-
《关于持久性有机污染物的斯德哥尔摩公约》(以下简称POPs公约)是人类历史上为保护全球生态环境而签订的第三个具有强制性的国际公约[1]。自2001年POPs公约签订,到2019年公约缔约方大会第九次会议召开,POPs名录已扩充至28种[2-5]。据统计,国内在上世纪80年代之前有数十万吨的有机氯农药(organochlorine pesticides, OCPs)通过各种途径进入土壤和水体[6];曾被各国广泛应用于电力、化工等领域的多氯联苯(polychlorinated biphenyls, PCBs),有近40万吨进入环境并造成严重生态问题[7-9]。在工业现代化进程中,大量多氯二苯并二噁英(polychlorinated dibenzodioxin,PCDD)、多氯二苯并呋喃(polychlorinated dibenzofuran, PCDF)、多溴二苯醚(polybrominated diphenyl ethers, PBDEs)以及多氟烷基化合物(polyfluoroalkyl compounds, PFCs)等POPs持续泄露或排放到环境中[10-14]。由于POPs具有持久残留性并能进行远距离迁移,有学者已在上万米深的海底沉积物中发现PCBs、PBDEs、二噁英等POPs的存在[15]。
POPs是一类具有生物蓄积性和毒性效应的化合物,能够对生物体产生危害。上世纪六七十年代在日本及我国台湾发生的“米糠油”事件以及1999年发生在比利时的二噁英食品污染事件,是POPs污染危害生物体健康的典型案例[16-18]。生物体长期接触POPs后,可引起骨骼发育畸形,同时脑、心脏等组织器官在生长发育过程中可出现病变[19-20],机体正常内分泌及代谢功能也会受到干扰,并可导致糖尿病等疾病的发生[21-22]。即使在低水平的暴露下,POPs仍能表现出诸如神经毒性等效应,造成生物体的行为、学习、运动等方面出现异常[23-24]。POPs通过食物链产生生物放大效应,因此需要对POPs毒理学效应进行深入研究。
在毒理学研究中,生物模型的应用是揭示外源化合物毒理机制的一种有效手段。近年来,随着研究人员对POPs等外源化合物毒理效应研究的不断推进,一些水生生物作为模式生物不断被开发应用。其中斑马鱼、青鳉鱼、非洲爪蟾在过去上百年时间被广泛应用于生理学、胚胎学以及毒理学研究,操作技术相对成熟[25-30]。相比于其他水生模式生物,这三种模式生物具有体型较小、产卵周期可控且产卵量大、对外源化合物刺激敏感等特点,有利于POPs毒理学研究的开展[26, 31-32]。以水生生物为模型研究POPs的毒理学效应,不仅能够降低实验成本、提高实验效率,更能反映水环境中的真实污染状况[33-34]。因此,本文综述了水生模式生物在POPs毒理效应研究中的应用进展,对深入探索POPs的毒理学效应机制、实验动物模型的筛选以及水环境污染治理工作的开展具有重要的参考价值。
几种水生模式生物在持久性有机污染物毒理学评价中的研究进展
Research progress of several aquatic biological models in toxicological evaluation of persistent organic pollutants
-
摘要: 持久性有机污染物对环境及生物体产生的危害已引起全球范围内的持续关注。此类物质能够富集在生物体内,并通过食物链传递产生生物放大效应,进而引发“三致”作用、发育毒性、内分泌干扰效应等。水生模式生物具有饲养成本低、生理周期较短、繁殖量大等优点而被广泛应用于POPs毒理学评价。本文聚焦斑马鱼、青鳉鱼、非洲爪蟾等几种水生模式生物,对其在POPs毒性效应研究中的应用进展进行综述,包括POPs所致骨骼发育畸形、心血管系统病变、性腺发育异常等发育毒性,卵黄蛋白原的诱导、性腺指数、甲状腺激素水平的改变等内分泌干扰效应以及神经行为异常等相关研究内容,希望为POPs污染现状评估以及毒理效应的深入探索、疾病预测模型的建立提供资料参考,并对该领域研究过程中生物模型的筛选具有借鉴意义。Abstract: The harm of persistent organic pollutants (POPs) to the environment and organisms has attracted continuous attention all over the world. Such substances can be enriched in organisms and produce biological amplification effect through food chain transmission, which in turn triggers “three toxicity” effects, developmental toxicity, endocrine disrupting effects, etc. Aquatic model organisms have been widely used in toxicological evaluation of POPs because of their low feeding cost, short physiological cycle and large reproduction. In this paper, several aquatic biological models, such as zebrafish (Danio rerio), medaka (Oryzias latipes) and Xenopus laevis, are focused on to review the application of these models in the study of toxic effects caused by POPs. These toxic effects include developmental toxicity such as skeletal malformation, cardiovascular diseases, gonadal dysplasia, reproductive endocrine disrupting effects such as vitellogenin induction, gonadal index and thyroid hormone levels, as well as neurobehavioral abnormalities and other related research contents. We hope to provide reference for the assessment of POPs pollution status, the in-depth exploration of the toxicological effects of POPs, and establishment of disease prediction model. At the same time, it provides reference for the screening of biological models in the research process of this field.
