Ag/BiOBr材料的制备及其光催化还原硝酸盐氮

曹跃辉, 郭珊, 肖毓达, 王思涵, 王麒淳, 吴璇, 刘志华, 岳远超, 丘一帆. Ag/BiOBr材料的制备及其光催化还原硝酸盐氮[J]. 环境化学, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
引用本文: 曹跃辉, 郭珊, 肖毓达, 王思涵, 王麒淳, 吴璇, 刘志华, 岳远超, 丘一帆. Ag/BiOBr材料的制备及其光催化还原硝酸盐氮[J]. 环境化学, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
CAO Yuehui, GUO Shan, XIAO Yuda, WANG Sihan, WANG Qichun, WU Xuan, LIU Zhihua, YUE Yuanchao, QIU Yifan. Preparation of Ag/BiOBr and photocatalytic reduction of nitrate[J]. Environmental Chemistry, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
Citation: CAO Yuehui, GUO Shan, XIAO Yuda, WANG Sihan, WANG Qichun, WU Xuan, LIU Zhihua, YUE Yuanchao, QIU Yifan. Preparation of Ag/BiOBr and photocatalytic reduction of nitrate[J]. Environmental Chemistry, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001

Ag/BiOBr材料的制备及其光催化还原硝酸盐氮

    通讯作者: E-mail:liuzhihua@csust.edu.cn
  • 基金项目:
    湖南省教育厅优秀青年项目(19B040),长沙理工大学青年教师成长计划项目(2019QJCZ038)和湖南省大学生创新创业训练计划项目(2345)资助.

Preparation of Ag/BiOBr and photocatalytic reduction of nitrate

    Corresponding author: LIU Zhihua, liuzhihua@csust.edu.cn
  • Fund Project: Outstanding Youth Program of Hunan Education Department (19B040), Young Teacher Development Program of Changsha University of Science and Technology (2019QJCZ038) and Innovation and Entrepreneurship Training Program of Hunan University Students (2345) .
  • 摘要: 采用反应合成法及光还原沉淀法制备Ag/BiOBr复合光催化材料,通过SEM、XRD、FT-IR、XPS、UV-vis等对其进行表征,并研究了该复合材料在金卤灯照射下对低浓度硝酸盐氮的还原效果. 结果表明,采用Ag/BiOBr光催化剂时,硝酸盐氮去除率为73.5%,相比BiOBr光催剂去除率增加31.1%;pH值为4时,硝酸盐氮去除率和产物中氮气占比最高,在180 min时硝酸盐氮去除率达82.8%,产物中氮气占比为76.5%,氮气选择性为92.4%. Ag沉积可提升BiOBr催化性能,主要是由于其费米能级相对于光催化剂价带处于更低的能级,光激发电子被Ag颗粒捕捉,减少了与空穴的复合,促进硝酸盐氮的还原. 同时空穴清除剂(甲酸)氧化过程生成过氧化物自由基(COO∙-),也可促进硝酸盐氮的还原. 经4次重复实验,硝酸盐氮去除率在82.9%以上,可见该催化剂具备良好的稳定性,具有较好的应用前景.
  • 加载中
  • 图 1  BiOBr和Ag/BiOBr 的SEM图

    Figure 1.  SEM images of BiOBr and Ag/BiOBr

    图 2  BiOBr和Ag/BiOBr 的XRD图

    Figure 2.  XRD patterns of BiOBr and Ag/BiOBr

    图 3  BiOBr和Ag/BiOBr 的FT-IR图

    Figure 3.  FT-IR analysis of BiOBr and Ag/BiOBr

    图 4  BiOBr和Ag/BiOBr 的XPS图

    Figure 4.  XPS analysis of BiOBr and Ag/BiOBr

    图 5  BiOBr和Ag/BiOBr 的紫外可见光漫反射图谱和能隙图

    Figure 5.  UV-vis diffuse reflectance spectra and the band gap of BiOBr and Ag/BiOBr

    图 6  BiOBr和Ag/BiOBr 在可见光下对硝酸盐氮的还原

    Figure 6.  Reduction of Nitrate nitrogen by BiOBr and Ag/BiOBr in visible light

    图 7  pH值对硝酸盐氮还原的影响

    Figure 7.  Influence of pH value on nitrate reduction process

    图 8  pH值对硝酸盐氮还原及产物的影响

    Figure 8.  Effect of pH value on nitrate reduction and its products

    图 9  Ag/BiOBr光催化材料循环效果分析

    Figure 9.  Analysis of the cycling effect of Ag/ BiOBr

    图 10  Ag/BiOBr光催化材料光还原机制

    Figure 10.  Photoreduction mechanism of Ag/BiOBr photocatalytic materials

  • [1] RONG C, WANG T J, LUO Z B, et al. Pilot plant demonstration of temperature impacts on the methanogenic performance and membrane fouling control of the anaerobic membrane bioreactor in treating real municipal wastewater [J]. Bioresource Technology, 2022, 354: 127167. doi: 10.1016/j.biortech.2022.127167
    [2] 许美兰, 李元高, 叶茜, 等. 常温下厌氧膜生物反应器处理生活污水研究 [J]. 中国给水排水, 2015, 31(13): 23-26. doi: 10.19853/j.zgjsps.1000-4602.2015.13.006

    XU M L, LI Y G, YE Q, et al. Treatment of domestic sewage by anaerobic membrane bioreactor at ambient temperature [J]. China Water & Wastewater, 2015, 31(13): 23-26(in Chinese). doi: 10.19853/j.zgjsps.1000-4602.2015.13.006

    [3] 荆延龙, 李菲菲, 朱佳迪, 等. 室温下厌氧膜生物反应器处理生活污水的运行特性 [J]. 环境工程学报, 2017, 11(10): 5393-5399.

