量分别为118.37、70.93、11.18、38.67、23.75 t.
  • 畜禽饲料添加蓝矾或称胆矾(CuSO4·5H2O)、皓矾(ZnSO4·7H2O)等重金属化合物,以增强畜禽的免疫力,促进畜禽的生长[1-2],其中的Cu、Zn等重金属元素通过粪便排出体外[3],导致畜禽粪污中重金属含量超标,其中猪粪的Cu、Zn超标最为显著[4]. 我国一些地区对畜禽粪污排放管控不严,粪污未经处理就被排放到农田作为农肥,引起潜在的土壤重金属污染风险. 重金属Cu、Zn虽然是植物生长所需的微量元素,但过量的Cu、Zn会损害植物根系,抑制动植物生长,还会降低土壤中的生物量及生物活性,最终影响农作物的生长及农产品的安全.

    为了减少猪粪农用风险,国家大力倡导利用厌氧发酵技术处理畜禽粪便[5],该技术不仅可以产生清洁能源、减少粪便体积,还能在一定程度上降低重金属生物有效性. 李轶等[6]研究表明,猪粪发酵过程中重金属钝化与发酵原料腐殖化存在着一定关系. 发酵原料腐殖化会产生腐殖质,腐殖质中含有大量羧基、羰基等官能团会与重金属发生吸附络合反应[7],从而降低重金属的生物有效性. 但由于重金属超标,发酵过程中微生物群落代谢功能会受到高浓度重金属的抑制[8],导致腐殖化程度低,钝化效果差. 单一的猪粪厌氧发酵对重金属钝化效果较差,因此就有学者研究在发酵过程中添加钝化剂来有效减少重金属的危害,提高重金属钝化效果[9-10].

    腐殖酸(HA)本身就是腐殖化的产物,是农业废弃物转化的产品,可以作为园艺生物改良剂,促进种子萌发、根系发育和植物生长[11]. 同样,腐殖酸可以改善植物细胞内的生化反应并具有直接的营养价值. 此外,腐殖酸被认为是一种含有多种官能团的钝化剂,包括酚类、羧酸类和酮类,可以通过吸附和络合反应与重金属结合[12]. 但是,关于添加腐殖酸对猪粪厌氧发酵中重金属钝化的研究很少,主要都研究发酵前后变化,很少研究发酵过程中的动态变化. 同时在厌氧发酵过程中,腐殖化程度的高低是一个重要的评判标准. 目前由于光谱技术的快速发展,傅里叶红外光谱技术(FTIR)已成为分析厌氧发酵过程中有机物和腐殖质含量变化的常规技术,主要归功于其所需样品量少,测样速度快,灵敏度高等特点. 李轶等[13]就采用FTIR研究猪粪厌氧发酵沼渣中的光谱特性,FTIR可以有效反映猪粪厌氧发酵后的腐殖化程度.

    本文主要研究添加腐殖酸对猪粪厌氧发酵过程中重金属及对厌氧发酵前后有机物结构变化的影响,涉及的主要研究内容包括:(1)采用BCR连续提取法来研究重金属(Cu、Zn)形态的动态变化;(2)利用傅里叶红外光谱技术(FTIR)探索猪粪发酵前后有机物结构的变化[14],揭示重金属钝化与有机物腐殖化程度的关系,为增加猪粪厌氧发酵产气量、减量化和重金属钝化提供理论依据,为降低猪粪中重金属Cu、Zn有效性、降低重金属污染风险和提高发酵质量提供技术指导.

    新鲜猪粪取自常州市某养猪场;沼液取自常州市武农生态能源工程有限公司;玉米秸秆取自联丰农产品有限公司;腐殖酸购自合肥巴斯夫生物科技有限公司(表1).

    表 1  猪粪/玉米秸秆主要成分
    Table 1.  Main components of pig manure/corn stover
    材料Material含水率/%Water content总有机碳含量/%Total organic carbon content总氮含量/%Total nitrogen contentC/NCu含量/(mg·kg−1)Cu contentZn含量/(mg·kg−1)Zn content
    猪粪79.849.200.5915.59254.171039.83
    玉米秸秆4.4515.130.3642.03NDND
      注:ND表示未检出. ND means not detected.
     | Show Table
    DownLoad: CSV

    本实验厌氧发酵装置主要由发酵瓶、集气瓶和集水瓶3部分组成. 发酵瓶为有效容积0.8 L,规格1L的广口瓶. 集气瓶为有效容积0.6 L,规格0.8 L的广口瓶. 集水瓶为普通0.6 L的塑料瓶.

    实验中发酵瓶和集气瓶分别用橡胶塞塞紧后用玻璃管和橡皮管连接,各接口处都严格密封,保证厌氧环境. 将装有发酵原料的发酵瓶放入(35±1)℃恒温水浴锅中厌氧发酵. 厌氧发酵装置如图1所示.

    图 1  厌氧发酵装置示意图
    Figure 1.  Schematic diagram of anaerobic digestion device

    本实验发酵原料为猪粪和玉米秸秆,玉米秸秆用来控制C/N比,C/N为24[15],将粉碎后的秸秆与新鲜猪粪按均匀混合后装入发酵罐,沼液添加量为30%,加水调节使消化体系内的TS为10%,pH控制在 6.5—7.8之间,钝化剂添加量为发酵瓶内干物质含量的2.5%、5%、7.5%,试验共设计4组如表2所示,每组重复3次,结果取平均值. 分别在0、5、10、15、20、25、30 d取样,采用一次性进料,发酵周期为30 d.

    表 2  实验处理组
    Table 2.  Experimental treatment groups
    编号Serial number处理组Treatment group
    CK猪粪+玉米秸秆
    F1猪粪+玉米秸秆+2.5%腐殖酸
    F2猪粪+玉米秸秆+5.0%腐殖酸
    F3猪粪+玉米秸秆+7.5%腐殖酸
     | Show Table
    DownLoad: CSV

    沼渣的采取:先摇匀发酵瓶中发酵原料,然后取样,离心(3000 r·min−1,5 min)后上层清液为沼液,下层沉淀为沼渣,烘干研磨过100目筛,保存待测.

    重金属形态含量结合欧共体标准司提出的BCR连续提取法和火焰原子吸收分光光度计来测定[16],BCR连续提取法将重金属分为4种形态,即:弱酸提取态、可还原态、可氧化态和残渣态. 其中,弱酸提取态和还原态进入环境后迁移性强,易被植物吸收利用,被称为生物有效形态;可氧化态和残渣态称为稳定态,不易被吸收和利用[16]. 发酵原料光谱特性采用傅里叶红外光谱法检测[17]. 根据测定结果计算以下指标[6]

    重金属形态占比(%)=各重金属形态含量/各重金属形态含量之和 × 100%

    重金属生物有效形态(%)=弱酸提取态占比 + 可还原态占比

    钝化效果(%)=(发酵前-发酵后)重金属有效形态/发酵前重金属有效形态 × 100%

    图2显示了猪粪/玉米秸秆厌氧发酵过程中日产气量和累计产气量的变化情况. 由图2(a)可知,随着时间的进行,各处理组厌氧发酵的日产气量在逐步上升,在第6天时,处理组F3达到了最高峰355.2 mL·d−1. 第7天时,处理组F1和F2日产气量相继达到了最高峰,分别是327.1 mL·d−1和345.1 mL·d−1. 到第8天时,对照组CK日产气量才达到最高峰231.2 mL·d−1. 接下来随着厌氧发酵的进行,由于发酵原料被微生物不断地消耗,日产气量逐渐呈下降趋势,到第30天时各组日产气量基本为0. 通过比较对照组与处理组,发现最大日产气量时间出现顺序:F3、F2、F1、CK,即对照组CK出现的时间最晚,说明腐殖酸的添加促进了发酵系统中微生物的代谢活动.

    图 2  厌氧发酵过程中日产气量和累计产气量的变化
    Figure 2.  The change of daily gas production and cumulative gas production during anaerobic fermentation process

    图2(b)可知,各处理组的累计产气量的变化趋势. CK、F1、F2和F3最终总产气量分别是1321.9 、1583.72、1697.8、1986.2 mL. 各处理组F1、F2、F3总产气量均高于对照组CK,与对照组CK相比分别提高了19.81%、28.44%、50.25%. 其中,处理组F3提高最明显,添加7.5%腐殖酸产气效果最佳,说明腐殖酸促进了厌氧发酵,提高了有机物的降解效率,腐殖酸本身就是农业废弃物发酵后的产物,其很稳定,难以被微生物降解而导致产气量增多[18],产气量增多主要原因是腐殖酸中含有大量酚类和羧基基团能与重金属离子结合,添加的腐殖酸与重金属发生络吸附络合反应[19-21],降低了重金属的生物有效性,防止了重金属超标抑制微生物的活动.

    猪粪/玉米秸秆厌氧发酵过程中各处理组沼渣中重金属Cu各形态的变化如图3所示. 由图3可得出Cu形态的动态变化特征如下:

    图 3  各处理组沼渣中重金属Cu各形态的变化
    Figure 3.  The change of various forms of heavy metal Cu in biogas residues in each treatment group

    (1)从弱酸提取态来看,4组处理组中弱酸提取态Cu占比随着厌氧发酵的进行都呈下降的趋势. 发酵后CK中弱酸提取态Cu下降了9.01%,添加腐殖酸的处理组F1、F2、F3都分别下降了15.83%、16.38%、19.92%,下降幅度都明显高于CK.