-
表 1 斑马鱼在POPs发育毒性研究中的应用
Table 1. Application of zebrafish in POPs developmental toxicity studies
物质
Substances暴露浓度
Exposure concentration暴露时间
Exposure time发育毒性
Developmental toxicity文献
ReferencesTCDD 1.50 ng·g −1卵 12—240 hpf 心包水肿,颅面畸形,卵黄囊水肿和死亡 [45] 1 nmol·L−1 0—24 hpf 颌骨发育被阻断,出现颅面畸形 [46] 0.005 nmol·L−1 0—48 hpf 与肿瘤相关基因的表达水平受到调控 [47] 1.00 ng·mL−1 0—120 hpf 抑制心外膜的发育与扩张,出现心力衰竭 [48] 1.00 ng·mL−1 0—120 hpf 心室紧凑,心房狭长,心肌细胞总数减少,出现心室停顿 [49] BDE47 100—5000 mg·L−1 0—96 hpf 身体背侧及后脑弯曲,房室传导阻滞性心律失常 [50] 10.0、5.0、2.5、0.635 mg·L−1 0—168 hpf 体轴弯曲,发育畸形,并出现死亡 [51] 5、10、50 ng·L−1 0—96 hpf 发育抑制,氧化应激,细胞凋亡和DNA损伤 [52] 0.06、0.20、0.60 nmol·L−1 2—72 hpf 主静脉的生长略有下降,肠下及卵黄血管化面积显著减少 [53] BDE49 4—32 mmol·L−1 0—144 hpf 尾部背侧弯曲,心率显著降低 [54] BDE 71 0、31.0、68.7、227.6 mg·L−1 2—120 hpf 视黄酸含量明显降低,眼球发育受阻 [55] PCBs >0.25 mg·L−1 0—96 hpf 视网膜、感光细胞层厚度均明显增厚,感光层细胞排列紊乱 [56] 1.00 mg·L−1 0—120 hpf 脊柱弯曲畸形,存活率降低 [57] 1.00 mg·L−1 0—96 hpf 形态畸变,视网膜层发育被延迟 [58] 0.25 mg·L−1 0—96 hpf 形态畸变,感光细胞排列不规则以及感光层增厚 0、0.125、0.50、1.0 mg·L−1 0—120 hpf 与骨形成、胚胎发育相关基因的表达被抑制,骨骼发育缺陷 [59] 0.25、0.5、0.75、1 μg·L−1 0—120 hpf 形态畸形,脑细胞坏死,眼睛发育较小 [20] 0.125、0.25、0.50、1 mg·L−1 0—168 hpf 与感光细胞发育相关基因的表达下调,感光行为发生改变 [60] 32 μg·L−1 0—144 hpf 幼鱼心包卵黄囊水肿率显著增加 [61] >125 μg·L−1 0—48 hpf 胚胎发育畸形及延迟,心脏形态发育异常 [19] PFOS 0、367、1834、3668、18338、
36676 ng·g−1(胚胎湿重)0—96 hpf 延迟孵化和脊柱弯曲,胚胎发育异常或死亡 [62] 1、3、5 mg·L−1 4—132 hpf 孵化延迟,孵化率和存活率显著降低,发育畸形 [63] 注:TCDD表示Tetrachlorodibenzo-p−dioxin,四氯二苯并-p−二噁英.;hpf 表示hours post fertilization, 受精后小时数.;PFOS表示Perfluorooctane sulfonate, 全氟辛烷磺酸盐. 表 2 稀有鮈鲫在外源化合物毒理学研究中的应用
Table 2. Application of Gobiocypris rarus in toxicology research of exogenous compounds
暴露物质
Exposed substances暴露浓度
Exposure concentration暴露时间
Exposure
period毒性效应
Toxicological effects文献
References铜(Cu)、锌(Zn)、镉(Cd) 0.001—1.000 mg·L−1 72 h 发育畸形,与代谢、发育相关的基因表达发生改变 [169] 铅 (Pb) — 96 h 肝脏线粒体功能紊乱和结构损伤,免疫相关基因表达水平显著提高 [170] Cd2+、三卡因甲磺酸盐、对氯苯胺 ≥0.4、3、10 mg·L−1 — 在颜色偏好上由蓝色和绿色转变为黄色和红色 [171] 吡虫啉、硝苯并吡喃、二甲呋喃 0.1、0.5、2 mg·L−1 60 d 造成氧化应激,SOD、CAT活性显著增加,并出现DNA损伤 [172] 噻虫嗪 0、0.5、5、50 ng·L−1 90 d 肝脏组织学损伤和性腺发育延迟,对HPG轴基因表达的调控显示出性别差异 [166] BaP 0、0.1、0.3、1.0、
3.0 μg·L−128 d 鱼体睾酮和E2的含量变化,肝脏中VTG基因的表达被显著抑制 [167] BaP、邻苯二甲酸二酯 0.1、1.0,10、100 μg·L−1 28 d 睾酮含量升高,但E2含量下降,部分基因表达量发生变化 [173] 双酚A — 63 d E2和睾酮水平以及卵巢基因组DNA甲基化程度均呈现剂量效应关系 [174] 有机磷系阻燃剂 1.0、10、100 ng·L−1 60 d Na+/K+ ATPase相关基因被显著下调,精子质量下降 [175] 十溴联苯醚 (BDE209) 0.01、0.1、1.0、10 ng·L−1 21 d 雌鱼的肝脏损伤,雄鱼睾丸中精子的发生受到抑制 [168] TBT 1.0、10、100 ng·L−1 60 d 鱼体总脂质、总胆固醇、甘油三酯和脂肪酸的含量显著增加 [176] 环磷酰胺 0.3、0.6、1.2、2.4、
9.6 ng·L−1120 h 外周血红细胞微核和异常率增加,与环磷酰胺存在浓度-效应和时间-效应关系 [164] 2,4-二氯-6-硝基苯酚 2.0、20、200 μg·L−1 — 死亡率和畸形率增加,孵化率、体长和体重均降低,甲状腺激素水平改变 [177] 注:SOD表示Superoxide Dismutase,超氧化物歧化酶;CAT表示Catalase,过氧化氢酶;HPG轴表示Hypothalamus-Pituitary-Gonadal axis,下丘脑-垂体-性腺轴. 表 3 其它水生生物模型在外源化合物毒理学研究中的应用
Table 3. Application of other aquatic biological models in toxicology research of exogenous compounds
生物模型
Biological
models暴露物质
Exposed substances主要结论
Conclusions文献
References大型蚤 BDE 209 繁殖毒性大于发育毒性,降解生成的还原中间产物毒性更大 [180] 化学分散剂Corexit 9500 表现出慢性生殖毒性,并阻碍幼蚤生长发育 [187] 双氯芬酸 与代谢、发育和繁殖相关基因的表达量与暴露剂量和时间呈现依赖性关系 [188] PFOA、PFOS 对活动抑制的程度均随暴露时间延长而增强 [181] PFOS 总产卵量、体长和内禀增长率均受到显著抑制 [179] 三氯生(TCS) 新生蚤数量、体长及自然增长率均增大,SOD活性变化 [189] 四膜虫 钩吻碱 抑制生长,造成氧化应激,抗氧化酶的表达上调 [190] 氧化石墨烯 增殖显著受到抑制,部分出现明显凋亡现象,SOD水平呈先升后降的趋势 [191] 水丝蚓 Cu2+、Hg2+、Pb2+ 随着暴露浓度的升高,水丝蚓体内SOD活性呈先升后降的趋势 [192-194] Cd、PFOS SOD活性、谷胱甘肽水平和丙二醛含量均显著变化 [186] Cd SD活性受抑制,AP活性增加,消化道上皮细胞线粒体结构损伤 [195] 注:SD表示Succinate Dehydrogenase,琥珀酸脱氢酶;AP表示Alkaline Phosphatase,碱性磷酸酶. -
