-
木黄酮(genistein,GEN)也被称为染料木素,属于异黄酮类非甾体化合物,主要存在于大豆等豆类植物中[1]。其化学结构为4,5,7-三羟基异黄酮或5,7-二羟基-3-(4-羟基苯基)色烯-4-酮。由于其酚环中碳4和碳7上的OH基团在结构和功能上与雌激素中的OH基团相似(图1),木黄酮可作为一种雌激素替代物,在预防、治疗与代谢综合征或癌症相关的疾病中发挥着重要作用,例如更年期综合征、糖尿病、乳腺癌、前列腺癌等[2-4]。此外,由于豆类植物近年来凭借较高的蛋白质含量、相对低廉的价格和稳定的供给等优势被用作鱼类饲料的生产来源,作为豆类植物的主要成分之一,木黄酮也同时被鱼类食入摄取[5]。水体中的木黄酮来源多样,主要包括:(1)人类饮食及饮食代谢物:有研究指出,亚洲女性平均每天摄入约20 g大豆,其中含有约420—7000 μg木黄酮[6-7];而人类尿液中木黄酮每日排泄率的平均值在48.6—2172.7 μg·d−1,若当日还摄入了富含大豆蛋白的食物,则其排泄率可高达3553.1 μg·d−1[8];(2)水产饲料的大量使用:有数据显示,我国鲤鱼(Cyprinus carpio)、鳟鱼(Salmo playtcephalus)和青鳉鱼(Oryzias latipes)的饲料中分别含有67.6—237.1、41.6—50.2、9.3—58.5 mg·kg−1木黄酮,而日本、英国和韩国生产的饲料中则含有39.7—118.9 mg·kg−1木黄酮[9-10];(3)工农业污水:一项针对加拿大某漂白厂的研究表明,其产生的风干木浆中木黄酮浓度为30.0 μg·kg−1,未处理和最终废水中木黄酮的浓度分别为13.1 µg·L−1和10.5 µg·L−1,说明其在污水处理的过程中无法被完全去除[8,11-13]。不同于人类在日常饮食中所摄入的木黄酮,此时水体中木黄酮的浓度往往达到了对生物体产生毒性的水平,此时木黄酮会因其过高的雌激素活性对鱼类产生各种毒性作用[14-16]:如生活在纸浆厂附近的白亚口鱼(Catostomus commersoni)出现卵巢闭锁和卵母细胞成熟延迟,而青鳉鱼则出现了第二性征的改变等[17-18]。作为一种雌激素类似物并广泛应用于水生动物养殖,木黄酮对鱼类的生物效应主要集中在生殖发育、心血管形成、神经功能、肝脏代谢等方面,故本文将从以上各方面将木黄酮对鱼类的生物效应进行阐述。
木黄酮对鱼类毒性作用的研究进展
Research progress on the toxicity of genistein to fish
-
摘要: 木黄酮是一种主要存在于大豆等豆类植物中的雌激素类似物,在预防和治疗一些与代谢综合征及癌症相关的疾病,如更年期综合征、糖尿病、乳腺癌、前列腺癌,发挥着重要作用。近年来,其在工业、农业、水产养殖业等方面应用越来越广泛,排放到环境中的木黄酮也越来越多,它在环境中的作用以及对环境中生物的影响也逐渐得到关注。由于木黄酮通常与废水一起排入水体中,因此受到影响的主要是以鱼类为代表的水生生物。木黄酮对鱼类的毒性作用主要表现在生殖系统,具体表现为抑制性腺发育、影响生殖细胞形成,改变性激素水平等,同时对其他器官和系统也会有不同程度的影响。水体中的木黄酮由于具有比人类饮食中更低的生物利用度和更高的浓度而成为一种环境内分泌干扰物,会对水生生物,尤其是各种鱼类的生存和繁殖产生不利影响。本文拟从生殖发育、心血管形成、神经功能、肝脏代谢等方面,综合阐述木黄酮对鱼类的生物毒性效应,并重点关注其对生殖系统的毒性效应。Abstract: Genistein is an estrogen analog found mainly in legumes, which plays an important role in the prevention and treatment of some diseases related to metabolic syndrome and cancer, such as menopausal syndrome, diabetes, breast cancer, and prostate cancer. In recent years, it has been widely used in industry, agriculture, aquaculture, and other aspects, and more and more genistein are discharged into the environment, and its role in the environment and the impact on the environment organisms have gradually been concerned. Genistein is usually discharged into the water body together with wastewater, so it mainly affects aquatic organisms represented by fish. The toxic effects of genistein on fish mainly focus on the reproductive system, which is specifically manifested as inhibiting gonad development and germ cell production, and changing the level of sex hormones, etc. And other organs and systems are also involved. Due to lower bioavailability and higher concentration of genistein in water than in the human diet, genistein in water bodies is an environmental endocrine disruptor, which can adversely affect the survival and reproduction of aquatic organisms, especially a variety of fish. Therefore, this paper will focus on reproductive toxicity from the perspectives of reproductive toxicity, developmental toxicity, hepatotoxicity, and neurotoxicity, and focus on reproductive toxicity. Combined with relevant experimental studies, the toxicity of genistein on fish is comprehensively discussed and summarized.