    (2)从可还原态来看,4组处理组中可还原态Cu占比下降趋势与弱酸提取态基本一致,呈下降趋势. 发酵前4组处理组可还原态Cu占比都差不多,发酵后4组处理组可还原态Cu占比从高到低依次为:CK>F1>F2>F3. 说明添加腐殖酸更易降低可还原态Cu含量.

    (3)从可氧化态来看,4组处理组中可氧化态Cu都呈上升趋势,发酵结束后CK、F1、F2、F3可氧化态Cu都上升了14.13%、22.98%、27.50%、32.23%,上升幅度越来越大,其中F3上升幅度最大. 说明添加腐殖酸可以加速可氧化态Cu占比的增加.

    (4)从残渣态来看,各处理组中残渣态Cu占比都较少,随着厌氧发酵的进行,各处理组中残渣态Cu呈上升趋势. 发酵结束后CK、F1、F2、F3残渣态Cu增幅分别为3.55%、7.22%、7.39%、7.99%. 添加腐殖酸的处理组的增幅明显高于对照组CK,说明腐殖酸对残渣态Cu的形成具有促进作用.

    (5)从生物有效形态来看,各处理组中重金属Cu生物有效形态占比都逐渐减少,下降幅度有所不同. CK、F1、F2、F3生物有效形态Cu占比降幅分别为17.68%、30.20%、34.89%、40.22%. 添加腐殖酸显著降低重金属Cu的生物有效性,促进了重金属Cu的不稳定形态向稳定形态的转化. 其中,添加7.5%的腐殖酸使重金属Cu生物有效形态下降幅度可达40.22%,明显高于CK.

    猪粪/玉米秸秆厌氧发酵过程中各处理组沼渣中重金属Zn各形态的变化如图4所示. 沼渣中重金属Zn主要是以弱酸提取态和可还原态的形式存在,由图4可得出Zn形态的动态变化特征如下:

    图 4  各处理组沼渣中重金属Zn各形态的变化
    Figure 4.  The change of various forms of heavy metal Zn in biogas residues in each treatment group

    (1)从弱酸提取态来看,厌氧发酵过程中对照组中弱酸提取态Zn占比下降比较平缓,下降幅度为6.25%. 然而,处理组F1、F2、F3都先是下降较快,接着保持平缓,下降幅度分别为15.27%、22.76%、19.76%,下降幅度都明显高于对照组CK.

    (2)从可还原态来看,对照组CK中可还原态Zn占比并没有随着厌氧发酵的进行而变化,基本都维持在48%左右. 其他添加腐殖酸的处理组中可还原态Zn占比趋势都是先上升随后有所下降,发酵后可还原态Zn占比都比发酵前多. 说明腐殖酸并没有促进可还原态Zn的转化.

    (3)从可氧化态来看,4组处理组中可氧化态Zn的占比明显小于可还原态Zn的,主要原因是Zn是两性金属,较活泼,与腐殖酸吸附络合的稳定性没有Cu高. 但可氧化态Zn的趋势与可氧化态Cu一样,呈上升趋势. 发酵结束后CK、F1、F2、F3可氧化态Zn分别上升了1.56%、4.78%、7.66%、8.89%. F1、F2、F3的上升幅度都明显高于CK.

    (4)从残渣态来看,各处理组中残渣态Zn占比较少,随着厌氧发酵的进行,各处理组中残渣态Zn呈上升趋势. 发酵结束后CK、F1、F2、F3残渣态Zn增幅分别为3.53%、5.04%、5.15%、6.52%. 添加腐殖酸的处理组的增幅明显高于对照组CK,说明腐殖酸对残渣态的形成具有促进作用.

    (5)从生物有效形态来看,各处理组中重金属Zn生物有效形态占比都逐渐减少,下降幅度有所不同. CK、F1、F2、F3生物有效形态Zn占比降幅分别为5.09%、9.82%、12.81%、15.41%. 腐殖酸的添加显著降低重金属Zn的生物有效性,促进了重金属Zn不稳定形态向稳定形态的转化.

    综上实验结果表明,添加腐殖酸促进了厌氧发酵过程中重金属(Cu、Zn)有效形态含量的下降,钝化效果有了明显的提升. 这种现象主要是因为腐殖酸是一种离子交换能力很强的钝化剂,其主要结构是羧酸、醇羟基等多种活性官能团. 这些活性官能团会与阳离子重金属(Cu2+、Zn2+)发生络合反应形成络合物,从而降低生物有效性. 但对两种重金属的生物有效态下降有明显差别,在发酵系统中重金属Cu与Zn会有竞争关系. 根据Kerndorff等[22]研究,腐殖酸对重金属的吸附络合顺序为:Hg>Fe>Pb>Cu>Al>Ni>Cr>Zn>Cd>Co>Mn,可知腐殖酸对重金属Cu的吸附络合能力强于重金属Zn. 在发酵系统中腐殖酸会率先吸附络合重金属Cu,当腐殖酸中重金属Cu饱和后才会去吸附络合重金属Zn[19],因此可氧化态Zn的占比明显低于可氧化态Cu. 然而,发酵后可还原态Zn占比变化不明显,还略有所回升,这可能主要归因于Zn是两性金属化合物,其活性、迁移能力较强,在可还原条件下容易被释放,同时厌氧发酵过是一个极其复杂的过程,微生物在分解有机物时,会将本来与有机物相结合的Zn分解了,形成游离态,从而导致可还原态Zn略有增加.

    重金属钝化效果直观的反映了添加腐殖酸对厌氧发酵过程沼渣中重金属(Cu、Zn)钝化作用的强弱,图5为各处理组沼渣中重金属(Cu、Zn)钝化效果.

    图 5  各处理组沼渣中重金属(Cu、Zn)钝化效果
    Figure 5.  Passivation effect of heavy metals (Cu, Zn) in biogas residues in each treatment group

    图5可知,各处理组经过厌氧发酵结束后重金属Cu钝化效果由高到低的次序为:F3(58.72%)>F2(50.57%)>F1(43.18%)>CK(24.86%). 通过对重金属Cu钝化效果进行方差分析,结果表明添加腐殖酸对重金属Cu钝化效果有显著影响(P<0.05),其中处理组F3的影响最为显著,因此说明添加腐殖酸有效提高了对重金属Cu的钝化效果,促进了稳定态Cu的增多. 重金属Zn钝化效果顺序为:F3(17.95%)>F2(14.72%)>F1(11.37%)>CK(5.84%),对重金属Zn钝化效果方差分析,结果表明添加腐殖酸对重金属Cu、Zn钝化效果都有显著影响(P<0.05),其中F3的钝化效果较好,对重金属Cu、Zn的钝化效果分别为58.72%、17.95%.

    综上实验结果,腐殖酸对重金属Cu的钝化效果明显优于对重金属Zn的钝化效果,这主要与重金属Zn的特性有关,重金属Zn是两性重金属,较为活泼,易在不同环境中流动,因此重金属Zn较难被钝化. 同时,在发酵系统中重金属Zn主要与小分子物质结合,并且结合不紧密易被植物吸收,重金属Cu则主要与大分子物质结合,并且结合紧密较为稳定[23-24],腐殖酸是一种大分子物质,因此重金属Cu更易被腐殖酸吸附络合形成稳定态,从而导致重金属Cu的钝化效果明显优于对重金属Zn.

    本实验利用傅里叶红外光谱技术(FTIR)来研究厌氧发酵过程中有机物的矿化和腐殖化程度. FTIR特征吸收带归属[25]表3,厌氧发酵前后沼渣的红外光谱的变化情况如图6所示[13].

    表 3  FTIR特征吸收带归属
    Table 3.  Assignment of characteristic absorption bands of FTIR
    波数/ cm−1 Wavenumber振动峰 Vibration peak基团 Group
    3408—3450O—H碳水化合物、酰胺化合物、蛋白质、水
    2850—2922C—H碳水化合物、脂肪族化合物的亚甲基
    1600—1653C=O、—COO—、C=C、N—H羧酸盐、烯烃、酯类、酰胺类、芳香族
    1400—1430C—O、—COO—、—OH、—CH2木质素、脂肪族化合物、羧酸盐
    1105—1160C—O—C、C—O、C—N糖类、脂肪族化合物、氨基酸盐
     | Show Table
    DownLoad: CSV

    图6可知,厌氧发酵前后的各个处理组沼渣的光谱特性都基本相似,只是在相对强度上有一些差异. 这主要可能与添加了不同比例的腐殖酸有关,但其主要的发酵原料还是猪粪,这一结果与栾润宇等[26]的研究一致. 图7中,3408—3450 cm−1、 2850—2922 cm−1、1600—1653 cm−1、1105—1160 cm−1这几个代表性峰值的强度变化比较明显.

    图 7  厌氧发酵过程中的铜锌钝化机理推测
    Figure 7.  Speculated passivation mechanism of Cu and Zn during anaerobic digestion process

    结合表3图7可知,在3408—3450 cm−1和2850—2922 cm−1峰处,厌氧发酵后各处理组在该两处峰的相对强度与未发酵的猪粪/玉米秸秆相比均有所降低,降幅由大到小依次为F3、F2、F1、CK. 前一峰表明添加腐殖酸促进了碳水化合物、酰胺化合物、蛋白质等有机物被分解为简单有机物,导致—OH基团的减少. 后一峰表明发酵原料中的碳水化合物与脂肪族化合物等有机物在微生物的矿化,代谢作用下被降解,导致—CH基团的减少. 此外,在1600—1653 cm−1峰处,发酵后各处理组在该处峰的相对强度与未发酵的猪粪/玉米秸秆相比均有所提高,F1、F2、F3在该处峰的相对强度均高于CK. 这表明添加腐殖酸促进被分解的简单有机物在微生物的作用下聚合成芳香环类、烯烃类腐殖质,加速了饱和碳向不饱和碳的形成[27],促使了腐殖质相对含量的增加. 综上,在厌氧发酵过程中,带有—OH、—CH2、—CH3的基团有机物在减少,带有C=O、—COO—、C—O—C和芳香环基团的有机物在增加. 表明了厌氧发酵促进了高分子有机物的分解和提高了沼渣的腐殖化程度. 添加腐殖酸后微生物的代谢活性更高,产生了更多的芳香族,腐殖化程度更高,其中F3腐殖化程度最佳.