    JING Y L, LI F F, ZHU J D, et al. Operating characteristics of anaerobic membrane bioreactor for domestic wastewater treatment under ambient temperature [J]. Chinese Journal of Environmental Engineering, 2017, 11(10): 5393-5399(in Chinese).

    [4] LI Z Y, ZHAO Y J, GUAN Q, et al. Novel direct dual Z-scheme AgBr(Ag)/MIL-101(Cr)/CuFe2O4 for efficient conversion of nitrate to nitrogen [J]. Applied Surface Science, 2020, 508: 145225. doi: 10.1016/j.apsusc.2019.145225
    [5] YANG X, QI X, MA G Q, et al. Novel Z-Scheme Ag/TiO2/AgMIL-101(Cr) as an efficient photocatalyst for nitrogen production from nitrate [J]. Applied Surface Science, 2019, 479: 1048-1056. doi: 10.1016/j.apsusc.2019.02.111
    [6] YANG H, HU S, ZHAO H, et al. High-performance Fe-doped ZIF-8 adsorbent for capturing tetracycline from aqueous solution [J]. Journal of Hazardous Materials, 2021, 416: 126046. doi: 10.1016/j.jhazmat.2021.126046
    [7] 李坚, 石先阳. CdS/CdMoO4空心微球复合材料的化学沉淀法制备及光催化性能 [J]. 环境化学, 2018, 37(10): 2283-2290. doi: 10.7524/j.issn.0254-6108.2017112006

    LI J, SHI X Y. Photocatalytic properties of CdS/CdMoO4 hollow microsphere composites synthesized by chemical precipitation method [J]. Environmental Chemistry, 2018, 37(10): 2283-2290(in Chinese). doi: 10.7524/j.issn.0254-6108.2017112006

    [8] ZENG D B, YU C L, FAN Q Z, et al. Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(Ⅵ) and organic pollutants [J]. Chemical Engineering Journal, 2020, 391: 123607. doi: 10.1016/j.cej.2019.123607
    [9] 郭桂全, 胡巧红, 王承林, 等. g-C3N4/RGO的制备、光催化降解性能及其降解机理 [J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605

    GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4/RGO [J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605

    [10] 陈紫盈, 孙洁, 罗雪文, 等. BiVO4晶面生长调控及其光催化氧化罗丹明B和还原Cr(Ⅵ)的性能 [J]. 环境化学, 2020, 39(8): 2129-2136. doi: 10.7524/j.issn.0254-6108.2019061101

    CHEN Z Y, SUN J, LUO X W, et al. Growth regulation of BiVO4 crystal plane and photocatalytic oxidation of Rhodamine B and reduction of Cr(Ⅵ) [J]. Environmental Chemistry, 2020, 39(8): 2129-2136(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061101

    [11] ROY S. Photocatalytic materials for reduction of nitroarenes and nitrates [J]. The Journal of Physical Chemistry C, 2020, 124(52): 28345-28358. doi: 10.1021/acs.jpcc.0c07363
    [12] SHI H L, LI C H, WANG L, et al. Selective reduction of nitrate into N2 by novel Z-scheme NH2-MIL-101(Fe)/BiVO4 heterojunction with enhanced photocatalytic activity [J]. Journal of Hazardous Materials, 2022, 424: 127711. doi: 10.1016/j.jhazmat.2021.127711
    [13] 唐丽娜, 柳丽芬, 董晓艳, 等. 金属掺杂二氧化钛光催化还原硝酸氮 [J]. 环境科学, 2008, 29(9): 2536-2541. doi: 10.13227/j.hjkx.2008.09.003

    TANG L N, LIU L F, DONG X Y, et al. Photocatalytic reduction of nitrate using metal-doped titania [J]. Environmental Science, 2008, 29(9): 2536-2541(in Chinese). doi: 10.13227/j.hjkx.2008.09.003