[1] 沈平. 《斯德哥尔摩公约》与持久性有机污染物(POPs) [J]. 化学教育, 2005(6): 6-10. doi: 10.3969/j.issn.1003-3807.2005.06.003 SHEN P. Stockholm Convention and persistent organic pollutants (POPs) [J]. Chemical Education, 2005(6): 6-10(in Chinese). doi: 10.3969/j.issn.1003-3807.2005.06.003
[2] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展 [J]. 中国科学: 化学, 2010, 40(2): 99-123. WANG Y W, CAI Y Z, JIANG G B. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Chinese Science: Chemistry, 2010, 40(2): 99-123(in Chinese).
[3] 武丽辉, 张文君. 《斯德哥尔摩公约》受控化学品家族再添新丁 [J]. 农药科学与管理, 2017, 38(10): 17-20. doi: 10.3969/j.issn.1002-5480.2017.10.005 WU L H, ZHANG W J. New POPs under the Stockholm Convention [J]. Pesticide Science and Administration, 2017, 38(10): 17-20(in Chinese). doi: 10.3969/j.issn.1002-5480.2017.10.005
[4] VIJGEN J, ABHILASH P C, LI Y F, et al. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers [J]. Environmental Science and Pollution Research, 2011, 18(2): 152-162. doi: 10.1007/s11356-010-0417-9 [5] AHRENS L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate [J]. Journal of Environmental Monitoring, 2011, 13(1): 20-31. doi: 10.1039/C0EM00373E [6] WONG M H, LEUNG A O W, CHAN J K Y, et al. A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk [J]. Chemosphere, 2005, 60(6): 740-752. doi: 10.1016/j.chemosphere.2005.04.028 [7] DHAKAL K, GADUPUDI G S, LEHMLER H J, et al. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs) [J]. Environment Science and Pollution Research International, 2018, 25(17): 16277-16290. doi: 10.1007/s11356-017-9694-x [8] GRIMM F A, HU D, KANIA-KORWEL I, et al. Metabolism and metabolites of polychlorinated biphenyls [J]. Critical Reviews in Toxicology, 2015, 45(3): 245-272. doi: 10.3109/10408444.2014.999365 [9] 毕新慧, 徐晓白. 多氯联苯的环境行为 [J]. 化学进展, 2000, 12(2): 152-160. doi: 10.3321/j.issn:1005-281X.2000.02.004 BI X H, XU X B. Behaviors of PCBs in Environment [J]. Progress in Chemistry, 2000, 12(2): 152-160(in Chinese). doi: 10.3321/j.issn:1005-281X.2000.02.004
[10] JAWARD F M, FARRAR N J, HARNER T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe [J]. Environmental Science & Technology, 2004, 38(1): 34-41. [11] 金一和, 刘晓, 秦红梅, 等. 我国部分地区自来水和不同水体中的PFOS污染 [J]. 中国环境科学, 2004, 24(2): 39-42. JIN Y H, LIU X, QIN H M, et al. The status quo of perfluorooctane sulfonate (PFOS) pollution in tap water and different waters in partial areas of China [J]. China Environmental Science, 2004, 24(2): 39-42(in Chinese).
[12] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342. [13] BATOOL S, AB RASHID S, MAAH M J, et al. Geographical distribution of persistent organic pollutants in the environment: A review [J]. Journal of Environmental Biology, 2016, 37(5): 1125-1134. [14] 员晓燕, 杨玉义, 李庆孝, 等. 中国淡水环境中典型持久性有机污染物(POPs)的污染现状与分布特征 [J]. 环境化学, 2013, 32(11): 2072-2081. doi: 10.7524/j.issn.0254-6108.2013.11.009 YAN X Y, YANG Y Y, LING Q X, et al. Present situation and distribution characteristics of persistent organic pollutants in freshwater in China [J]. Environmental Chemistry, 2013, 32(11): 2072-2081(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.11.009
[15] 于燕妮, 徐承旭. 毒性污染物抵达世界最深海洋 [J]. 水产科技情报, 2019, 46(2): 117. YU Y N, XU C X. Toxic pollutants reach the deepest ocean in the world [J]. Fisheries Science & Technology Information, 2019, 46(2): 117(in Chinese).