-
Key words:
- genistein /
- reproductive toxicity /
- developmental toxicity /
- neurotoxicity /
- hepatic toxicity
-
图 1 木黄酮与雌激素的结构[2]
Figure 1. The structure of genistein and estrogen
表 1 不同鱼类在木黄酮暴露下的毒性表现
Table 1. Toxicity of different fish treated with genistein
鱼类品种
Fish species性别及发育时期
Sex and developmental period暴露方式
Exposed way木黄酮含量(浓度)
Genstein content/暴露时间
Exposure time具体表现
Specific performance生殖
毒性金鱼[21-22] 雌、雄,20周龄 饲料 24.26、51.55、
75.83 mg·kg−1饲料6 个月/2 年 GSI降低 白鲟[28] 雌性,5岁龄 饲料 200、400、800、
1600 mg·kg−1饲料1 a 睾酮和雌二醇浓度显著升高 鲤鱼[23] 雌性,6月龄 饲料 10、30、60、
90 mg·kg−1饲料60 d 卵黄细胞产生和发育延迟,
睾酮和雌二醇浓度显著升高斑马鱼[25] 卵母细胞 溶液 30、300 μmol·L−1
(约为8.1、81 mg·L−1)18 h 细胞分裂受限 青鳉鱼[26] 胚胎 溶液 1、10、100、
1000 μg·L−1100 d 性腺呈双性改变 银鲫鱼[27] 雄性,性成熟 溶液
(腹腔注射)5、50 μg·g−1
(体重)隔天1次,
持续10 d精子质量下降;受精率、
后代存活率下降发育
毒性比目鱼[38] 幼鱼,孵化后84—153日龄 饲料 100、1000 mg·kg−1
饲料直到孵化后285 d 雌性在群体中所占比例增加;
生长速度减慢发育
毒性斑马鱼[33] 胚胎,受精后
2—3 h溶液 1.25、5、10、
20 mg·L−196 h 死亡率增加;发育畸形 青鳉鱼[34] 胚胎,受精后
2 h内溶液 6、10 mg·L−1 7 d 死亡率增加;发育畸形 黑头软口鲦[35] 幼鱼(<24
小时龄)溶液 1000 μg·L−1 21 d 斑马鱼[36] 胚胎 溶液 0.01、0.1、1、10、20、
50 μmol·L−1
(约为0.0027、0.027、0.27、2.7、5.4、13.5 mg·L−1)5 d 心血管
毒性斑马鱼[41-42] 胚胎 溶液 10 μmol·L−1(约为2.7 mg·L−1) 48 h 血管发育受到抑制 斑马鱼[39] 胚胎 溶液 (25、50、100 μmol·L−1,
换算浓度约为6.75、13.5、
27 mg·L−1)60 h 心包水肿,心率降低 神经
毒性斑马鱼[44] 胚胎 溶液 2.5 µmol·L−1
(约为0.675 mg·L−1)7 h 后脑和前脊髓细胞凋亡 斗鱼[46] 雄性 溶液 1、1000 μg·L−1 28 d 前脑中多巴胺水平升高 斗鱼[47] 雄性 溶液 1、1000 μg·L−1 28 d 镜子诱导的攻击行为减少 肝脏
毒性斑马鱼[48] 性成熟 溶液 192 μg·L−1 6 d 肝星状细胞(hepatic stellate
cell,HSC)
免疫组化染色呈Vtg阳性大西洋鲑鱼[49] 肝细胞 溶液 0.1、1.0、10、100 µmol·L−1
(约为0.027、0.27、2.7、
27 mg·L−1)48 h 芳香化酶(cyp1a1)、雌激素受体1(ESR1)、卵黄蛋白原(Vtg1)
转录水平上调黄鲶鱼[31] 雌、雄,10月龄 溶液
(腹腔注射)10、100 μg·g−1(体重) 24 h 肝脏总胆固醇含量升高,
血清游离胆固醇降低虹鳟鱼[50] 雌、雄,5月龄 溶液
(腹腔注射)5、50 μg·g−1(体重) 24 h Vtg、雌激素受体α1(erα1)、
胰岛素样生长
因子结合蛋白2b1(igfbp2b1)
表达水平上调,胰岛素样
生长因子5b1
(igfbp5b1)表达水平下调 -
[1] KŘÍŽOVÁ L, DADÁKOVÁ K, KAŠPAROVSKÁ J, et al. Isoflavones [J]. Molecules, 2019, 24(6): 1076. doi: 10.3390/molecules24061076 [2] MUKUND V, MUKUND D, SHARMA V, et al. Genistein: Its role in metabolic diseases and cancer [J]. Critical Reviews in Oncology/Hematology, 2017, 119: 13-22. doi: 10.1016/j.critrevonc.2017.09.004 [3] RAMOS S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention [J]. The Journal of Nutritional Biochemistry, 2007, 18(7): 427-442. doi: 10.1016/j.jnutbio.2006.11.004 [4] SARKAR F H, LI Y W. Mechanisms of cancer chemoprevention by soy isoflavone genistein [J]. Cancer Metastasis Reviews, 2002, 21(3/4): 265-280. doi: 10.1023/A:1021210910821 [5] GARCÍA-ORTEGA A, KISSINGER K R, TRUSHENSKI J T. Evaluation of fish meal and fish oil replacement by soybean protein and algal meal from Schizochytrium limacinum in diets for giant grouper Epinephelus lanceolatus [J]. Aquaculture, 2016, 452: 1-8. doi: 10.1016/j.aquaculture.2015.10.020 [6] 李长海. 