    图 6  厌氧发酵前后沼渣红外光谱图
    Figure 6.  Infrared spectra of biogas residue before and after anaerobic fermentation

    近年来的众多学者研究结果显示[6, 13, 28],可用在芳香族碳(1647 cm−1)处的特征峰强度与碳水化合物碳(3435 cm−1)、脂肪族碳(2974 cm−1)、羧酸碳(1406 cm−1)、多糖碳(1112 cm−1)的比值(分别记为A、B、C、D)来表示厌氧发酵中有机物官能团结构的变化,来评价猪粪厌氧发酵的腐殖程度. 比值越高表明碳水化合物、脂肪族化合物、羧酸类、多糖类物质含量在减少,芳香族碳在增加,发酵原料中腐殖化程度越高.

    表4可知,未发酵的猪粪/玉米秸秆的A值为1.035,CK发酵后A值为1.037 ,添加腐殖酸的处理组厌氧发酵后A值依次上升均大于CK,表明厌氧发酵过程中添加腐殖酸有利于促进碳水化合物往芳香族化合物转化. 未发酵的猪粪/玉米秸秆B值为0.933,CK发酵后B值为0.951,增幅1.93%,F1、F2、F3的增幅依次为5.89%、7.40%、8.44%,都大于CK. 未发酵的猪粪/玉米秸秆的C值为0.950,厌氧发酵后各处理组C值由大到小的依次为F3、F2、F1、CK. 未发酵的猪粪/玉米秸秆的D值为1.031,与其相比,CK、F1、F2、F3的增幅分别为3.20%、3.30%、5.24%、10.18%. 综合分析以上各特征参数比值表明,添加腐殖酸促进碳水化合物和多糖物质向芳香族化合物转化,提高了猪粪/玉米秸秆厌氧发酵的腐殖化程度,其中7.5%添加比例最佳,F3腐殖化程度最高. 这可能由于添加的外源腐殖酸率先吸附钝化发酵系统中的超标的重金属,给微生物提供了适宜的环境,促进了有机物的分解以及厌氧发酵的腐殖化程度.

    表 4  各处理组的特征参数比值
    Table 4.  The ratio of characteristic parameters of each treatment group
    处理组Treatment group时间TimeA芳香族碳/碳水化合物碳Aromatic carbon / Carbohydrate carbonB芳香族碳/脂肪族碳Aromatic carbon / Aliphatic carbonC芳香族碳/羧酸碳Aromatic carbon / Carboxylic carbonD芳香族碳/多糖碳Aromatic carbon / Polysaccharide carbon
    猪粪/玉米秸秆未发酵1.0350.9330.9501.031
    CK发酵后1.0370.9510.9821.064
    F1发酵后1.0460.9881.0141.065
    F2发酵后1.0491.0021.0271.085
    F3发酵后1.1441.0121.0281.136
     | Show Table
    DownLoad: CSV

    傅里叶红外光谱技术(FTIR)结果表明添加了腐殖酸,厌氧发酵后腐殖化程度越高. 主要原因:1)厌氧发酵是微生物参与的生物过程,腐殖酸能够疏松发酵原料[29-30],添加腐殖酸提高了发酵原料的孔隙率,为微生物提供了适宜的环境来分解有机物,加快了腐殖化程度. 2)厌氧发酵过程中发酵原料中重金属元素会抑制硝化反硝化过程[31-32],当这些元素浓度过高时会破坏微生物的结构和功能,甚至产生毒性抑制作用. 因此,腐殖酸在这起到了关键作用,厌氧发酵过程中钝化机理推测如图7所示,未添加腐殖酸时发酵系统中不稳定态Cu、Zn过高,将抑制微生物活性.

    添加腐殖酸后,腐殖酸与发酵原料中的重金属吸附络合反应形成稳定的重金属形态,不稳定态重金属含量减少,降低了不稳定态重金属过高而破坏微生物结构和功能的风险,从而促进厌氧发酵,提高沼渣腐殖化程度. 腐殖化程度提高,进一步增加了发酵系统中腐殖质的含量,腐殖质分子富含羧基和羟基,可与金属阳离子形成稳定的络合物[33],从而进一步降低重金属(Cu、Zn)的生物有效性,由于腐殖酸络合重金属Cu的能力强于Zn,重金属Cu钝化效果要优于重金属Zn的. 就本实验研究结果而言,F3添加7.5%腐殖酸的处理组中腐殖化程度最高,重金属(Cu、Zn)钝化效果也最佳.

    (1)厌氧发酵结果表明,添加腐殖酸对厌氧发酵产气量具有促进作用,添加腐殖酸的F1、F2、F3累计产气量分别比CK提高了19.81%、28.44%和50.25%.

    (2)厌氧发酵过程中添加腐殖酸利于促进重金属(Cu、Zn)的有效态向稳定态转化,其中,重金属Cu生物有效性下降程度比重金属Zn明显,F3中重金属Cu生物有效形态下降幅度可达40.22%.

    (3)厌氧发酵过程中添加腐殖酸有利于提高重金属Cu、Zn钝化效果,腐殖酸对重金属Cu的钝化效果优于对重金属Zn,F3钝化效果较好,对重金属Cu、Zn的钝化效果分别为58.72%、17.95%;通过方差分析,添加腐殖酸对重金属Cu、Zn钝化效果显著(P<0.05);F3的钝化效果优于其他处理组.

    (4)傅里叶红外光谱(FTIR)结果显示,猪粪厌氧发酵后各处理组沼渣中碳水化合物、脂肪族化合物等有机物分解、减少,芳香族化合物等腐殖质含量增多,腐殖化程度提高. 其中,F3添加7.5%腐殖酸的处理组中腐殖化程度最高.

    (5)重金属钝化法只能缓解畜禽粪便重金属污染问题,为了能够从源头解决,促进绿色健康食品的发展,建议有关部门和科研单位大力开发、推广高效畜禽免疫制剂,替代重金属饲料添加剂,杜绝畜禽粪便重金属污染.

  • 图 1  三亚河调查区域采样站位图

    Figure 1.  sampling stations of Sanya River

    图 2  三亚河表层水体中T(a)、DO(b)及S(c)时空分布(其中YLXL、RGQ、CJQ为支流站位)

    Figure 2.  Temporal and Spatial distribution of T(a), DO(b) and S(c) in surface water of Sanya River(Where YLXL, RGQ and CJQ are tributaries)

    图 3  三亚河各站位表层水体中营养盐的时空分布

    Figure 3.  Spatial and temporal distribution of nutrients in surface waters of Sanya River

    图 4  三亚河流域EI时空分布

    Figure 4.  Temporal and spatial distribution of EI in the Sanya River

    图 5  三亚河流域N/P时空分布

    Figure 5.  Temporal and spatial distribution of N/P in the Sanya River

    表 1  水样中各营养盐要素的分析方法

    Table 1.  Analysis methods of nutrient elements in water samples

    监测指标Test index分析方法Analysis method方法来源Method source
    NO2–N萘乙二胺分光光度法GB 17378.4—2007[18]
    NO3–N锌镉还原法(测定前校正水样盐度)GB 17378.4—2007[18]
    NH+4–N次溴酸盐氧化法GB 17378.4—2007[18]
    DIP磷钼蓝分光光度法GB 17378.4—2007[18]
    监测指标Test index分析方法Analysis method方法来源Method source
    NO2–N萘乙二胺分光光度法GB 17378.4—2007[18]
    NO3–N锌镉还原法(测定前校正水样盐度)GB 17378.4—2007[18]
    NH+4–N次溴酸盐氧化法GB 17378.4—2007[18]
    DIP磷钼蓝分光光度法GB 17378.4—2007[18]
    下载: 导出CSV

    表 2  地表水富营养化状态等级划分

    Table 2.  The classification of surface water eutrophication status

    营养化程度Eutrophication degree贫营养Oligotrophic中营养Mesotrophic富营养Eutrophic重富营养Hypereutrophic极富营养 Extreme eutrophic
    等级≤2020—39.4239.42—61.2961.29—76.2876.28—99.77
    营养化程度Eutrophication degree贫营养Oligotrophic中营养Mesotrophic富营养Eutrophic重富营养Hypereutrophic极富营养 Extreme eutrophic
    等级≤2020—39.4239.42—61.2961.29—76.2876.28—99.77
    下载: 导出CSV

    表 3  2018—2019年四个季度三亚河营养盐氮、磷含量及理化参数的变化范围及平均值1)

    Table 3.  Variation range and average value of nitrogen and phosphorus contents and physicochemical parameters in Sanya River from 2018 to 2019