[16] TSAI P C, KO Y C, HUANG W, et al. Increased liver and lupus mortalities in 24-year follow-up of the Taiwanese people highly exposed to polychlorinated biphenyls and dibenzofurans [J]. Science of The Total Environment, 2007, 374(2/3): 216-222. [17] AKAHANE M, MATSUMOTO S, KANAGAWA Y, et al. Long-term health effects of PCBs and related compounds: A comparative analysis of patients suffering from Yusho and the general population [J]. Archives of Environmental Contamination and Toxicology, 2018, 74(2): 203-217. doi: 10.1007/s00244-017-0486-6 [18] BERNARD A, BROECKAERT F, DE POORTER G, et al. The belgian PCB/dioxin incident: Analysis of the food chain contamination and health risk evaluation [J]. Environmental Research, 2002, 88(1): 1-18. doi: 10.1006/enrs.2001.4274 [19] 王薛洁, 余章斌, 韩树萍, 等. 整体原位杂交方法研究多氯联苯对斑马鱼心脏发育的影响 [J]. 实用儿科临床杂志, 2012, 27(7): 537-539. WANG X J, YU Z B, HAN S P, et al. Effect of polychlorinated biphenyls in heart development ofzebrafish in situ hybridization [J]. Chinese Journal of Applied Clinical Pediatrics, 2012, 27(7): 537-539(in Chinese).
[20] RANASINGHE P, THORN R J, SETO R, et al. Embryonic exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish [J]. Environmental Toxicology and Chemistry, 2020, 39(1): 162-170. doi: 10.1002/etc.4587 [21] PARK C M, KIM K T, RHYU D Y. Low-concentration exposure to organochlorine pesticides (OCPs) in L6 myotubes and RIN-m5F pancreatic beta cells induces disorders of glucose metabolism [J]. Toxicology in Vitro, 2020, 65: 8. [22] KO E, KIM D, KIM K, et al. The action of low doses of persistent organic pollutants (POPs) on mitochondrial function in zebrafish eyes and comparison with hyperglycemia to identify a link between POPs and diabetes [J]. Toxicology Mechanisms and Methods, 2020, 30(4): 275-283. doi: 10.1080/15376516.2020.1717704 [23] GLAZER L, HAHN M E, ALURU N. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior [J]. Neurotoxicology, 2016, 52: 134-143. doi: 10.1016/j.neuro.2015.11.012 [24] CHEN J, DAS S R, LA DU J, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring [J]. Environmental Toxicology and Chemistry, 2013, 32(1): 201-206. doi: 10.1002/etc.2031 [25] DAI Y J, JIA Y F, CHEN N, et al. Zebrafish as a model system to study toxicology [J]. Environmental Toxicology and Chemistry, 2014, 33(1): 11-17. doi: 10.1002/etc.2406 [26] WITTBRODT J, SHIMA A, SCHARTL M. Medaka - A model organism from the Far East [J]. Nature Reviews Genetics, 2002, 3(1): 53-64. doi: 10.1038/nrg704 [27] 毛炳宇. 非洲爪蟾: 模式生物里的青蛙王子 [J]. 生命世界, 2008(5): 60-63. MAO B Y. Xenopus laevis: the frog prince in model organisms [J]. World of Life, 2008(5): 60-63(in Chinese).
[28] STADNICKA J, SCHIRMER K, ASHAUER R. Predicting concentrations of organic chemicals in fish by using toxicokinetic models [J]. Environmental Science & Technology, 2012, 46(6): 3273-3280. [29] HILL A J, TERAOKA H, HEIDEMAN W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological Sciences, 2005, 86(1): 6-19. doi: 10.1093/toxsci/kfi110 [30] BHANDARI R K. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes [J]. Environmental Epigenetics, 2016, 2(1): 1-9. [31] 沈敏, COADY K, 董晶, 等. 化学品生态毒性测试鱼类模式生物的应用与展望 [J]. 生态毒理学报, 2017, 12(2): 34-43. doi: 10.7524/AJE.1673-5897.20161126004 SHEN M, COADY K, DOGN J, et al. Application and outlook of various fish models used in chemical ecotoxicity test [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 34-43(in Chinese). doi: 10.7524/AJE.1673-5897.20161126004
[32] BELIAEVA N F, KASHIRTSEVA V N, MEDVEDEVA N V, et al. Zebrafish as a model organism for biomedical studies [J]. Biomeditsinskaia khimiia, 2010, 56(1): 120-131. doi: 10.18097/pbmc20105601120 [33] 杜青平, 刘伍香, 袁保红, 等. 1,2,4-三氯苯对斑马鱼生殖和胚胎发育毒性效应 [J]. 中国环境科学, 2012, 32(4): 736-741. doi: 10.3969/j.issn.1000-6923.2012.04.025 DU Q P, LIU W X, YUAN B H, et al. Reproduction and embrvonic development toxicity of 1,2,4-TCB on zebrafish embryos [J]. China Environmental Science, 2012, 32(4): 736-741(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.04.025
[34] HE J H, GAO J M, HUANG C-J, et al. Zebrafish models for assessing developmental and reproductive toxicity [J]. Neurotoxicology and Teratology, 2014, 42: 35-42. doi: 10.1016/j.ntt.2014.01.006 [35] TANG B, LUO X J, HUANG C C, et al. Characterizing the influence of metabolism on the halogenated organic contaminant biomagnification in two artificial food chains using compound- and enantiomer-specific stable carbon isotope analysis [J]. Environment Science & Technology, 2018, 52(18): 10359-10368. [36] TANG B, POMA G, BASTIAENSEN M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio) [J]. Environment International, 2019, 126: 512-522. doi: 10.1016/j.envint.2019.02.063 [37] BERGHUIS S A, ROZE E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence [J]. Current Problems