高效液相色谱(HPLC)法对豆类及豆制品中黄豆苷、黄豆苷元、染料木苷和染料木黄酮的定量分析 [J]. 口岸卫生控制, 2001, 6(1): 48-47. doi: 10.3969/j.issn.1008-5777.2001.01.024 LI C H. Quantitative analysis of daidzein and genistein in beans and soybean products by HPLC [J]. Port Health Control, 2001, 6(1): 48-47(in Chinese). doi: 10.3969/j.issn.1008-5777.2001.01.024
[7] ARJMANDI B H, LUCAS E A, KHALIL D A, et al. One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women [J]. Nutrition Journal, 2005, 4: 8. doi: 10.1186/1475-2891-4-8 [8] LIU Z H, KANJO Y, MIZUTANI S. A review of phytoestrogens: Their occurrence and fate in the environment [J]. Water Research, 2010, 44(2): 567-577. doi: 10.1016/j.watres.2009.03.025 [9] INUDO M, ISHIBASHI H, MATSUMURA N, et al. Effect of estrogenic activity, and phytoestrogen and organochlorine pesticide contents in an experimental fish diet on reproduction and hepatic vitellogenin production in medaka (Oryzias latipes) [J]. Comparative Medicine, 2004, 54(6): 673-680. [10] XIAO Y Q, ZHANG S, TONG H B, et al. Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades [J]. Phytotherapy Research, 2018, 32(3): 384-394. doi: 10.1002/ptr.5966 [11] LI Y X, YU H H, XUE M, et al. A tolerance and safety assessment of daidzein in a female fish (Carassius auratus gibelio) [J]. Aquaculture Research, 2016, 47(4): 1191-1201. doi: 10.1111/are.12575 [12] KIPARISSIS Y, HUGHES R, METCALFE C, et al. Identification of the isoflavonoid genistein in bleached kraft mill effluent [J]. Environmental Science & Technology, 2001, 35(12): 2423-2427. [13] INGHAM R R, GESUALDI D A, TOTH C R, et al. Effects of genistein on growth and development of aquatic vertebrates [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72(3): 625-631. doi: 10.1007/s00128-004-0289-0 [14] ADEEL M, SONG X M, WANG Y Y, et al. Environmental impact of estrogens on human, animal and plant life: A critical review [J]. Environment International, 2017, 99: 107-119. doi: 10.1016/j.envint.2016.12.010 [15] de VISSER C L M, SCHREUDER R, STODDARD F. The EU's dependency on soya bean import for the animal feed industry and potential for EU produced alternatives [J]. OCL, 2014, 21(4): D407. doi: 10.1051/ocl/2014021 [16] KLEIN C B, KING A A. Genistein genotoxicity: Critical considerations of in vitro exposure dose [J]. Toxicology and Applied Pharmacology, 2007, 224(1): 1-11. doi: 10.1016/j.taap.2007.06.022 [17] JANZ D M, MCMASTER M E, MUNKITTRICK K R, et al. Elevated ovarian follicular apoptosis and heat shock protein-70 expression in white sucker exposed to bleached kraft pulp mill effluent [J]. Toxicology and Applied Pharmacology, 1997, 147(2): 391-398. doi: 10.1006/taap.1997.8283 [18] MUNKITTRICK K R, MCMASTER M E, MCCARTHY L H, et al. An overview of recent studies on the potential of pulp-mill effluents to alter reproductive parameters in fish [J]. Journal of Toxicology and Environmental Health, Part B, 1998, 1(4): 347-371. doi: 10.1080/10937409809524558 [19] THOMPSON T J, BRIGGS M A, PHILLIPS P J, et al. Groundwater discharges as a source of phytoestrogens and other agriculturally derived contaminants to streams [J]. Science of the Total Environment, 2021, 755: 142873. doi: 10.1016/j.scitotenv.2020.142873 [20] SCHOLZ S, KLÜVER N. Effects of endocrine disrupters on sexual, gonadal development in fish [J]. Sexual Development, 2009, 3(2/3): 136-151. [21] BAGHERI T, IMANPOOR M R, JAFARI V, et al. Reproductive impairment and endocrine disruption in goldfish by feeding diets containing soybean meal [J]. Animal Reproduction Science, 2013, 139(1/2/3/4): 136-144. [22] BAGHERI T, IMANPOOR M R, JAFARI V. Effects of diets containing genistein and diadzein in a long-term study on sex steroid dynamics of goldfish (Carassius auratus) [J]. Toxicology and Industrial Health, 2014, 30(2): 132-140. doi: 10.1177/0748233712452604 [23] NUZAIBA P M, VARGHESE T, GUPTA S, et al. Dietary genistein disrupts sex steroid and vitellogenic response in female common carp, Cyprinus carpio L [J]. Aquaculture, 2020, 522: 735062. doi: 10.1016/j.aquaculture.2020.735062 [24] 王晶, 王冰, 李纪同, 等. 斑马鱼性腺发育的组织学观察 [J]. 基因组学与应用生物学, 2011, 30(2): 168-174. doi: 10.3969/gab.030.000168 WANG J, WANG B, LI J T, et al. Histological observation of zebrafish gonad development [J]. Genomics and Applied Biology, 2011, 30(2): 168-174(in Chinese). doi: 10.3969/gab.030.000168
[25] MASKEY E, CROTTY H, WOOTEN T, et al. Disruption of oocyte maturation by selected environmental chemicals in zebrafish [J]. Toxicology in Vitro, 2019, 54: 123-129. doi: 10.1016/j.tiv.2018.09.017 [26] KIPARISSIS Y, BALCH G C, METCALFE T L, et al. Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes [J]. Environmental Health Perspectives, 2003, 111(9): 1158-1163. doi: 10.1289/ehp.5928 [27] NEZAFATIAN E, ZADMAJID V, CLEVELAND B M. Short-term effects of genistein on the reproductive characteristics of male gibel carp, Carassius auratus gibelio [J]. Journal of the World Aquaculture Society, 2017, 48(5): 810-820. doi: 10.1111/jwas.12399 [28] YOUSEFI JOURDEHI A, SUDAGAR M, BAHMANI M, et al. Comparative study of dietary soy phytoestrogens genistein