    [14] SÁ J, AGÜERA C A, GROSS S, et al. Photocatalytic nitrate reduction over metal modified TiO2 [J]. Applied Catalysis B:Environmental, 2009, 85(3/4): 192-200.
    [15] LIU G S, YOU S J, MA M, et al. Removal of nitrate by photocatalytic denitrification using nonlinear optical material [J]. Environmental Science & Technology, 2016, 50(20): 11218-11225.
    [16] LI L Y, XU Z Y, LIU F L, et al. Photocatalytic nitrate reduction over Pt-Cu/TiO2 catalysts with benzene as hole scavenger [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2010, 212(2/3): 113-121.
    [17] de BEM LUIZ D, ANDERSEN S L F, BERGER C, et al. Photocatalytic reduction of nitrate ions in water over metal-modified TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2012, 246: 36-44. doi: 10.1016/j.jphotochem.2012.07.011
    [18] KOMINAMI H, FURUSHO A, MURAKAMI S Y, et al. Effective photocatalytic reduction of nitrate to ammonia in an aqueous suspension of metal-loaded titanium(IV) oxide particles in the presence of oxalic acid [J]. Catalysis Letters, 2001, 76: 31-34. doi: 10.1023/A:1016771908609
    [19] KOMINAMI H, NAKASEKO T, SHIMADA Y, et al. Selective photocatalytic reduction of nitrate to nitrogen molecules in an aqueous suspension of metal-loaded titanium(IV) oxide particles [J]. Chemical Communications (Cambridge, England), 2005(23): 2933-2935. doi: 10.1039/b502909k
    [20] ZHENG R, LI C H, HUANG K L, et al. TiO2/Ti3C2 intercalated with g-C3N4 nanosheets as 3D/2D ternary heterojunctions photocatalyst for the enhanced photocatalytic reduction of nitrate with high N2 selectivity in aqueous solution [J]. Inorganic Chemistry Frontiers, 2021, 8(10): 2518-2531. doi: 10.1039/D1QI00001B
    [21] DUAN Z Y, ZHAO X J, WEI C W, et al. Ag-Bi/BiVO4 chain-like hollow microstructures with enhanced photocatalytic activity for CO2 conversion [J]. Applied Catalysis A:General, 2020, 594: 117459. doi: 10.1016/j.apcata.2020.117459
    [22] WANG B X, AN W J, LIU L, et al. Novel Cu2S quantum dots coupled flower-like BiOBr for efficient photocatalytic hydrogen production under visible light [J]. RSC Advances, 2015, 5(5): 3224-3231. doi: 10.1039/C4RA12172D
    [23] LONG Z Q, ZHANG G M, DU H B, et al. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI) [J]. Journal of Hazardous Materials, 2021, 407: 124394. doi: 10.1016/j.jhazmat.2020.124394
    [24] GANOSE A M, CUFF M, BUTLER K T, et al. Interplay of orbital and relativistic effects in bismuth oxyhalides: BiOF, BiOCl, BiOBr, and BiOI [J]. Chemistry of Materials:a Publication of the American Chemical Society, 2016, 28(7): 1980-1984.
    [25] ZHAO Z Y, DAI W W. Structural, electronic, and optical properties of Eu-doped BiOX (X = F, Cl, Br, I): A DFT+U study [J]. Inorganic Chemistry, 2014, 53(24): 13001-13011. doi: 10.1021/ic5021059
    [26] CHEN P, LIU H J, CUI W, et al. Bi-based photocatalysts for light-driven environmental and energy applications: Structural tuning, reaction mechanisms, and challenges [J]. EcoMat, 2020, 2(3): e12047.
    [27] LU L F, KONG L, JIANG Z, et al. Visible-light-driven photodegradation of rhodamine B on Ag-modified BiOBr [J]. Catalysis Letters, 2012, 142(6): 771-778. doi: 10.1007/s10562-012-0824-2
    [28] YAN T J, YAN X Y, GUO R R, et al. Ag/AgBr/BiOBr hollow hierarchical microspheres with enhanced activity and stability for RhB degradation under visible light irradiation [J]. Catalysis Communications, 2013, 42: 30-34. doi: 10.1016/j.catcom.2013.07.022
    [29] 杨利伟, 刘丽君, 夏训峰, 等. pg-C3N4/BiOBr/Ag复合材料的制备及其光催化降解磺胺甲噁唑 [J]. 环境科学, 2021, 42(6): 2896-2907.

    YANG L W, LIU L J, XIA X F, et al. Preparation of pg-C3N4/BiOBr/Ag composite and photocatalytic degradation of sulfamethoxazole [J]. Environmental Science, 2021, 42(6): 2896-2907(in Chinese).