in Pediatric and Adolescent Health Care, 2019, 49(6): 133-159. doi: 10.1016/j.cppeds.2019.04.006 [38] DELEON S, HALITSCHKE R, HAMES R S, et al. The effect of polychlorinated biphenyls on the song of two passerine species [J]. PLoS One, 2013, 8(9): 11. [39] RUBINSTEIN A L. Zebrafish assays for drug toxicity screening [J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(2): 231-240. [40] HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446): 498-503. doi: 10.1038/nature12111 [41] PARNG C, SENG W L, SEMINO C, et al. Zebrafish: A preclinical model for drug screening [J]. Assay and Drug Development Technologies, 2002, 1(1): 41-48. doi: 10.1089/154065802761001293 [42] NAGEL R. DarT: The embryo test with the zebrafish Danio rerio - a general model in ecotoxicology and toxicology [J]. Altex-Alternativen Zu Tierexperimenten, 2002, 19: 38-48. [43] NORTON W, BALLY-CUIF L. Adult zebrafish as a model organism for behavioural genetics [J]. Bmc Neuroscience, 2010, 11: 90. doi: 10.1186/1471-2202-11-90 [44] CHAI T, CUI F, MU X, et al. Stereoselective induction by 2,2',3,4',6-pentachlorobiphenyl in adult zebrafish (Danio rerio): Implication of chirality in oxidative stress and bioaccumulation [J]. Environmental Pollution, 2016, 215: 66-76. doi: 10.1016/j.envpol.2016.04.075 [45] HENRY T R, SPITSBERGEN J M, HORNUNG M W, et al. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 1997, 142(1): 56-68. doi: 10.1006/taap.1996.8024 [46] PLANCHART A, MATTINGLY C J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Upregulates FoxQ1b in Zebrafish Jaw Primordium [J]. Chemical Research in Toxicology, 2010, 23(3): 480-487. doi: 10.1021/tx9003165 [47] LUO J J, SU D S, XIE S L, et al. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish [J]. The FASEB Journal, 2018, 32(5): 2814-2826. doi: 10.1096/fj.201701171R [48] PLAVICKI J, HOFSTEEN P, PETERSON R E, et al. Dioxin inhibits zebrafish epicardium and proepicardium development [J]. Toxicological Sciences, 2013, 131(2): 558-567. doi: 10.1093/toxsci/kfs301 [49] ANTKIEWICZ D S, BURNS C G, CARNEY S A, et al. Heart malformation is an early response to TCDD in embryonic zebrafish [J]. Toxicological Sciences, 2005, 84(2): 368-377. doi: 10.1093/toxsci/kfi073 [50] LEMA S C, SCHULTZ I R, SCHOLZ N L, et al. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) [J]. Aquatic Toxicology, 2007, 82(4): 296-307. doi: 10.1016/j.aquatox.2007.03.002 [51] USENKO C Y, ROBINSON E M, USENKO S, et al. PBDE developmental effects on embryonic zebrafish [J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1865-1872. doi: 10.1002/etc.570 [52] WANG W, ZHAO X, REN X, et al. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage [J]. Aquatic Toxicology (Amsterdam, Netherlands), 2020, 225: 105546. doi: 10.1016/j.aquatox.2020.105546 [53] XING X, KANG J, QIU J, et al. Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2018, 203: 19-27. doi: 10.1016/j.aquatox.2018.07.012 [54] MCCLAIN V, STAPLETON H M, TILTON F, et al. BDE 49 and developmental toxicity in zebrafish [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2012, 155(2): 253-258. [55] XU T, CHEN L, HU C, et al. Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae [J]. Toxicology and Pharmacology, 2013, 35(1): 13-20. doi: 10.1016/j.etap.2012.10.004 [56] 王艳萍, 洪琴, 寇春兆, 等. 多氯联苯暴露对斑马鱼视网膜形态学及CRX基因表达的影响 [J]. 中国儿童保健杂志, 2010, 18(12): 963-966. WANG Y P, HONG Q, KOU C Z, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish retinal morphology and the expression of CRX gene [J]. Chinese Journal of Child Health Care, 2010, 18(12): 963-966(in Chinese).
[57] 鞠黎, 楼跃, 王艳萍, 等. 多氯联苯暴露对斑马鱼脊柱形态及BMP-2、BMP-4基因表达的影响 [J]. 南京医科大学学报(自然科学版), 2011, 31(9): 1277-1281. JU L, LOU Y, WANG Y P, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish spinal morphology and the expression of BMP-2 and BMP-4 gene [J]. Journal of Nanjing Medical University (Natural Science), 2011, 31(9): 1277-1281(in Chinese).
[58] WANG Y P, HONG Q, QIN D N, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish (Danio rerio) retinal development [J]. Journal of Applied Toxicology, 2012, 32(3): 186-193. doi: 10.1002/jat.1650 [59] JU L, ZHOU Z, JIANG B, et al. miR-21 is involved in skeletal deficiencies of zebrafish embryos exposed to polychlorinated biphenyls [J]. Environment Science and Pollution Research International, 2017, 24(1): 886-891. doi: 10.1007/s11356-016-7874-8 [60] ZHANG X, HONG Q, YANG L, et al. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae [J]. Ecotoxicology and Environmental Safety, 2015, 118: 133-138. doi: 10.1016/j.ecoenv.2015.04.026 [61] 刘寒, 林红英, 聂芳红, 等. PCB126暴露对斑马鱼胚胎发育及氧化应激的影响 [J]. 毒理学杂志, 2012, 26(1): 9-13. LIU H, LIN H Y, NIE F H, et al. Developmental toxicity and oxidative stress of PCB126 to zebrafish embryos [J]. Journal of Toxicology, 2012, 26(1): 9-13(in Chinese).