and equol effects on growth parameters and ovarian development in farmed female beluga sturgeon, Huso huso [J]. Fish Physiology and Biochemistry, 2014, 40(1): 117-128. doi: 10.1007/s10695-013-9829-z [29] BREEN M, VILLENEUVE D L, ANKLEY G T, et al. Developing predictive approaches to characterize adaptive responses of the reproductive endocrine axis to aromatase inhibition: II. computational modeling [J]. Toxicological Sciences, 2013, 133(2): 234-247. doi: 10.1093/toxsci/kft067 [30] ZHANG Y, DOROSHOV S, FAMULA T, et al. Egg quality and plasma testosterone (T) and estradiol-17β (E2) in white sturgeon (Acipenser transmontanus) farmed for caviar [J]. Journal of Applied Ichthyology, 2011, 27(2): 558-564. doi: 10.1111/j.1439-0426.2011.01694.x [31] CHEN Y S, XU W B, ZHANG Q J, et al. Intraperitoneal injection of genistein affects the distribution and metabolism of cholesterol in female yellow catfish Tachysurus fulvidraco [J]. Fish Physiology and Biochemistry, 2021, 47(4): 1299-1311. doi: 10.1007/s10695-021-00985-y [32] JIA Z Q, BABU P V A, SI H W, et al. Genistein inhibits TNF-α-induced endothelial inflammation through the protein kinase pathway A and improves vascular inflammation in C57BL/6 mice [J]. International Journal of Cardiology, 2013, 168(3): 2637-2645. doi: 10.1016/j.ijcard.2013.03.035 [33] SARASQUETE C, ÚBEDA-MANZANARO M, ORTIZ-DELGADO J B. Toxicity and non-harmful effects of the soya isoflavones, genistein and daidzein, in embryos of the zebrafish, Danio rerio [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 211: 57-67. [34] SCHILLER V, WICHMANN A, KRIEHUBER R, et al. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2013, 157(1): 41-53. [35] REARICK D C, FLEISCHHACKER N T, KELLY M M, et al. Phytoestrogens in the environment, I: Occurrence and exposure effects on fathead minnows [J]. Environmental Toxicology and Chemistry, 2014, 33(3): 553-559. doi: 10.1002/etc.2461 [36] REN X, LU F, CUI Y, et al. Protective effects of genistein and estradiol on PAHs-induced developmental toxicity in zebrafish embryos [J]. Human & Experimental Toxicology, 2012, 31(11): 1161-1169. [37] DAFTARY G S, TAYLOR H S. Endocrine regulation of HOX genes [J]. Endocrine Reviews, 2006, 27(4): 331-355. doi: 10.1210/er.2005-0018 [38] DIMAGGIO M A, KENTER L W, BRETON T S, et al. Effects of dietary genistein administration on growth, survival and sex determination in southern flounder, Paralichthys lethostigma [J]. Aquaculture Research, 2016, 47(1): 82-90. doi: 10.1111/are.12470 [39] KIM D J, SEOK S H, BAEK M W, et al. Developmental toxicity and brain aromatase induction by high genistein concentrations in zebrafish embryos [J]. Toxicology Mechanisms and Methods, 2009, 19(3): 251-256. doi: 