    季节 SeasonNH4+-N /(mg·L−1NO3-N/(mg·L−1NO2-N/ (mg·L−1DIP/(mg·L−1T/℃S/‰DO/(mg·L−1
    春季 Spring范围0.014—0.4480.007—0.8300.001—0.1970.007—0.39124.5—31.30.06—32.812.69—8.42
    均值±SD0.186±0.1090.216±0.1620.073±0.0520.156±0.12027.1±0.914.63±11.05.16±1.43
    夏季 Summer范围0.026—0.4340.006—1.2120.002—0.1040.008—0.44215.8—32.00.05—31.560.96—8.38
    均值±SD0.209±0.0930.364±0.1330.043±0.0240.180±0.07225.7±0.77.13±7.915.02±1.62
    秋季 Autumn范围0.003—0.4450.134—0.8680.001—0.1220.008—0.2157.9—17.80.05-32.370.12—8.05
    均值±SD0.240±0.1030.543±0.1120.063±0.0330.099±0.04212.6±0.55.91±8.425.40±1.48
    冬季 Winter范围0.013—1.3210.017—1.6000.001—0.2720.009—0.2954.1—28.00.06—32.652.75—8.75
    均值±SD0.264±0.1560.495±0.3270.087±0.0540.132±0.09419.0±0.412.30±11.35.17±1.47
      1) SD标准偏差. SD: Standard deviation.
    季节 SeasonNH4+-N /(mg·L−1NO3-N/(mg·L−1NO2-N/ (mg·L−1DIP/(mg·L−1T/℃S/‰DO/(mg·L−1
    春季 Spring范围0.014—0.4480.007—0.8300.001—0.1970.007—0.39124.5—31.30.06—32.812.69—8.42
    均值±SD0.186±0.1090.216±0.1620.073±0.0520.156±0.12027.1±0.914.63±11.05.16±1.43
    夏季 Summer范围0.026—0.4340.006—1.2120.002—0.1040.008—0.44215.8—32.00.05—31.560.96—8.38
    均值±SD0.209±0.0930.364±0.1330.043±0.0240.180±0.07225.7±0.77.13±7.915.02±1.62
    秋季 Autumn范围0.003—0.4450.134—0.8680.001—0.1220.008—0.2157.9—17.80.05-32.370.12—8.05
    均值±SD0.240±0.1030.543±0.1120.063±0.0330.099±0.04212.6±0.55.91±8.425.40±1.48
    冬季 Winter范围0.013—1.3210.017—1.6000.001—0.2720.009—0.2954.1—28.00.06—32.652.75—8.75
    均值±SD0.264±0.1560.495±0.3270.087±0.0540.132±0.09419.0±0.412.30±11.35.17±1.47
      1) SD标准偏差. SD: Standard deviation.
    下载: 导出CSV

    表 4  三亚河与其他河流营养盐含量对比

    Table 4.  Comparison of nutrient content between Sanya River and other rivers

    流域 BasinNH+4–N/(mg·L−1NO3–N/(mg·L−1NO2–N/(mg·L−1DIP/(mg·L−1参考文献 Reference
    三亚河0.229±0.1040.420±0.1710.066±0.0380.140±0.066本研究
    珠江广州段3.3801.5100.3400.130[26]
    黄河0.0743.7700.0690.003[27]
    长江0.0101.1480.0200.038[28]
    万泉河0.0760.6400.0160.022[29]
    图尔河1.3800.6200.0560.110[30]
    石狩河0.1670.9320.0110.026[31]
    海河市区段1.4801.995[32]
    渭河咸阳段2.43[33]
    香溪河0.0610.7400.060[34]
    斯兹雷尼亚瓦河0.2303.4400.320[35]
    流域 BasinNH+4–N/(mg·L−1NO3–N/(mg·L−1NO2–N/(mg·L−1DIP/(mg·L−1参考文献 Reference
    三亚河0.229±0.1040.420±0.1710.066±0.0380.140±0.066本研究
    珠江广州段3.3801.5100.3400.130[26]
    黄河0.0743.7700.0690.003[27]
    长江0.0101.1480.0200.038[28]
    万泉河0.0760.6400.0160.022[29]
    图尔河1.3800.6200.0560.110[30]
    石狩河0.1670.9320.0110.026[31]
    海河市区段1.4801.995[32]
    渭河咸阳段2.43[33]
    香溪河0.0610.7400.060[34]
    斯兹雷尼亚瓦河0.2303.4400.320[35]
    下载: 导出CSV

    表 5  营养盐与环境因子的相关性分析1)

    Table 5.  Correlation analysis between nutrients and environmental factors

    季节 SeasonTSDONH+4–NNO3–NNO2–NDINDIP
    春季T1
    S−0.2261
    DO−0.3730.900**1
    NH+4–N0.285−0.728*−0.768*1
    NO3–N0.274−0.144−0.3190.673*1
    NO2–N0.556−0.66−0.679*0.864**0.735*1
    DIN0.348−0.446−0.570.888**0.933**0.897**1
    DIP0.472−.866**−.767*0.855**0.3830.865**0.670*1
    夏季T1
    S−0.6351
    DO−0.3880.899**1
    NH+4–N0.488−0.741*−.708*1
    NO3–N0.191−0.107−0.2320.1661
    NO2–N0.193−0.157−0.3550.5990.651
    DIN0.373−0.34−0.4390.5790.887**0.864**1
    DIP0.39−0.879**−0.939**0.831**0.2960.4380.5441
    秋季T1
    S−0.4371
    DO−0.0420.6731
    NH+4–N0.0880.008−0.0481
    NO3–N−0.265−0.501−0.575−0.4681
    NO2–N−0.656−0.246−0.521−0.0970.779*1
    DIN−0.536−0.163−0.365−0.0670.782*0.923**1
    DIP−0.469−0.401−0.692*0.0730.753*0.942**0.882**1
    冬季T1
    S−0.5711
    DO−0.5490.858**1
    NH+4–N0.424−0.591−0.4721
    NO3–N−0.411−0.065−0.1610.2211
    NO2–N0.06−0.512−0.5840.4950.842**1
    DIN−0.144−0.331−0.3650.5950.914**0.919**1
    DIP0.271−0.929**−0.792*0.6020.2470.570.4811
      1) *表示P<0.05,**表示P<0.01
    季节 SeasonTSDONH+4–NNO3–NNO2–NDINDIP
    春季T1
    S−0.2261
    DO−0.3730.900**1
    NH+4–N0.285−0.728*−0.768*1
    NO3–N0.274−0.144−0.3190.673*1
    NO2–N0.556−0.66−0.679*0.864**0.735*1
    DIN0.348−0.446−0.570.888**0.933**0.897**1
    DIP0.472−.866**−.767*0.855**0.3830.865**0.670*1
    夏季T1
    S−0.6351
    DO−0.3880.899**1
    NH+4–N0.488−0.741*−.708*1
    NO3–N0.191−0.107−0.2320.1661
    NO2–N0.193−0.157−0.3550.5990.651
    DIN0.373−0.34−0.4390.5790.887**0.864**1
    DIP0.39−0.879**−0.939**0.831**0.2960.4380.5441
    秋季T1
    S−0.4371
    DO−0.0420.6731
    NH+4–N0.0880.008−0.0481
    NO3–N−0.265−0.501−0.575−0.4681
    NO2–N−0.656−0.246−0.521−0.0970.779*1
    DIN−0.536−0.163−0.365−0.0670.782*0.923**1
    DIP−0.469−0.401−0.692*0.0730.753*0.942**0.882**1
    冬季T1
    S−0.5711
    DO−0.5490.858**1
    NH+4–N0.424−0.591−0.4721
    NO3–N−0.411−0.065−0.1610.2211
    NO2–N0.06−0.512−0.5840.4950.842**1
    DIN−0.144−0.331−0.3650.5950.914**0.919**1
    DIP0.271−0.929**−0.792*0.6020.2470.570.4811
      1) *表示P<0.05,**表示P<0.01
    下载: 导出CSV
  • [1] 陈雯, 吴亚, 张宏鑫, 等. 北海冯家江流域地表水体中氮磷营养盐的时空分布特征 [J]. 安全与环境工程, 2022, 29(1): 169-175,188.

    CHEN W, WU Y, ZHANG H X, et al. Spatial and temporal distribution of nitrogen and phosphorus nutrients in surface water of Fengjiajiang River watershed, Beihai [J]. Safety and Environmental Engineering, 2022, 29(1): 169-175,188(in Chinese).

    [2] 刘静, 杨福霞, 王俊杰, 等. 灌河下游营养盐浓度的季节变化及其入海通量研究 [J]. 中国海洋大学学报(自然科学版), 2021, 51(5): 72-80.

    LIU J, YANG F X, WANG J J, et al. Seasonal variation and fluxes of nutrients in the lower reaches of the Guanhe River [J]. Periodical of Ocean University of China, 2021, 51(5): 72-80(in Chinese).

    [3] 陈明霞, 熊贵耀, 张佳鹏, 等. 湘江流域水质综合评价及其时空演变分析 [J]. 环境工程, 2019, 37(10): 83-90,104.

    CHEN M X, XIONG G Y, ZHANG J P, et al. Comprehensive evaluation of water quality in Xiangjiang River Basin from multi-dimensional perspective and its spatial-temporal evolution analysis [J]. Environmental Engineering, 2019, 37(10): 83-90,104(in Chinese).