    [30] YU C L, FAN C F, MENG X J, et al. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes [J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(1): 141-151. doi: 10.1007/s11144-011-0291-6
    [31] CUSHING S K, LI J T, MENG F K, et al. Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor [J]. Journal of the American Chemical Society, 2012, 134(36): 15033-15041. doi: 10.1021/ja305603t
    [32] ZHU W Y, LI Z, ZHOU Y, et al. Deposition of silver nanoparticles onto two dimensional BiOCl nanodiscs for enhanced visible light photocatalytic and biocidal activities [J]. RSC Advances, 2016, 6(69): 64911-64920. doi: 10.1039/C6RA09964E
    [33] GUPTA G, KAUR A, SINHA A S K, et al. Photocatalytic degradation of levofloxacin in aqueous phase using Ag/AgBr/BiOBr microplates under visible light [J]. Materials Research Bulletin, 2017, 88: 148-155. doi: 10.1016/j.materresbull.2016.12.016
    [34] LIU Z S, BI Y H, ZHAO Y L, et al. Synthesis and photocatalytic property of BiOBr/palygorskite composites [J]. Materials Research Bulletin, 2014, 49: 167-171. doi: 10.1016/j.materresbull.2013.08.068
    [35] DI J, XIA J X, YIN S, et al. A g-C3N4/BiOBr visible-light-driven composite: Synthesis via a reactable ionic liquid and improved photocatalytic activity [J]. RSC Advances, 2013, 3(42): 19624. doi: 10.1039/c3ra42269k
    [36] HE F, HE Z J, XIE J L, et al. IR and Raman spectra properties of Bi2O3-ZnO-B2O3-BaO quaternary glass system [J]. American Journal of Analytical Chemistry, 2014, 5(16): 1142-1150. doi: 10.4236/ajac.2014.516121
    [37] PHURUANGRAT A, DUMRONGROJTHANATH P, EKTHAMMATHAT N, et al. Hydrothermal synthesis, characterization, and visible light-driven photocatalytic properties of Bi2WO6 nanoplates [J]. Journal of Nanomaterials, 2014: 138561.
    [38] LIU T T, ZHAO Y, GAO L J, et al. Engineering Bi2O3-Bi2S3 heterostructure for superior lithium storage [J]. Scientific Reports, 2015, 5: 9307. doi: 10.1038/srep09307
    [39] WEI X X, CHEN C M, GUO S Q, et al. Advanced visible-light-driven photocatalyst BiOBr-TiO2-graphene composite with graphene as a nano-filler [J]. Journal of Materials Chemistry A, 2014, 2(13): 4667. doi: 10.1039/c3ta14349j
    [40] XU Y G, XU H, YAN J, et al. A novel visible-light-response plasmonic photocatalyst CNT/Ag/AgBr and its photocatalytic properties [J]. Physical Chemistry Chemical Physics:PCCP, 2013, 15(16): 5821-5830. doi: 10.1039/c3cp44104k
    [41] BIJANZAD K, TADJARODI A, AKHAVAN O, et al. Solid state preparation and photocatalytic activity of bismuth oxybromide nanoplates [J]. Research on Chemical Intermediates, 2016, 42(3): 2429-2447. doi: 10.1007/s11164-015-2159-2
    [42] GUO Y, ZHANG J, ZHOU D D, et al. Fabrication of Ag/CDots/BiOBr ternary photocatalyst with enhanced visible-light driven photocatalytic activity for 4-chlorophenol degradation [J]. Journal of Molecular Liquids, 2018, 262: 194-203. doi: 10.1016/j.molliq.2018.04.091
    [43] VAIANO V, MATARANGOLO M, MURCIA J J, et al. Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag [J]. Applied Catalysis B:Environmental, 2018, 225: 197-206. doi: 10.1016/j.apcatb.2017.11.075
    [44] WANG P, HUANG B B, QIN X Y, et al. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light [J]. Angewandte Chemie, 2008, 120(41): 8049-8051. doi: 10.1002/ange.200802483
    [45] ZUAREZ-CHAMBA M, RAJENDRAN S, HERRERA-ROBLEDO M, et al. Bi-based photocatalysts for bacterial inactivation in water: Inactivation mechanisms, challenges, and strategies to improve the photocatalytic activity [J]. Environmental Research, 2022, 209: 112834. doi: 10.1016/j.envres.2022.112834
    [46] JAFFARI Z H, LAM S M, SIN J C, et al. Magnetically recoverable Pd-loaded BiFeO3 microcomposite with enhanced visible light photocatalytic performance for pollutant, bacterial and fungal elimination [J]. Separation and Purification Technology, 2020, 236: 116195. doi: 10.1016/j.seppur.2019.116195
    [47] ZHENG R, LI C H, HUANG K L, et al. In situ synthesis of N-doped TiO2 on Ti3C2 MXene with enhanced photocatalytic activity in the selective reduction of nitrate to N2 [J]. Inorganic Chemistry Frontiers, 2022, 9(6): 1195-1207. doi: 10.1039/D1QI01614H
    [48] ZHANG D F, WANG B Q, GONG X B, et al. Selective reduction of nitrate to nitrogen gas by novel Cu2O-Cu0@Fe0 composite combined with HCOOH under UV radiation [J]. Chemical Engineering Journal, 2019, 359: 1195-1204. doi: 10.1016/j.cej.2018.11.058
  • 加载中
图( 10)
计量
  • 文章访问数:  2825
  • HTML全文浏览数:  2825
  • PDF下载数:  108
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-04-30
  • 录用日期:  2022-06-28
  • 刊出日期:  2023-10-27
曹跃辉, 郭珊, 肖毓达, 王思涵, 王麒淳, 吴璇, 刘志华, 岳远超, 丘一帆. Ag/BiOBr材料的制备及其光催化还原硝酸盐氮[J]. 环境化学, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
引用本文: 曹跃辉, 郭珊, 肖毓达, 王思涵, 王麒淳, 吴璇, 刘志华, 岳远超, 丘一帆. Ag/BiOBr材料的制备及其光催化还原硝酸盐氮[J]. 环境化学, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
CAO Yuehui, GUO Shan, XIAO Yuda, WANG Sihan, WANG Qichun, WU Xuan, LIU Zhihua, YUE Yuanchao, QIU Yifan. Preparation of Ag/BiOBr and photocatalytic reduction of nitrate[J]. Environmental Chemistry, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001
Citation: CAO Yuehui, GUO Shan, XIAO Yuda, WANG Sihan, WANG Qichun, WU Xuan, LIU Zhihua, YUE Yuanchao, QIU Yifan. Preparation of Ag/BiOBr and photocatalytic reduction of nitrate[J]. Environmental Chemistry, 2023, 42(10): 3523-3533. doi: 10.7524/j.issn.0254-6108.2022043001