[62] LI Y, HAN Z, ZHENG X, et al. Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos [J]. Environmental Science and Pollution Research, 2015, 22(3): 2303-2310. doi: 10.1007/s11356-014-3527-y [63] SHI X, DU Y, LAM P K S, et al. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS [J]. Toxicology and Applied Pharmacology, 2008, 230(1): 23-32. doi: 10.1016/j.taap.2008.01.043 [64] SHIMA A, MITANI H. Medaka as a research organism: Past, present and future [J]. Mechanisms of Development, 2004, 121(7/8): 599-604. [65] SASADO T, TANAKA M, KOBAYASHI K, et al. The national bioresource project medaka (NBRP Medaka): An integrated bioresource for biological and biomedical sciences [J]. Experimental Animals, 2010, 59(1): 13-23. doi: 10.1538/expanim.59.13 [66] XU H Y, LI C X, SUKLAI P, et al. Differential sensitivities to dioxin-like compounds PCB 126 and PeCDF between Tg(cyp1a: gfp) transgenic medaka and zebrafish larvae [J]. Chemosphere, 2018, 192: 24-30. doi: 10.1016/j.chemosphere.2017.10.130 [67] WATSON A T D, PLANCHART A, MATTINGLY C J, et al. Embryonic exposure to TCDD impacts osteogenesis of the axial skeleton in japanese medaka, oryzias latipes [J]. Toxicological Sciences, 2017, 155(2): 485-496. doi: 10.1093/toxsci/kfw229 [68] DONG W, HINTON D E, KULLMAN S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development [J]. Toxicological Sciences, 2012, 125(1): 91-104. doi: 10.1093/toxsci/kfr284 [69] KAWAMURA T, YAMASHITA I. Aryl hydrocarbon receptor is required for prevention of blood clotting and for the development of vasculature and bone in the embryos of medaka fish, Oryzias latipes [J]. Zoology Science, 2002, 19(3): 309-319. doi: 10.2108/zsj.19.309 [70] CANTRELL S M, JOY-SCHLEZINGER J, STEGEMAN J J, et al. Correlation of 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced apoptotic cell death in the embryonic vasculature with embryotoxicity [J]. Toxicology and Applied Pharmacology, 1998, 148(1): 24-34. doi: 10.1006/taap.1997.8309 [71] KIM Y, COOPER K R. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) in the embryos and newly hatched larvae of the Japanese medaka (Oryzias latipes) [J]. Chemosphere, 1999, 39(3): 527-538. doi: 10.1016/S0045-6535(98)00603-1 [72] HUANG Q, FANG C, WU X, et al. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma) [J]. Aquatic Toxicology, 2011, 105(1/2): 71-77. [73] QIU X, KIM S, KANG I J, et al. Combined toxicities of tributyltin and polychlorinated biphenyls on the development and hatching of Japanese medaka (Oryzias latipes) embryos via in ovo nanoinjection [J]. Chemosphere, 2019, 225: 927-934. doi: 10.1016/j.chemosphere.2019.03.104 [74] QIU X, IWASAKI N, CHEN K, et al. Tributyltin and perfluorooctane sulfonate play a synergistic role in promoting excess fat accumulation in Japanese medaka (Oryzias latipes) via in ovo exposure [J]. Chemosphere, 2019, 220: 687-695. doi: 10.1016/j.chemosphere.2018.12.191 [75] VILLALOBOS S A, PAPOULIAS D M, PASTVA S D, et al. Toxicity of o,p'-DDE to medaka d-rR strain after a one-time embryonic exposure by in ovo nanoinjection: an early through juvenile life cycle assessment [J]. Chemosphere, 2003, 53(8): 819-826. doi: 10.1016/S0045-6535(03)00583-6 [76] METCALFE T L, METCALFE C D, KIPARISSIS Y, et al. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p'-DDT in water or through maternal transfer [J]. Environmental Toxicology and Chemistry, 2000, 19(7): 1893-1900. doi: 10.1002/etc.5620190725 [77] ZHANG Z, HU J. Effects of p,p'-DDE exposure on gonadal development and gene expression in Japanese medaka (Oryzias latipes) [J]. Journal of Environmental Sciences, 2008, 20(3): 347-352. doi: 10.1016/S1001-0742(08)60054-6 [78] 秦占芬, 徐晓白. 非洲爪蟾在生态毒理学研究中的应用: 概述和实验动物质量控制 [J]. 科学通报, 2006, 51(8): 873-878. doi: 10.3321/j.issn:0023-074X.2006.08.001 QIN Z F, XU X B. Application of Xenopus laevis in ecotoxicology research: overview and quality control of laboratory animals [J]. Chinese Science Bulletin, 2006, 51(8): 873-878(in Chinese). doi: 10.3321/j.issn:0023-074X.2006.08.001
[79] WOLMARANS N J, BERVOETS L, MEIRE P, et al. Current status and future prognosis of malaria vector control pesticide Ecotoxicology and Xenopus sp [J]. Reviews of Environmental Contamination and Toxicology, 2020, 252: 131-171. [80] GUTLEB A C, APPELMAN J, BRONKHORST M C, et al. Delayed effects of pre- and early-life time exposure to polychlorinated biphenyls on tadpoles of two amphibian species (Xenopus laevis and Rana temporaria) [J]. Environmental Toxicology and Pharmacology, 1999, 8(1): 1-14. doi: 10.1016/S1382-6689(99)00023-X [81] 周景明, 秦晓飞, 秦占芬, 等. 多氯联苯(Aroclor 1254)对非洲爪蟾变态发育的影响 [J]. 生态毒理学报, 2007, 2(1): 111-116. ZHOU J M, QIN X F, QIN Z F, et al. Effects of polychlorinated biphenyls (Aroclor 1254) on metamorphic development of Xenopus laevis [J]. Asian Journal of Ecotoxicology, 2007, 2(1): 111-116(in Chinese).