    [4] 余丽燕, 杨浩, 黄昌春, 等. 夏季滇池和入滇河流氮、磷污染特征 [J]. 湖泊科学, 2016, 28(5): 961-971. doi: 10.18307/2016.0505

    YU L Y, YANG H, HUANG C C, et al. Characteristic of nitrogen and phosphorous pollution in Lake Dianchi and its inflow rivers in summer [J]. Journal of Lake Sciences, 2016, 28(5): 961-971(in Chinese). doi: 10.18307/2016.0505

    [5] ZHANG P, CHEN Y, PENG C H, et al. Spatiotemporal variation, composition of DIN and its contribution to eutrophication in coastal waters adjacent to Hainan Island, China [J]. Regional Studies in Marine Science, 2020, 37: 101332. doi: 10.1016/j.rsma.2020.101332
    [6] 李昂臻, 陈思旭, 李海燕, 等. 北方某省会城市主要水库富营养化程度、特征和防治对策 [J]. 环境化学, 2020, 39(9): 2529-2539. doi: 10.7524/j.issn.0254-6108.2020040902

    LI A Z, CHEN S X, LI H Y, et al. Characteristics and evaluation of eutrophication in major reservoirs of a northern city in China [J]. Environmental Chemistry, 2020, 39(9): 2529-2539(in Chinese). doi: 10.7524/j.issn.0254-6108.2020040902

    [7] 周坤朋, 刘阳春, 王崇臣. 北京什刹海区域水体富营养化时空演变特征分析 [J]. 环境化学, 2016, 35(4): 703-712. doi: 10.7524/j.issn.0254-6108.2016.04.2015093001

    ZHOU K P, LIU Y C, WANG C C. Analysis on temporal-spatial variation of eutrophication in Shichahai area, Beijing [J]. Environmental Chemistry, 2016, 35(4): 703-712(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.04.2015093001

    [8] WANG X L, CUI Z G, GUO Q, et al. Distribution of nutrients and eutrophication assessment in the Bohai Sea of China [J]. Chinese Journal of Oceanology and Limnology, 2009, 27(1): 177-183. doi: 10.1007/s00343-009-0177-x
    [9] 张美, 毛硕乾, 楼巧婷, 等. 2018年梅山湾营养盐的时空变化及富营养化分析 [J]. 海洋环境科学, 2020, 39(6): 853-859. doi: 10.12111/j.mes.20190210

    ZHANG M, MAO S Q, LOU Q T, et al. Spatial-temporal variations and eutrophication analysis of nutrients in Meishan Bay in 2018 [J]. Marine Environmental Science, 2020, 39(6): 853-859(in Chinese). doi: 10.12111/j.mes.20190210

    [10] 卢龙, 谢芳立. 赣江水体氮磷营养盐分布特征及影响因素 [J]. 南昌大学学报(理科版), 2017, 41(6): 567-571.

    LU L, XIE F L. Research on the factors of Ganjiang River water nitrogen and phosphorus distribution characteristics and influence [J]. Journal of Nanchang University (Natural Science), 2017, 41(6): 567-571(in Chinese).

    [11] 三亚市生态环境局. 三亚市生态环境局关于2019年三亚市环境状况的公报[EB/OL]. [2022-3-2]. http://hbj.sanya.gov.cn/sthjsite/tzgg/202006/10ff196e4e884549a564e4475e9f9963.shtml.

    Sanya Ecological Environment Bureau. Bulletin of Sanya Ecological Environment Bureau on the environmental condition of Sanya City in 2019 [EB/OL]. [2022-3-2]. http://hbj.sanya.gov.cn/sthjsite/tzgg/202006/10ff196e4e884549a564e4475e9f9963.shtml.

    [12] 车志伟, 史云峰, 曲江勇, 等. 三亚河口叶绿素a含量及其与环境因子的关系 [J]. 琼州学院学报, 2014, 21(2): 88-92.

    CHE Z W, SHI Y F, QU J Y, et al. The content of chlorophyll - a and its relationship with the environmental factors in the Sanya Estuary [J]. Journal of Qiongzhou University, 2014, 21(2): 88-92(in Chinese).

    [13] 三亚市统计年鉴(2020年)[EB/OL]. [2022-3-20]. http://tjj.sanya.gov.cn/tjjsite/2020nnjf/tjnj.shtml.

    Statistical Yearbook of Sanya City (2020)[EB/OL]. [2022-3-20]. http://tjj.sanya.gov.cn/tjjsite/2020nnjf/tjnj.shtml (in Chinese).

    [14] 陈文术, 王胜男, 杨波. 三亚绿地系统中海绵城市建设的思考 [J]. 安徽农业科学, 2017, 45(17): 153-154,192. doi: 10.3969/j.issn.0517-6611.2017.17.055

    CHEN W S, WANG S N, YANG B. The construction of sponge city in Sanya green space system [J]. Journal of Anhui Agricultural Sciences, 2017, 45(17): 153-154,192(in Chinese). doi: 10.3969/j.issn.0517-6611.2017.17.055

    [15] 车志伟. 三亚河入海口与感潮河段悬浮物分布特征及潮汐之影响 [J]. 广东海洋大学学报, 2007, 27(6): 89-92. doi: 10.3969/j.issn.1673-9159.2007.06.021

    CHE Z W. Suspension distributing characteristics of Sanya River Estuary and tide-induced effects [J]. Journal of Guangdong Ocean University, 2007, 27(6): 89-92(in Chinese). doi: 10.3969/j.issn.1673-9159.2007.06.021

    [16] 李晨曦. 红树林的生态修复与滨海城市的景观营造: 以三亚河红树林自然保护区生态修复为例 [J]. 林业科技情报, 2017, 49(4): 88-89,93. doi: 10.3969/j.issn.1009-3303.2017.04.032

    LI C X. Ecological restoration of mangrove and landscape construction of coastal city—A case study of ecological restoration of mangrove nature reserve in Sanya River [J]. Forestry Science and Technology Information, 2017, 49(4): 88-89,93(in Chinese). doi: 10.3969/j.issn.1009-3303.2017.04.032

    [17] 杨星, 邱彭华, 钟尊倩. 三亚河红树林自然保护区水环境-红树植物-沉积物重金属污染综合分析 [J]. 环境污染与防治, 2020, 42(9): 1163-1170.

    YANG X, QIU P H, ZHONG Z Q. Comprehensive analysis of heavy metal pollution of water-mangrove plants-sediments system in Sanya River mangrove nature reserve [J]. Environmental Pollution & Control, 2020, 42(9): 1163-1170(in Chinese).

    [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 海洋监测规范 第4部分: 海水分析: GB 17378.4—2007[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The specification for marine monitoring—Part 4: Seawater analysis: GB 17378.4—2007[S]. Beijing: Standards Press of China, 2008(in Chinese).

    [19] 李祚泳, 汪嘉杨, 郭淳. 富营养化评价的对数型幂函数普适指数公式 [J]. 环境科学学报, 2010, 30(3): 664-672.

    LI Z Y, WANG J Y, GUO C. A universal index formula for eutrophic evaluation using a logarithmic power function [J]. Acta Scientiae Circumstantiae, 2010, 30(3): 664-672(in Chinese).

    [20] 李洪涛, 刘阳, 于国庆, 等. 威海南部近岸海域表层海水化学要素时空变化及富营养化研究 [J]. 应用海洋学学报, 2016, 35(3): 356-363. doi: 10.3969/J.ISSN.2095-4972.2016.03.006

    LI H T, LIU Y, YU G Q, et al. Spatial-temporal distribution of sea water chemicals and eutrophication evaluation in surface water of southern Weihai coastal area [J]. Journal of Applied Oceanography, 2016, 35(3): 356-363(in Chinese). doi: 10.3969/J.ISSN.2095-4972.2016.03.006

    [21] 陈攀, 李晓梅, 王梅, 等. 旅游旺季三亚河水体中有机物含量的分析 [J]. 琼州学院学报, 2014, 21(5): 93-98.

    CHEN P, LI X M, WANG M, et al. Analysis of organic matters content in water of Sanya River in tourist season [J]. Journal of Qiongzhou University, 2014, 21(5): 93-98(in Chinese).

    [22] GAO Y X, YU J H, SONG Y Z, et al. Spatial and temporal distribution characteristics of different forms of inorganic nitrogen in three types of rivers around Lake Taihu, China [J]. Environmental Science and Pollution Research International, 2019, 26(7): 6898-6910. doi: 10.1007/s11356-019-04154-w
    [23] 任丙南, 耿静. 三亚市水体中PPCPs的污染水平、分布特征及生态风险评价 [J]. 环境科学, 2021, 42(10): 4717-4726.

    REN B N, GENG J. Occurrence, distribution, and ecological risk assessment of pharmaceutical and personal care products in the aquatic environment of Sanya City, China [J]. Environmental Science, 2021, 42(10): 4717-4726(in Chinese).

    [24] de SANTIS BRAGA E, BERBEL G B B, CHIOZZINI V G, et al. Dissolved organic nutrients (C, N, P) in seawater on the continental shelf in the Southwestern South Atlantic with emphasis State Marine Park of Laje de Santos (SMPLS) - São Paulo - Brazil [J]. Brazilian Journal of Oceanography, 2017, 65(4): 614-627. doi: 10.1590/s1679-87592017136506504
    [25] 安敏, 文威, 孙淑娟, 等. pH和盐度对海河干流表层沉积物吸附解吸磷(P)的影响 [J]. 环境科学学报, 2009, 29(12): 2616-2622. doi: 10.3321/j.issn:0253-2468.2009.12.021

    AN M, WEN W, SUN S J, et al. Effects of pH and salinity on phosphorus sorption and desorption in the surface sediments of the mainstream of the Haihe River [J]. Acta Scientiae Circumstantiae, 2009, 29(12): 2616-2622(in Chinese). doi: 10.3321/j.issn:0253-2468.2009.12.021

    [26] LIU Q, HU X J, JIANG J L, et al. Comparison of the water quality of the surface microlayer and subsurface water in the Guangzhou segment of the Pearl River, China [J]. Journal of Geographical Sciences, 2014, 24(3): 475-491. doi: 10.1007/s11442-014-1101-7
    [27] 谷文艳, 陈洪涛, 姚庆祯, 等. 黄河下游溶解态营养盐季节变化及入海通量研究 [J]. 中国海洋大学学报(自然科学版), 2017, 47(3): 74-79,86.