Ag/BiOBr材料的制备及其光催化还原硝酸盐氮

    通讯作者: E-mail:liuzhihua@csust.edu.cn
  • 1. 长沙理工大学水利与环境工程学院,长沙,410114
  • 2. 长沙理工大学化学化工学院,长沙,410114
  • 3. 洞庭湖水环境治理与生态修复湖南省重点实验室,长沙,410114
  • 4. 湖南省环境保护河湖疏浚污染控制工程技术中心,长沙,410114
基金项目:
湖南省教育厅优秀青年项目(19B040),长沙理工大学青年教师成长计划项目(2019QJCZ038)和湖南省大学生创新创业训练计划项目(2345)资助.

摘要: 采用反应合成法及光还原沉淀法制备Ag/BiOBr复合光催化材料,通过SEM、XRD、FT-IR、XPS、UV-vis等对其进行表征,并研究了该复合材料在金卤灯照射下对低浓度硝酸盐氮的还原效果. 结果表明,采用Ag/BiOBr光催化剂时,硝酸盐氮去除率为73.5%,相比BiOBr光催剂去除率增加31.1%;pH值为4时,硝酸盐氮去除率和产物中氮气占比最高,在180 min时硝酸盐氮去除率达82.8%,产物中氮气占比为76.5%,氮气选择性为92.4%. Ag沉积可提升BiOBr催化性能,主要是由于其费米能级相对于光催化剂价带处于更低的能级,光激发电子被Ag颗粒捕捉,减少了与空穴的复合,促进硝酸盐氮的还原. 同时空穴清除剂(甲酸)氧化过程生成过氧化物自由基(COO∙-),也可促进硝酸盐氮的还原. 经4次重复实验,硝酸盐氮去除率在82.9%以上,可见该催化剂具备良好的稳定性,具有较好的应用前景.

English Abstract

  • 在美丽中国建设和双碳国家战略背景下,对现有城镇污水处理厂出水水质的进一步提升将导致能源消耗、药剂使用等迅速增加,不利于城镇污水处理厂碳中和目标的实现. 因此,新型污水处理技术的开发将是我国下阶段城镇污水处理厂技术升级的关键. 厌氧膜生物反应器是近年来得到迅速发展的新型污水处理工艺[1],采用一段式处理工艺可实现有机污染物的高效去除,如COD浓度可降到30 mg·L−1 左右,因不需曝气、产泥量低等优点可有效降低能耗及运行费用,极大地提升污水处理的碳中和潜力;但对氮磷的去除效率较低而不能满足排放要求[2-3],限制其实际应用. 水体中硝酸盐氮既可对人体造成蓝婴综合症甚至致癌作用,也可引起水体富营养化[4]. 吸附、电絮凝和生物方法等可用于去除水中硝酸盐氮,但由于投资高等导致应用难度大[5]. 光催化因具有适应能力强、费用低、占地少以及无二次污染等优势成为关注的热点[6-7],已成为水体环境污染治理的热点技术之一[8-10]. 硝酸盐氮作为污水中总氮主要组成也成为光催化还原的主要处理对象[11-13],有望成为碳中和背景下城镇污水处理可行工艺.

    TiO2作为一种常见催化剂被应用于硝酸盐氮的光催化还原[14-15]. 为了提高光催化转化效率,采用Cu[16]、Cr[17]、Co[18]、Pb[19]、Fe[14]等金属掺杂制作新型TiO2催化材料. 但由于TiO2带隙较宽,不能有效利用太阳光,限制其实际应用,g-C3N4光催化剂因带隙较窄被应用到硝酸盐氮的还原,在还原效率及氮气选择性方面均取得了较好的效果[12,20]. 同样具有可见光响应的BiOX(X=Cl、Br、I)催化剂可用于光催化还原,但主要集中在CO2[21]、H2[22]、Cr6+[23]等还原,而对硝酸盐氮还原的研究较少. BiOX是具有依靠范德华力连接的[Bi2O2]2+和X特殊结构的P型半导体材料[24],可减少电子-空穴的复合[25]. 相对于BiOCl相对较宽的带隙(3.2—3.4 eV),BiOBr和BiOI带隙相对较窄,分别为2.6—2.9 eV和1.6—1.8 eV,具有更宽的可见光吸收范围[26]. 为了促进催化剂的光催化效果,不同的复合催化剂被开发,如Ag/Ag2O/AgBr/BiOBr[27]、Ag/AgBr/BiOBr[28]、pg-C3N4/BiOBr/Ag[29]等. 可见Ag被广泛的用于提升Bi系光催化剂的光催化性能,这主要是由于银具有高导热和高电导率,以及表面等离子体共振. 如Yu等[30]发现在可见光下1%—2%Ag沉积率可促进BiOBr催化活性的迅速增加. Cushing等[31]发现纳米银颗粒可促进催化剂的红移以及促进光催化现象. Zhu等[32]采用纳米银掺杂BiOCl,可使光吸收边界从350 nm扩展到600 nm.