[82] 周景明, 秦占芬, 徐晓白. 多氯联苯对非洲爪蟾变态发育的影响研究 [J]. 动物医学进展, 2007, 28(7): 1-6. doi: 10.3969/j.issn.1007-5038.2007.07.001 ZHOU J M, QIN Z F, XU X B. Effects of polychlorinated biphenyl on the developmental by metamorphosis of Xenopus Laevis [J]. Progress in Veterinary Medicine, 2007, 28(7): 1-6(in Chinese). doi: 10.3969/j.issn.1007-5038.2007.07.001
[83] GILLARDIN V, SILVESTRE F, DIEU M, et al. Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture aroclor 1254 [J]. Molecular and Cellular Proteomics, 2009, 8(4): 596-611. doi: 10.1074/mcp.M800323-MCP200 [84] FISHER M A, JELASO A M, PREDENKIEWICZ A, et al. Exposure to the polychlorinated biphenyl mixture Aroclor (R) 1254 alters melanocyte and tail muscle morphology in developing Xenopus laevis tadpoles [J]. Environmental Toxicology and Chemistry, 2003, 22(2): 321-328. doi: 10.1002/etc.5620220212 [85] QIN Z F, QIN X F, YANG L, et al. Feminizing/demasculinizing effects of polychlorinated biphenyls on the secondary sexual development of Xenopus laevis [J]. Aquatic Toxicology, 2007, 84(3): 321-327. doi: 10.1016/j.aquatox.2007.06.011 [86] LAVINE J A, ROWATT A J, KLIMOVA T, et al. Aryl hydrocarbon receptors in the frog Xenopus laevis: Two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicological Sciences, 2005, 88(1): 60-72. doi: 10.1093/toxsci/kfi228 [87] PHILIPS B H, SUSMAN T C, POWELL W H. Developmental differences in elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during Xenopus laevis development [J]. Marine Environmental Research, 2006, 62(Suppl): 34-37. [88] SAKAMOTO M K, MIMA S, TANIMURA T. Apoptosis of the intestinal principal cells of Xenopus larvae exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Journal of Environmental Pathology Toxicology and Oncology, 1999, 18(4): 289-295. [89] BROWN S B, ADAMS B A, CYR D G, et al. Contaminant effects on the teleost fish thyroid [J]. Environmental Toxicology and Chemistry, 2004, 23(7): 1680-1701. doi: 10.1897/03-242 [90] 陈蝶, 高明, 吴南翔. 持久性有机污染物的毒性及其机制研究进展 [J]. 环境与职业医学, 2018, 35(6): 558-565. CHEN D, GAO M, WU N X. Progress on toxicity and mechanisms of persistent organic pollutants [J]. Journal of Environmental & Occupational Medicine, 2018, 35(6): 558-565(in Chinese).
[91] SOFFKER M, TYLER C R. Endocrine disrupting chemicals and sexual behaviors in fish - a critical review on effects and possible consequences [J]. Critical Reviews in Toxicology, 2012, 42(8): 653-668. doi: 10.3109/10408444.2012.692114 [92] CABALLERO-GALLARDO K, OLIVERO-VERBEL J, FREEMAN J L. Toxicogenomics to evaluate endocrine disrupting effects of environmental chemicals using the Zebrafish Model [J]. Current Genomics, 2016, 17(6): 515-527. doi: 10.2174/1389202917666160513105959 [93] DAOUK T, LARCHER T, ROUPSARD F, et al. Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability [J]. Aquatic Toxicology, 2011, 105(3/4): 270-278. [94] 谭燕, 李远友. 鱼类在内分泌干扰研究中的应用 [J]. 水产科学, 2006, 25(11): 583-587. doi: 10.3969/j.issn.1003-1111.2006.11.013 TAN Y, LI Y Y. Application of fish in the study of endocrine disruption [J]. Fisheries Science, 2006, 25(11): 583-587(in Chinese). doi: 10.3969/j.issn.1003-1111.2006.11.013
[95] 黄苑, 苏晓鸥, 王瑞国, 等. 多氯联苯羟基化代谢物及其雌激素效应研究进展 [J]. 生态毒理学报, 2018, 13(5): 58-68. doi: 10.7524/AJE.1673-5897.20180111001 HUANG Y, SU X O, WANG R G, et al. Advances on hydroxylated polychlorinated biphenyls metabolites and the estrogenic effects [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 58-68(in Chinese). doi: 10.7524/AJE.1673-5897.20180111001
[96] QUINTANEIRO C, SOARES A, COSTA D, et al. Effects of PCB-77 in adult zebrafish after exposure during early life stages [J]. Journal of Environmental Science And Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2019, 54(5): 478-483. [97] CHEN X, WALTER K M, MILLER G W, et al. Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls [J]. Biomedical Chromatography, 2018, 32(6): e4185. doi: 10.1002/bmc.4185 [98] KRAUGERUD M, DOUGHTY R W, LYCHE J L, et al. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2012, 116-117: 16-23. doi: 10.1016/j.aquatox.2012.02.031 [99] HUANG Y, ZHU G, PENG L, et al. Effect of 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) on sexual behaviors and reproductive function in male zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2015, 111: 102-108. doi: 10.1016/j.ecoenv.2014.09.037 [100] 余丽琴, 陈联国, 王蔷薇, 等. 阻燃剂对斑马鱼的传递毒性效应-影响子代健康// 中国化学会. 中国化学会第29届学术年会摘要集——第20分会: 环境与健康[C]. 中国化学会: 中国化学会, 2014: 1. YU L Q, CHEN L G, WANG Q W, et al. Transgenerational toxicity of PBDEs and TDCPP in zebrafish[A]. Chinese Chemical Society. Abstracts of the 29th Annual Meeting of the Chinese Chemical Society-Session 20: Environment and Health[C]. Chinese Chemical Society: Chinese Chemical Society, 2014: 1(in Chinese).