    GU W Y, CHEN H T, YAO Q Z, et al. Seasonal variation and fluxes of dissolved nutrients in the lower reaches of the Huanghe [J]. Periodical of Ocean University of China, 2017, 47(3): 74-79,86(in Chinese).

    [28] 江涛, 俞志明, 宋秀贤, 等. 长江水体溶解态无机氮和磷现状及长期变化特点 [J]. 海洋与湖沼, 2012, 43(6): 1067-1075.

    JIANG T, YU Z M, SONG X X, et al. Analysis of distribution, flux and long-term variations of dissolved inorganic nitrogen and phosphate in the Changjiang River [J]. Oceanologia et Limnologia Sinica, 2012, 43(6): 1067-1075(in Chinese).

    [29] LI R H, LIU S M, ZHANG G L, et al. Biogeochemistry of nutrients in an estuary affected by human activities: The Wanquan River estuary, eastern Hainan Island, China [J]. Continental Shelf Research, 2013, 57: 18-31. doi: 10.1016/j.csr.2012.02.013
    [30] ALTANSUKH O, WHITEHEAD P, BROMLEY J. Spatial patterns and temporal trends in the water quality of the Tuul River in Mongolia [J]. Energy and Environment Research, 2012, 2(1): 62-78.
    [31] JHA P K, MASAO M. Factors affecting nutrient concentration and stable carbon and nitrogen isotope ratio of particulate organic matter in the Ishikari River system, Japan [J]. Water, Air, & Soil Pollution, 2013, 224(5): 1-23.
    [32] 高翔, 蒙海涛, 易晓娟. 天津市主要水体的氮污染特征分析 [J]. 中国给水排水, 2011, 27(15): 51-55.

    GAO X, MENG H T, YI X J. Analysis of nitrogen pollution characteristics in water bodies of Tianjin [J]. China Water & Wastewater, 2011, 27(15): 51-55(in Chinese).

    [33] WANG S J, LU A G, DANG S H, et al. Ammonium nitrogen concentration in the Weihe River, central China during 2005-2015 [J]. Environmental Earth Sciences, 2016, 75(6): 512. doi: 10.1007/s12665-015-5224-7
    [34] 谭路, 蔡庆华, 徐耀阳, 等. 三峡水库175m水位试验性蓄水后春季富营养化状态调查及比较 [J]. 湿地科学, 2010, 8(4): 331-338.

    TAN L, CAI Q H, XU Y Y, et al. Survey of spring eutrophication status after 175 m experimental impoundment of Three Gorges reservoir and comparison [J]. Wetland Science, 2010, 8(4): 331-338(in Chinese).

    [35] KOWALCZYK A, SMOROŃ S, KOPACZ M. Influence of runoff of suspended solids on quality of surface water: Case study of the Szreniawa River [J]. Journal of Water and Land Development, 2019, 41(1): 83-90. doi: 10.2478/jwld-2019-0031
    [36] 刘小涯, 潘建明, 张海生, 等. 南海海水中DO的平面、垂直分布以及海-气交换通量 [J]. 海洋学研究, 2005, 23(4): 41-48. doi: 10.3969/j.issn.1001-909X.2005.04.007

    LIU X Y, PAN J M, ZHANG H S, et al. Horizontal and vertical distributions of DO content and its flux of ocean-atmosphere exchange in the South China Sea [J]. Journal of Marine Sciences, 2005, 23(4): 41-48(in Chinese). doi: 10.3969/j.issn.1001-909X.2005.04.007

    [37] 曹承进, 秦延文, 郑丙辉, 等. 三峡水库主要入库河流磷营养盐特征及其来源分析 [J]. 环境科学, 2008, 29(2): 2310-2315.

    CAO C J, QIN Y W, ZHENG B H, et al. Analysis of phosphorus distribution characters and their sources of the major input rivers of Three Gorges reservoir [J]. Environmental Science, 2008, 29(2): 2310-2315(in Chinese).

    [38] GUILDFORD S J, HECKY R E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? [J]. Limnology and Oceanography, 2000, 45(6): 1213-1223. doi: 10.4319/lo.2000.45.6.1213
    [39] 凌娟, 张燕英, 董俊德, 等. 三亚湾珊瑚礁海域蓝藻群落组成的空间分布特征及其与环境因子的关系 [J]. 科学通报, 2013, 58(17): 1610-1619. doi: 10.1360/csb2013-58-17-1610

    LING J, ZHANG Y Y, DONG J D, et al. Spatial distribution characteristics of cyanobacteria community in coral reef area of Sanya Bay and its relationship with environmental factors [J]. Chinese Science Bulletin, 2013, 58(17): 1610-1619(in Chinese). doi: 10.1360/csb2013-58-17-1610

    [40] 李由明, 刘明, 王平, 等. 旅游旺季三亚湾水体中磷营养盐含量的分析研究 [J]. 海洋信息, 2013(3): 35-37.

    LI Y M, LIU M, WANG P, et al. Analysis and study on the content of phosphorus nutrients in Sanya Bay in peak tourist season [J]. Marine Information, 2013(3): 35-37(in Chinese).

    [41] 孙文凭, 徐继荣, 殷建平, 等. 三亚河与三亚湾溶存N2O分布特征与影响因素研究 [J]. 海洋与湖沼, 2010, 41(2): 266-273.

    SUN W P, XU J R, YIN J P, et al. N2O distribution and mediating factors in Sanya River and Sanya Bay [J]. Oceanologia et Limnologia Sinica, 2010, 41(2): 266-273(in Chinese).

    [42] 劳齐斌, 刘国强, 申友利, 等. 北部湾入海河流营养盐的分布特征及入海通量研究 [J]. 海洋学报, 2020, 42(12): 93-100.

    LAO Q B, LIU G Q, SHEN Y L, et al. Distribution characteristics and fluxes of nutrients in the rivers of the Beibu Gulf [J]. Haiyang Xuebao, 2020, 42(12): 93-100(in Chinese).

    [43] 王汉奎, 董俊德, 王友绍, 等. 三亚湾近3年营养盐含量变化及其输送量的估算 [J]. 热带海洋学报, 2005, 24(5): 90-95. doi: 10.3969/j.issn.1009-5470.2005.05.011

    WANG H K, DONG J D, WANG Y S, et al. Variations of nutrient contents and their transportation estimate at Sanya Bay [J]. Journal of Tropical Oceanography, 2005, 24(5): 90-95(in Chinese). doi: 10.3969/j.issn.1009-5470.2005.05.011

  • 期刊类型引用(1)

    1. 吴喆,余春瑰,刘美璇,李翀,段高旗,彭剑峰,李艳红. 典型热带近海河流微生物群落结构特征及其碳氮磷循环特征与机制. 环境科学学报. 2025(01): 201-215 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 7.2 %DOWNLOAD: 7.2 %HTML全文: 88.5 %HTML全文: 88.5 %摘要: 4.3 %摘要: 4.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.3 %其他: 99.3 %XX: 0.3 %XX: 0.3 %南京: 0.3 %南京: 0.3 %其他XX南京Highcharts.com
图( 5) 表( 5)
计量
  • 文章访问数:  1558
  • HTML全文浏览数:  1558
  • PDF下载数:  87
  • 施引文献:  1
出版历程
  • 收稿日期:  2022-08-01
  • 录用日期:  2022-10-26
  • 刊出日期:  2024-02-27
韩玉, 郑忠陆, 陈贤伟, 李霞, 郭雨昂, 公维洁. 三亚河营养盐时空分布及富营养化研究[J]. 环境化学, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104
引用本文: 韩玉, 郑忠陆, 陈贤伟, 李霞, 郭雨昂, 公维洁. 三亚河营养盐时空分布及富营养化研究[J]. 环境化学, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104
HAN Yu, ZHENG Zhonglu, CHEN Xianwei, LI Xia, GUO Yuang, GONG Weijie. Study on temporal and spatial distribution and eutrophication of nutrients in Sanya River[J]. Environmental Chemistry, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104
Citation: HAN Yu, ZHENG Zhonglu, CHEN Xianwei, LI Xia, GUO Yuang, GONG Weijie. Study on temporal and spatial distribution and eutrophication of nutrients in Sanya River[J]. Environmental Chemistry, 2024, 43(2): 524-535. doi: 10.7524/j.issn.0254-6108.2022080104

三亚河营养盐时空分布及富营养化研究

    通讯作者: E-mail:gong.wei.jie@163.com
  • 海南热带海洋学院,海洋科学技术学院/崖州湾创新研究院,三亚,572000
基金项目:
海南省自然科学基金青年基金(419QN241),海南省自然科学基金(420MS058),海南热带海洋学院博士研究生科研启动项目(RHDXB201622)和海南热带海洋学院青年专项基金(RHDQN201816)资助

摘要: 为了解三亚河营养盐污染状况,于2018年6月—2019年5月对三亚河流域进行逐季调查,分析水体中氮磷营养盐的时空分布特征及影响因素,评估河流富营养化状况,并进一步估算三亚河营养盐入海通量. 结果表明,三亚河水体中营养盐浓度季节变化显著,三亚河水体中DIN的浓度范围为0.028—2.096 mg·L−1,平均浓度为(0.700±0.279)mg·L−1,冬季>秋季>夏季>春季,NO3–N和NH+4–N是水体中DIN的主要存在形式. DIP浓度范围为0.007—0.442 mg·L−1,平均浓度为(0.140±0.066)mg·L−1,夏季>春季>冬季>秋季. 空间分布上,N、P营养盐均呈现出上游及入海口河段浓度低,中下游河段浓度高的特点. 河段环境特征、人为活动、降雨、潮汐作用是影响三亚河营养盐分布的主要因素. 综合富营养盐指数(EI)结果显示,各季节三亚河上游及入海口河段均处于中富营养化状态,中下游河段均处于富营养化和重富营养化状态. 春、夏、秋季N/P值表明河流多处于N限制状态,冬季大部分河段适合藻类生存,有发生藻华的风险. 根据营养盐浓度和三亚河年平均径流量估算出,DIN、NO3–N、NO2–N、NH+4–N、DIP年入海通量分别为118.37、70.93、11.18、38.67、23.75 t.