    本研究针对碳中和背景下城镇污水技术发展趋势,选择低浓度硝酸盐氮(25 mg·L−1以氮计)为处理对象,采用反应合成法制备BiOBr,并用光还原方法沉积Ag. 利用SEM、XRD、XPS、UV-vis等现代材料分析技术研究复合材料的物相、形貌及表面物理化学性能. 探索光催化材料对硝酸盐氮的去除效果及其氮气选择性,同时研究了pH值对光催化反应的影响及催化剂的稳定性.

    • 本实验所用药品均为分析纯,硝酸钾购自西陇科学股份有限公司. 硝酸铋、溴化钾、甲酸、N-(1-萘基)乙二胺二盐酸盐、乙醇和乙二醇购自国药集团化学试剂有限公司. 硝酸银购自天津市天感化工技术开发有限公司. 纳氏试剂购自天津市久木科技有限公司. 盐酸购自成都市科隆化学品有限公司. 氢氧化钠购自广东光华科技股份有限公司.

    • 本实验采用反应合成法制备BiOBr. 取4.8 mmol Bi(NO)3.5H2O和4.8 mmol KBr溶解在12 mL去离子水和28 mL乙二醇中,超声处理0.5 h. 然后,将混合物加入到50 mL聚四氟乙烯内衬高压釜中,在110 ℃下加热反应10 h. 用水和乙醇离心洗涤3次后,在60 ℃下干燥6 h,即得到BiOBr粉末.

    • 本实验采用光还原法制备Ag/BiOBr. 取浓度为1.6 mmol·L−1的AgNO3水溶液25 mL,加入上述方法制备的BiOBr粉末,超声分散30 min,在300 W Xe灯下辐照2 h,用蒸馏水洗涤3遍,离心机分离后于烘箱中在80 ℃下干燥12 h,以获得银负载量的2% wt银沉积BiOBr材料,表示为Ag/BiOBr.

    • 本实验采用扫描电子显微镜(X-ray spectrometer,SEM,美国FEI电子光学公司)观察催化剂的微观形貌;采用X射线衍射仪(X-ray diffraction,XRD,日本Rigaku公司)分析光催化剂的晶体结构;采用X射线光电子能谱(X-ray photoelectron spectroscopy,XPS,赛默飞世尔科技有限公司)获得光催化剂的化学机构和元素价态等有关参数;采用傅里叶红外光谱仪(Fourier infrared spectrometer,FT-IR,美国ThermoFisher公司)测定光催化剂的化学结构;采用紫外-可见漫反射光谱仪(Ultraviolet visible diffuse reflectance spectroscopy,UV-vis DRS,日本岛津实验器材有限公司)研究光催化剂的光吸收性能.

    • 将预先配置好的25 mg·L−1(以N计)硝酸钾(KNO3)溶液倒入200 mL反应器中,加入0.2 mg Ag/BiOBr或BiOBr光催化剂,通氮气30 min,开启磁力搅拌,暗反应30 min,取样测试;加入0.1 mol·L−1的甲酸作为空穴清除剂,调整pH值为4(除pH实验外),在功率为300 W的金卤灯下开始计时反应,用注射器每30 min取一次水样,用0.22 μm有机滤头过滤,分别测定水样中硝酸盐氮(NO3-N)、亚硝酸盐氮(NO2-N)、氨氮(NH4+-N)的浓度,重复3次实验. NO3-N去除率、氮气选择性计算公式如下[20]

      式中,RN为NO3-N去除率(%),[NO3]0为初始硝酸盐浓度(mg·L−1),${S}_{{\mathrm{N}}_{2}} $为N2选择性(%),[NO3]t、[NO2]t、[NH4+]t分别为时间t时刻的硝酸盐氮(NO3-N)、亚硝酸盐(NO2-N)、氨氮(NH4+-N)的浓度(mg·L−1).

    • 硝酸盐氮采用紫外分光光度法(HJ/T346—2007)测量;亚硝酸盐氮采用分光光度法(GB7493—87)测量;氨氮采用纳氏试剂分光光度法(HJ535—2009)测量;pH值采用电极法(HJ1147—2020)测量.

    • 图1为BiOBr和Ag/BiOBr的SEM分析. BiOBr催化剂主要以颗粒态为主,表面出现絮体团聚现象(图1a),絮体表面主要为不规则方形颗粒为主(图1b). Ag/BiOBr催化剂表面絮体团聚现象更为明显,主要以不规则方形颗粒为主(图1c、d),这可能是催化剂制作过程中超声混合促进了催化剂材料的进一步分散.