10.1080/15376510802563330 [40] ZHANG Q L, LI P, HONG L, et al. The protein tyrosine kinase inhibitor genistein suppresses hypoxia-induced atrial natriuretic peptide secretion mediated by the PI3K/Akt-HIF-1α pathway in isolated beating rat Atria [J]. Canadian Journal of Physiology and Pharmacology, 2021, 99(11): 1184-1190. doi: 10.1139/cjpp-2020-0503 [41] DRAUT H, REHM T, BEGEMANN G, et al. Antiangiogenic and toxic effects of genistein, usnic acid, and their copper complexes in zebrafish embryos at different developmental stages [J]. Chemistry & Biodiversity, 2017, 14(3): e1600302. doi: 10.1002/cbdv.201600302 [42] DELOV V, MUTH-KÖHNE E, SCHÄFERS C, et al. Transgenic fluorescent zebrafish Tg(fli1: EGFP)y1 for the identification of vasotoxicity within the zFET [J]. Aquatic Toxicology, 2014, 150: 189-200. doi: 10.1016/j.aquatox.2014.03.010 [43] ZHANG K, ZHAO Y B. Reduced zebrafish transcriptome atlas toward understanding environmental neurotoxicants [J]. Environmental Science & Technology, 2018, 52(12): 7120-7130. [44] SASSI-MESSAI S, GIBERT Y, BERNARD L, et al. The phytoestrogen genistein affects zebrafish development through two different pathways [J]. PLoS One, 2009, 4(3): e4935. doi: 10.1371/journal.pone.0004935 [45] BANDO H, GERGICS P, BOHNSACK B L, et al. Otx2b mutant zebrafish have pituitary, eye and mandible defects that model mammalian disease [J]. Human Molecular Genetics, 2020, 29(10): 1648-1657. doi: 10.1093/hmg/ddaa064 [46] CLOTFELTER E D, MCNITT M M, CARPENTER R E, et al. Modulation of monoamine neurotransmitters in fighting fish Betta splendens exposed to waterborne phytoestrogens [J]. Fish Physiology and Biochemistry, 2010, 36(4): 933-943. doi: 10.1007/s10695-009-9370-2 [47] CLOTFELTER E D, RODRIGUEZ A C. Behavioral changes in fish exposed to phytoestrogens [J]. Environmental Pollution, 2006, 144(3): 833-839. doi: 10.1016/j.envpol.2006.02.007 [48] LICATA P, TARDUGNO R, PERGOLIZZI S, et al. In vivo effects of PCB-126 and genistein on vitellogenin expression in zebrafish [J]. Natural Product Research, 2019, 33(17): 2507-2514. doi: 10.1080/14786419.2018.1455048 [49] OLSVIK P A, SKJÆRVEN K H, SØFTELAND L. Metabolic signatures of bisphenol A and genistein in Atlantic salmon liver cells [J]. Chemosphere, 2017, 189: 730-743. doi: 10.1016/j.chemosphere.2017.09.076 [50] CLEVELAND B M, MANOR M L. Effects of phytoestrogens on growth-related and lipogenic genes in rainbow trout (Oncorhynchus mykiss) [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2015, 170: 28-37. [51] HE J H, GAO J M, HUANG C J, et al. Zebrafish models for assessing developmental and reproductive toxicity [J]. Neurotoxicology and Teratology, 2014, 42: 35-42. doi: 10.1016/j.ntt.2014.01.006