English Abstract

  • 近海河流是陆地与海洋联系的重要纽带,是城市发展和生物多样性的基础,河流水质是体现城市发展水平和生态环境的重要指标[1-2]. 近年来,随着城市的快速发展,各种点源污染(工业污染、生活污染等)、面源污染(农业污染)及城市本身遗留的污染已经对河流水环境稳定及生物健康构成了威胁[3-4],大量N、P等污染物随着污水输入到河流中,超出河流的自净能力,引起水体富营养化,造成水体溶解氧降低、水体酸化、生物栖息地退化、有毒有害藻类大量繁殖[5-7]、生物多样性减少、水生生态系统的结构和功能发生异常等问题[8-9]. 水体富营养化是国际上共同关注的水环境问题[10],针对城市地表水开展调查研究,了解地表水污染现状,对城市水治理、修复等工作有着十分重要的意义.

    三亚河由北向南贯穿三亚市,注入三亚港入海,对城市居民生活及旅游业的发展具有十分重要的意义. 2015年三亚市自然资源和规划局出台《三亚市中心城区水系综合规划》,提出改善三亚河水环境状况,然而三亚人口众多,城市废水的排放、土地利用的改变给三亚河水环境治理带来严峻的挑战. 2018—2019年,三亚河的水质为仍为Ⅲ、Ⅳ类,主要污染指标为氨氮[11].

    本文通过对三亚河进行调查,旨在系统地探究三亚河营养盐的时空分布特征,评价水体富营养化现状,为相关部门围绕海南“三区一中心”的战略定位,稳步有效推进三亚河流域水环境综合治理提供基础数据,丰富对三亚河营养盐分布的认识.

    • 三亚河(18°19′—18°37′N、108°36′—109°46′E)发源于三亚市和保亭黎族苗族自治县交界的中间岭右侧高山南麓,由六罗水、水蛟溪和半岭水3条河流组成. 流域面积337.02 km2,年平均流量为6.7 m3·s-1[12]. 三亚地属热带海洋性季风气候,年平均气温25.5 ℃,年平均降水量1537.04 mm[13],全年90%的降水量集中在雨季(5—10月份),旱季(11月—次年4月)仅占10%[14]. 三亚河属潮汐河流,日纳潮量为253 m3[15],不规则的全日潮汐可影响至辽家坡路河段. 依据河流地形、河道及水文特征将三亚河分为上游(DGB—LJPL)、中游(YLXL—YCQ)和下游(RGQ—SYDQ). 上游河道狭窄,属低山丘陵区,植被覆盖好,水土流失弱,沿河两岸有大片的农田,上游水库拦蓄河道河流,河流流量小,水深较浅[16]. 中游河道为河网的过度带,有支流汤他水汇入,属城市河段,潮汐作用影响较弱. 下游河道为感潮、城市河段,有支流半岭水汇入,河流分为东西河,平均潮差约为1.0 m,靠近入海口处纳潮量大. 中下游河道两侧生长着大量红树林,沿河两岸有大量居民区、酒店及餐饮等,此外周围污水管网有破损等情况,沿河部分地区未纳入城市污水管网系统,污水直接排入到河流中[17]. 三亚河水深受降雨和潮汐影响较大,采样期间旱季上游河段水深均小于0.5 m,中游河段约为0.5—1 m,下游河段约为1—2 m,入海口的SYG站位较深,约为9 m. 雨季上游河段水深约为0.5—1 m,中游河段约为1—2 m,下游河段约为2—3 m,入海口的SYG站位约为11 m.

    • 于2018年6月—2019年5月对三亚河干、支流进行逐月采样,根据河流特征从下游到上游分别在三亚港(SYG)、三亚大桥(SYDQ)、新风桥(XFQ)、月川桥(YCQ)、水城路桥(SCLQ)、辽家坡路(LJPL)、槟榔桥(BLQ)以及打狗坝(DGB),支流的溶根桥(RGQ)、潮见桥(CJQ)及育林新路(YLXL)共11个站位采集表层水样(见图1). 另根据采样时站位的实际水深情况分别于1、3、9月份采集SYG站位,10月份采集下游YCQ、RGQ、XFQ、CJQ、SYG站位的底层水样.

      水样用2.5 L有机玻璃采水器采集,分装于1 L聚乙烯瓶中,带回实验室用0.45 μm醋酸纤维滤膜过滤后装于聚乙烯瓶中(经30%的盐酸浸泡24 h后,用超纯水清洗至中性),冷冻保存(−20 ℃),1周内测完,水样均为双样. 水温(T)、盐度(S)、溶解氧(DO)等参数用多参数水质分析仪现场测定(WTW Multi36308),其中DO用温克勒滴定法校正. 营养盐浓度使用紫外可见分光光度计测定,测定方法见表1,其中溶解的无机氮(DIN)为铵盐(NH+4–N)、硝酸盐(NO3–N)、亚硝酸盐(NO2–N)三者浓度之和,测量过程中采用国家海洋局标准物质中心生产的营养盐标准系列作为外标质控样. NH+4 –N、NO3–N、NO2–N、DIP(活性磷酸盐)的检测限分别为0.002、0.005、0.0005、0.0008 mg·L−1,平行样相对偏差分别为0.5%—4.8%、0.2%—3.4%、0.3%—4.2%. DO检测限为0.2 mg·L−1,平行样相对偏差为0—2.3%.

      本研究采用适用于河流水体的对数型幂函数普适指数公式法计算三亚河水体富营养化的评价综合指数(EI),水体中常规指标依据《地表水环境质量标准》(GB 3838—2002)进行,选取了DO、DIP、NH+4–N、NO2–N、NO3–N为评价标准,计算公式[19]如下:

      式中,EI为富营养化评价综合指数;Wj为指标j的归一化权重值;本研究将各指标视为等权重;EIj为指表j的富营养化评价普适指数;Xj为指标j的规范值;上述四者都是无量纲参数(表2).

    • 相关实验数据分析运用Origin 2017,营养盐与理化参数的相关性分析运用SPSS 26.0,站位图使用Sufer 15软件进行绘制.

    • 三亚河不同季节各站位TS及DO变化特征如图2所示. 表层水体温度变化范围为4.1—32.0 ℃,年平均水温为(21.1±5.8)℃. 采样调查期间三亚河春、夏、秋、冬季节的平均水温分别为(27.1±0.9)、(25.7±0.7)、(12.6±0.5)、(19.0±0.4)℃,季节变化显著,表现为春季>夏季>冬季>秋季,这与该时间段内气温的季节变化趋势一至. 空间分布上,同一月份各站位水温相差不大,主要是受采样时间和水深的影响(图2a).

      表层水体盐度变化范围为0.05‰—32.81‰,平均值为(10.0‰±10.4‰),整体表现为春季>冬季>夏季>秋季,主要受降雨及潮汐作用的影响. 春、冬季(旱季)河流径流量小,潮汐可影响至LJPL站位,夏、秋季(雨季)降雨较多,潮汐作用仅能影响到SCLQ河段,部分月份暴雨后表层水体在入海口附近盐度接近0. 在空间分布上,各季节受潮汐作用影响显著,从上游至下游盐度逐渐增大(图2b).

      三亚河表层水体DO含量变化范围为0.12—8.75 mg·L−1,平均含量为(5.19±1.45)mg·L−1. 整体表现为秋季>冬季>春季>夏季. 上游,DO在春季最低,主要是由于春季净流量小,水体流动性差,水体温度相对较高,中下游各站位不同季节溶解氧含量相差不大. 空间分布上,上游(DGB、BLQ)及入海口(CJQ、SYDQ及SYG)河段部分站位DO含量相对较高. 中游溶解氧含量普遍较低(图2c),主要是由于上游河段连接水库,沉积环境多为砾石,水体清澈,中游及下游部分河段为居民区,河流较浅,落潮时部分河段裸露,两岸有大量的树木,河床分布有大面积水草,且较为曲折,沉积环境为泥质沉积,有机质含量高,消耗大量氧气[20]. 下游入海口河段受潮汐混合影响,DO逐渐增大.

    • 不同季节三亚河水体中营养盐的时空分布见图3,各季节营养盐含量见表3. 在空间分布上,N、P营养盐均表现为上游及入海口处浓度低、中下游区域浓度高的特点(图3). 主要是因为上游河段沉积环境多为砾石,沿河植被覆盖好,地表径流输入到河流的营养盐相对较低[16]. 中下游区域位于中心城区地段,河流两岸分布大量居民区、酒店、饭店等,人口密集,河流受人为污染严重,同时河道两测分布不同面积的红树林,沉积物中携带大量的有机物,退潮时红树林沉积物中部分有机物被带入到河流中,使得中游河段整体营养盐较高[21]. 下游潮汐作用强烈,涨潮时海水上溯带走并稀释部分营养盐,使得下游营养盐随盐度的增加逐渐降低. 支流站位(YLXL、RGQ和CJQ)营养盐含量与其附近站位相比较高或相当,说明支流输入是三亚河营养盐的重要来源之一. 另外,10月份下游各站位由于水深较浅(约1—2 m),表、底层水体营养盐含量相差不大.