    • 为了研究光催化剂的物相组成,利用XRD对BiOBr和Ag/BiOBr光催化剂进行表征,结果如图2所示. BiOBr催化剂的衍射特征峰分别在10.9°、21°、25.2°、31.7°、32.2°、39.4°、44.8°、46.2°、51.8°、53.6°、56.2°、57.1°、66.4°、67.5°、71.2°、76.7°和78.8°时对应BiOBr标准卡片(JCPDS78-0348)的(001)、(002)、(101)、(102)、(110)、(112)、(004)、(200)、(104)、(211)、(114)、(212)、(204)、(220)、(214)、(310)和(223)晶面特征衍射峰. Ag的衍射特征峰分别在67.5°、76.7°和78.8°时对应Ag标准卡片(JCPDS87-0598)的(106)、(114)和(202)晶面特征衍射峰. 对比BiOBr特征衍射峰,Ag的特征峰与其部分特征峰重合,但由于Ag的存在,峰强明显增强.

    • 图3为BiOBr和Ag/BiOBr的FT-IR分析. 如图3可知,在500 cm−1到1200 cm−1的吸收峰主要是Bi—O键的伸缩振动[33]. 在峰值为508.61 cm−1或511.03 cm−1是为BiOBr中键的伸缩振动[34]. 在峰值为788.76 cm−1或788.21 cm−1为Bi—O键的非对称伸缩振动[35-37]. 在峰值为1078.03 cm−1或1079.47 cm−1为C—O键的伸缩振动[38]. 在峰值为1287.79 cm−1或1291.99 cm−1、1608.91 cm−1或1619.67 cm−1对应于空气中CO2的吸收[39-41]. 峰值3424.88 cm−1或3423.15 cm−1为O—H键的伸缩振动[39].

    • 为了了解BiOBr和Ag/BiOBr光催化材料的化学组成及状态,采用XPS对样品进行了分析(图4). 图4a为BiOBr和Ag/BiOBr的全谱图,其中Bi、O、Br等元素均能在2种光催化剂中发现,但Ag/BiOBr中的银峰相对较弱,这可能是由于催化剂中银含量较低所致. 图4b-e为Bi、O、Br和Ag的精细谱. 图4b BiOBr中Bi的结合能为159.2 eV和164.5 eV,Ag/BiOBr中Bi的结合能为159.3 eV和164.6 eV,峰值均相差5.3 eV,说明两者均有Bi3+的存在[38]. 但其中Bi的结合能有轻微的偏移,这可能是由于杂化金属的存在导致[33]. 图4c中BiOBr和Ag/BiOBr均存在Bi—O键(529.7 eV)和O—H键(531.6 eV)[29]. 图4d中BiOBr中Br的结合能为68.2 eV和69.2 eV,分别对应于Br3d5/2和Br3d3/2[42],Ag/BiOBr中Br的结合能为68.3 eV和69.3 eV,相对于BiOBr中Br的结合能有轻微的偏移. 图4e中Ag结合能为268.2 eV和374.2 eV,两个峰间距为6.0 eV,说明有单质银的存在[43].

    • Ag可促进BiOBr光催化剂对可见光的吸收及电子-空穴对的复合[30]. 为了分析Ag沉积对BiOBr光吸收能力的影响,BiOBr和Ag/BiOBr的紫外-可见漫反射光谱图谱(UV-vis)和能隙如图5所示. 从图5a 可以看出,Ag可明显提高BiOBr对可见光的吸收. BiOBr单体的吸收边界为505 nm,而Ag/BiOBr的吸收边界相对于BiOBr单体有明显的红移现象,吸收边界增加到585 nm. 结合公式(3)计算出BiOBr和Ag/BiOBr样品的带隙宽度.

      式中,$ \alpha $为吸光系数,h为普朗克常数,v为吸收光频率,A为吸光度,Eg为带隙宽度,n由半导体材料所决定,本材料跃迁形式为直接跃迁,n取2. 根据此公式作图,可得BiOBr和Ag/BiOBr材料的能隙图(图5b). 从图5b中可以看出,BiOBr的禁带宽度为2.78 eV,这与文献报道的基本一致[26]. 而Ag/BiOBr的禁带宽度为2.68 eV,说明Ag单质的加入明显减少了材料的带隙宽度,强化可见光的吸收[44].

    • 为了评价Ag/BiOBr光还原性能,图6为BiOBr和Ag/BiOBr在可见光下硝酸盐氮浓度随时间变化情况. 在BiOBr光催化作用下,硝酸盐氮浓度随时间不断降低,当时间为180 min时,硝酸盐氮浓度为14.4 mg·L−1,去除率为42.4%. 而采用Ag/BiOBr光催化剂时,硝酸盐氮浓度随时间明显降低,在180 min时,硝酸盐氮浓度为6.63 mg·L−1,去除率为73.5%,相比BiOBr光催剂,去除率增加31.1%. 说明银可有效提升BiOBr光催化性能,促进硝酸盐氮的还原.

    • pH值是影响光催化还原的关键因素. 图7为pH值为2、4、6、8、10时对光催化还原硝酸盐氮的影响. 当pH值为4时,硝酸盐氮去除率最高,在180 min时硝酸盐氮浓度下降到4.30 mg·L−1,去除率达82.8%. pH值为6时,硝酸盐氮去除率次高,在180 min时硝酸盐氮浓度降到6.44 mg·L−1,去除率达74.2%. 而pH值为碱性时,硝酸盐氮去除率迅速下降,pH值为10时,硝酸盐氮去除率最低,去除率仅为30.4%. 说明碱性条件明显对Ag/BiOBr光催化还原硝酸盐氮有抑制作用,这主要是碱性条件下OH会与硝酸盐氮竞争,导致去除效率下降[45].

      硝酸盐氮还原产物主要为亚硝酸盐、氨氮和氮气,亚硝酸盐、氨氮为水体污染物质,转化过程中氮气选择性是光催化还原的主要评价指标. 为了分析光催化过程中氮气选择性,图8为不同pH值下硝酸盐氮产物分析. 从图8可知,硝酸盐氮的光催化转化过程中亚硝酸盐氮的产率较低,仅在碱性条件下副产物中亚硝酸盐氮浓度相对较高,pH值为10时亚硝酸盐氮浓度最大,为0.13 mg·L−1. 酸性条件下,副产物氨浓度较高,且随着pH值增加,氨氮浓度逐步增加,在pH值为6时,氨氮浓度最大,为1.82 mg·L−1. 氮气是光催化转化过程中的主要产物(图8),说明Ag/BiOBr光催化还原硝酸盐氮的氮气选择性较好. 当pH值为4时,N2占比最高,为76.5%,其中氮气选择性为92.4%. pH值为6时,N2占比次之,为66.9%,其中氮气选择性为90.2%.

    • 光催化材料的稳定性是其实际应用的关键因素. 图9为不同循环次数下硝酸盐氮的浓度变化及循环前后Ag/BiOBr光催化材料的XRD图. 从图9a显示,经多次循环,硝酸盐氮去除效果较为稳定,光催化180 min后,硝酸盐氮浓度稳定在4.23—4.27 mg·L−1,去除率在82.9%以上,说明光催化材料具有较强的稳定性. 从图9b显示,经多次循环后,Ag/BiOBr光催化材料XRD图显示,材料物相变化不大.

    • 本研究针对碳中和背景下城镇污水技术新工艺厌氧膜生物技术特点,选择低浓度硝酸盐氮(25 mg·L−1)为研究对象探索光催化还原效率. 经Ag/BiOBr光催化后硝酸盐氮浓度可降低至4—5 mg·L−1图7图9),氮气选择性可达92.4%(图8),说明其具有较好的光催化还原性能. 经重复实验,硝酸盐氮还原效率去除率在82.9%以上(图9),说明催化剂较为稳定,拥有较好的应用前景.

      Ag作为贵金属掺杂提升BiOBr催化性能主要是由于其费米能级(EF=4.74 eV)相对于光催化剂价带(ECB=+0.49 eV)处于更低的能级[46]. 在这种情况下,BiOBr光激发电子易被Ag颗粒捕捉,减少了与空穴的复合. 图5紫外-可见漫反射光谱分析显示,Ag强化了材料在可见光的响应,Ag/BiOBr的光吸收频率从505 nm增加到585 nm,禁带宽度从2.78 eV减少到2.68 eV,进一步促进复合光催化材料的光还原性能. Ag促进BiOBr的光催化性能,减少电子-空穴对的复合[30]. Ag/BiOBr光催化材料硝酸盐的光还原机制如图10 所示. 在光照下,大量的电子转移到金属银上,并发生光催化还原作用.

      同时空穴清除剂(甲酸)经氧化后形成过氧化物自由基(COO∙-[47-48],并可进一步还原硝酸盐:

    • (1)通过SEM、FT-IR、XPS表征,采用反应合成法制备BiOBr及光还原法沉积银颗粒,成功制备Ag/BiOBr复合光催化剂. 根据BiOBr和Ag/BiOBr的紫外-可见漫反射光谱对比,Ag强化了材料对可见光的吸收,Ag/BiOBr的光吸收频率从505 nm增加到585 nm,禁带宽度从2.78 eV减少到2.68 eV,进一步促进光催化材料的光还原性能.

      (2)采用Ag/BiOBr光催化剂,反应180 min时,硝酸盐浓度为6.63 mg·L−1,去除率为73.5%,相比BiOBr光催剂,去除率增加31.1%. 说明银掺杂可有效提升BiOBr光催化性能,促进硝酸盐氮的还原.

      (3)pH值对Ag/BiOBr光催化影响较大. pH值为4时,硝酸盐去除率最高,在180 min时硝酸盐氮浓度下降到4.30 mg·L−1,去除率达82.8%;产物中氮气占比也最高,为76.5%,氮气选择性为92.4%.

      (4)经4次重复实验,硝酸盐氮还原效果较为稳定,光催化180 min后,硝酸盐氮浓度稳定在4.23—4.27 mg·L−1,去除率在82.9%以上. 根据实验前后Ag/BiOBr光催化剂XRD分析,材料物相变化不大.

      (5)Ag作为贵金属掺杂提升BiOBr催化性能主要是由于其费米能级相对于光催化剂价带处于更低的能级,光激发电子易被Ag颗粒捕捉,减少了与空穴的复合,促进硝酸盐氮的还原. 同时空穴清除剂(甲酸)氧化过程中生成过氧化物自由基(COO∙-),也可促进硝酸盐的还原.

    参考文献 (48)

返回顶部

目录

/

返回文章
返回