      在入海口SYG站位,旱季(1、3月份)表、底层(约9 m)水体DIN(DIP)平均含量分别为0.087(0.070)mg·L−1和0.065(0.055)mg·L−1,相差不大,但在雨季(9、10月份)表、底(约11 m)层水体DIN(DIP)的平均含量分别为0.680(0.204)mg·L−1和0.042(0.064)mg·L−1,表层远高于底层,体现了三亚河冲淡水向近岸输送营养盐.

      全年尺度上DIN的浓度范围为0.028—2.096 mg·L−1,平均浓度为(0.700±0.279)mg·L−1,冬季>秋季>夏季>春季,NH+4–N、NO3–N、NO2–N的占比分别为32.0%、58.8%和9.2%,NO3–N和NH+4–N是水体中DIN的主要存在形式. NH+4–N各季节浓度相差不大,冬季最高,特别是在SCLQ站位,其浓度是附近站位的2倍以上. 微生物分解有机含氮化合物是河流中NH+4–N的重要来源之一[22],而冬季是三亚的旅游旺季,侯鸟人数为三亚户籍人口总数的70%[23],在人为活动的影响下,生活污水以及流域周边农业、畜牧业养殖废水大量排入河流中,导致水体中NH+4–N浓度相对较高. 河流中NO3–N浓度季节变化显著,秋季NO3–N整体平均浓度最高,主要是因为上游河段两岸多为农田,土壤为电负性,不易吸附带负电荷的NO3–N,秋季降雨较多,雨水冲刷土壤使NO3–N易被淋溶到河流中. 同时,秋季溶解氧含量高,促进了硝化作用的进行,使水体中NO3–N浓度升高. 中下游河段,水体中NO3–N浓度与冬季相当,其污染来源可能与NH+4–N相似. 在RGQ站位冬季含量最高,主要是冬季人为影响较大,支流半岭水携带大量NO3–N汇入的影响. 春季NO3–N浓度低,主要是由于春季属旱季,降雨较少,另外,春季水温较高,浮游植物生长代谢快,加快NO3–N的消耗,这与中下游河段水体中DO含量较高相一致. NO2–N季节变化为冬>春>秋>夏,冬、春季均明显高于夏、秋季,即旱季高于雨季. NO2–N是NO3–N和NH+4–N之间的过度形态,在热力学上很不稳定,易被微生物及氧化剂转化NH+4–N和NO3–N,其循环转化与生物活动、废水排放、水温、溶解氧等因素有关,浓度变化较复杂[24]. DIP浓度范围为0.007—0.442 mg·L−1,平均浓度为(0.140±0.066)mg·L−1,夏季>春季>冬季>秋季. 夏秋季均为雨季,降雨量较大,地表径流冲刷陆地,携带含P废水进入河流,但由于三亚地处热带,秋季台风较多,农业种植活动普遍减少,含磷化肥的使用远低于其他季节,秋季水体中无机磷的含量最低. 研究表明,在pH为6—8的范围内,沉积物对磷解吸作用随pH增大而增强,沉积物对磷解吸作用随着盐度增加逐渐增强[25],春、冬季,降雨较少,潮汐作用影响范围更大,河流盐度较高,内源磷释放可能是水体中无机磷含量较高的重要原因. 各个季节中游YLXL站位DIP浓度异常增高,是由于三亚育林新路河段存在小区生活污水特别是洗涤用水通过雨水管道排入到三亚河中,输入大量DIP.

      国内外其他河流不同形态N、P营养盐的平均浓度见表4. 三亚河NO3-N平均浓度与国内外大小型河流相比均较低. NO2-N浓度远低于珠江(广州段)[26],与黄河相差不大[27],但均高于长江、万泉河、图尔河及石狩河[28-31]. NH4+-N浓度远低于国内外受人为影响剧烈的河流,如海河(市区段)[32]、珠江(广州段)[26]、渭河(咸阳段)[33]及图尔河[30]. 远高于大型河流长江、黄河以及污染影响较小的小型河流万泉河、香溪河[27-29,34]. 但与受农业污染为主的石狩河、斯兹雷尼亚瓦河相差不大[31,35]. DIP含量在人为污染以及农业污染为主的河流中处于中等水平,但远高于大型河流长江、黄河以及受污染影响较小的小型河流万泉河、香溪河[27-29,34].

    • 三亚河中下游区域人口密集,水体污染较严重,潮汐作用可影响至LJPL河段,因此,在分析营养盐与环境因子关系时扣除了上游DGB和BLQ站位. 三亚河流域营养盐与环境因子的相关性系数见表5. S与DO在春、夏、冬季呈显著正相关(P<0.01),一方面富氧海水随潮汐作用与河水混合,另一方面潮汐作用导致的水体扰动有利于水-气界面DO的交换. NH+4 –N与S在春季、夏季呈显著负相关(P<0.05),与DIP在春、夏、冬季呈显著负相关(P<0.01),主要是由于潮汐作用的稀释造成的.

      DO与NH4+–N在春、夏季以及与DIP在各季均表现为显著负相关(P<0.05),这是由于水体中浮游植物在吸收NH4+–N及DIP进行光合作用同时释放大量氧气[36] ,各季节水体中不同形态的氮之间存在不同程度的相关性,氮的循环转化较为活跃. 另外,在春季和秋季,无机氮、磷之间呈较好的正相关,说明他们来源相一致.

    • 依据的营养化等级划分(表2)可以看出,各季节三亚河流域均处于富营养化状态(图4),其中春、夏、秋、冬季三亚河水处于重富营养化的站位数量占比分别为9.1%、9.1%、0%、27.3%,富营养化占比分别为63.6%、72.7%、81.8%、45.5%. 重富营养化多出现在冬季中游河段(图4),主要是由于中游河段位于三亚市中心,同时冬季正值旅游旺季,河流受人为活动影响剧烈,污染较严重. 空间分布上中富营养化主要分布在上游及下游入海口站位,严重的富营养化水域多集中在中游及中下游河段.

      N/P是营养盐结构的主要指标,河流水体中可被生物利用的N、P多为溶解的无机氮(DIN)和无机磷(DIP)[37]. Guildford等[38]提出了水体中营养物质的限制性标准,当N/P≤9体时(质量比),N为限制性因子,当9<N/P<22.6时,适合藻类的生存的,N/P≥22.6时,为磷限制性因子. 三亚河各站位水样N/P(质量比)空间分布见图5,总体而言,三亚河流域多处于N限制状态,其中春、夏季整体水域都处于氮限制状态,秋季54.5%的站位处于氮限制状态,36.4%的站位适合藻类生存,仅有1个站位(BLQ)站位在秋季处于磷限制状态,可能是由于该河段藻类大量生长,消耗水体中N、P有机物,P营养盐被优先消耗到低于阈值,使得出现磷限制[37]. 冬季45.5%的站位处于氮限制状态,54.5%的站位适合藻类生存. 河流水质均与三亚湾早期研究得出附近海域其生产力主要受氮素限制情况相一致[39]. 近年来随着三亚市旅游业的不断发展,人口密集程度不断上升,据统计2013—2019年三亚旅游人数增长近千万,磷酸盐在沿岸人口密集的区域一般浓度较高[13,40].

    • 由于缺乏调查期间三亚河实时径流量数据,所以本文采用的是三亚河历年平均径流量5.86 m3·s–1 [41]来估算三亚河营养盐年入海通量. DIN、NO3-N、NO2-N、NH+4-N、DIP年入海通量分别为118.37、70.93、11.18、38.67、23.75 t,其中NH+4-N入海通量与以往调查数据显示每年向三亚湾输入的氨氮污染物37 t相差不大[15]. 与国外内已报道小型河流,如灌河下游[2]、北部湾入海河流[42]、石狩河[31]营养盐年入海通量相比均明显较低,尽管输入不大,但是对三亚湾水质生态环境有着重要的影响[43].

    • (1)三亚河水体中DIN的浓度范围为0.028—2.096 mg·L−1,平均浓度为(0.700±0.279)mg·L−1. 空间分布上,N、P营养盐均呈现出上游及入海口河段浓度低,中下游河段浓度高的特点. 水体中营养盐季节变化明显,DIN冬季>秋季>夏季>春季,NO3-N和NH+4-N是水体中DIN的主要存在形式. DIP浓度范围为0.007—0.442 mg·L−1,平均浓度为(0.140±0.066)mg·L−1,夏季>春季>冬季>秋季. 河段环境特征、人为活动、降雨、潮汐作用是影响三亚河营养盐分布的主要因素. 与国内外人为及农业污染为主的河流相比,三亚河水体中NH+4-N、NO2-N、DIP均处于中等水平,NO3-N处于低等水平.

      (2)依据富营养状态综合指数(EI),三亚河上游的DGB和BLQ站位及入海口的SYG站位的春、冬季水体处于中富营养化状态,其他站位各季节水体呈现富营养化或重富营养化状态. N/P值结果表明,春、夏、秋季河流多处于N限制状态,冬季大部分河段适合藻类生存,水华风险较高. 根据三亚河年平均径流量和营养盐浓度估算,DIN、NO3-N、NO2-N、NH+4-N、DIP年入海通量分别为118.37、70.93、11.18 、38.67、23.75 t,河流径流量是影响三亚湾海域营养盐入海通量的主要因素.

    参考文献 (43)

返回顶部

目录

/

返回文章
返回