[101] HE J, YANG D, WANG C, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring [J]. Ecotoxicology, 2011, 20(8): 1813-1822. doi: 10.1007/s10646-011-0720-3 [102] YU L, DENG J, SHI X, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae [J]. Aquatic Toxicology, 2010, 97(3): 226-233. doi: 10.1016/j.aquatox.2009.10.022 [103] KUIPER R V, VETHAAK A D, CANTON R F, et al. Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio) [J]. Chemosphere, 2008, 73(2): 195-202. doi: 10.1016/j.chemosphere.2008.04.079 [104] SUN W, JIA Y, DING X, et al. Combined effects of pentachlorophenol and its byproduct hexachlorobenzene on endocrine and reproduction in zebrafish [J]. Chemosphere, 2019, 220: 216-226. doi: 10.1016/j.chemosphere.2018.12.100 [105] HEIDEN T C K, STRUBLE C A, RISE M L, et al. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: Insights into TCDD-induced endocrine disruption and reproductive toxicity [J]. Reproductive Toxicology, 2008, 25(1): 47-57. doi: 10.1016/j.reprotox.2007.07.013 [106] DU G, HU J, HUANG H, et al. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo [J]. Environmental Toxicology and Chemistry, 2013, 32(2): 353-360. doi: 10.1002/etc.2034 [107] SHI X, LIU C, WU G, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae [J]. Chemosphere, 2009, 77(7): 1010-1018. doi: 10.1016/j.chemosphere.2009.07.074 [108] DU Y, SHI X, LIU C, et al. Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: A partial life-cycle test [J]. Chemosphere, 2009, 74(5): 723-729. doi: 10.1016/j.chemosphere.2008.09.075 [109] MONTEIRO M S, PAVLAKI M, FAUSTINO A, et al. Endocrine disruption effects of p,p'-DDE on juvenile zebrafish [J]. Journal of Applied Toxicology, 2015, 35(3): 253-260. doi: 10.1002/jat.3014 [110] RALDUA D, BABIN P J. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function [J]. Environmental Science & Technology, 2009, 43(17): 6844-6850. [111] WU L, RU H, NI Z, et al. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2019, 216: 105280. doi: 10.1016/j.aquatox.2019.105280 [112] TIMME-LARAGY A R, SANT K E, ROUSSEAU M E, et al. Deviant development of pancreatic beta cells from embryonic exposure to PCB-126 in zebrafish [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2015, 178: 25-32. [113] CHEN H, HU J, YANG J, et al. Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens [J]. Aquatic Toxicology, 2010, 96(1): 53-61. doi: 10.1016/j.aquatox.2009.09.015 [114] GORELICK D A, HALPERN M E. Visualization of estrogen receptor transcriptional activation in zebrafish [J]. Endocrinology, 2011, 152(7): 2690-2703. doi: 10.1210/en.2010-1257 [115] LIN C Y, CHIANG C Y, TSAI H J. Zebrafish and Medaka: New model organisms for modern biomedical research [J]. Journal of Biomedical Science, 2016, 23: 11. doi: 10.1186/s12929-016-0226-7 [116] OKUYAMA T, YOKOI S, TAKEUCHI H. Molecular basis of social competence in medaka fish [J]. Development Growth & Differentiation, 2017, 59(4): 211-218. [117] NAKAYAMA K, OSHIMA Y, NAGAFUCHI K, et al. Early-life-stage toxicity in offspring from exposed parent medaka, Oryzias latipes, to mixtures of tributyltin and polychlorinated biphenyls [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 591-596. doi: 10.1897/04-157R.1 [118] NAKAYAMA K, SEI N, HANDOH I C, et al. Effects of polychlorinated biphenyls on liver function and sexual characteristics in Japanese medaka (Oryzias latipes) [J]. Marine Pollution Bulletin, 2011, 63(5-12): 366-369. doi: 10.1016/j.marpolbul.2011.01.015 [119] YUM S, WOO S, KAGAMI Y, et al. Changes in gene expression profile of medaka with acute toxicity of Arochlor 1260, a polychlorinated biphenyl mixture [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2010, 151(1): 51-56. [120] UCHIDA M, NAKAMURA H, KAGAMI Y, et al. Estrogenic effects of o,p'-DDT exposure in Japanese medaka (Oryzias latipes) [J]. Journal of Toxicological Sciences, 2010, 35(4): 605-608. doi: 10.2131/jts.35.605 [121] PAPOULIAS D M, VILLALOBOS S A, MEADOWS J, et al. In ovo exposure to o,p'-DDE affects sexual development but not sexual differentiation in Japanese medaka (Oryzias latipes) [J]. Environmental Health Perspectives, 2003, 111(1): 29-32. doi: 10.1289/ehp.5540 [122] SUN J, WANG C, PENG H, et al. p,p'-DDE Induces Gonadal Intersex in Japanese Medaka (Oryzias latipes) at Environmentally Relevant Concentrations: Comparison with o,p'-DDT [J]. Environmental Science & Technology, 2016, 50(1): 462-469. [123] TSE A C K, LAU K Y T, GE W, et al. A rapid screening test for endocrine disrupting chemicals using primary cell culture of the marine medaka [J]. Aquatic Toxicology, 2013, 144: 50-58. [124] ZHAO Y B, LUO K, FAN Z L, et al. Modulation of Benzo a pyrene-Induced Toxic Effects in Japanese Medaka (Oryzias latipes) by 2,2', 4,4'-Tetrabromodiphenyl Ether [J]. Environmental Science & Technology, 2013, 47(22): 13068-13076. [125] LEE J W, LEE J W, SHIN Y J, et al. Multi-generational xenoestrogenic effects of Perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system [J]. Chemosphere, 2017, 169: 212-223. doi: 10.1016/j.chemosphere.2016.11.035 [126] KANG J S, AHN T G, PARK J W. Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes) [J]. Journal of Hazardous Materials, 2019, 368: 97-103. doi: 10.1016/j.jhazmat.2019.01.034 [127] GUTLEB A C, APPELMAN J, BRONKHORST M, et al. Effects of oral exposure to polychlorinated biphenyls (PCBs) on the development and metamorphosis of two amphibian species (Xenopus laevis and Rana temporaria) [J]. Science of The Total Environment, 2000, 262(1/2): 147-157. [128] LEHIGH SHIREY E A, JELASO LANGERVELD A, MIHALKO D, et al. Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis [J]. Environmental Research, 2006, 102(2): 205-214. doi: 10.1016/j.envres.2006.04.001 [129] GUTLEB A C, MOSSINK L, SCHRIKS M, et al. Delayed effects of environmentally relevant concentrations of 3,3', 4,4'-tetrachlorobiphenyl (PCB-77) and non-polar sediment extracts detected in the prolonged-FETAX [J]. Science of the Total Environment, 2007, 381(1/3): 307-315. [130] QIN Z F, ZHOU J M, CHU S G, et al. Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis [J]. Environmental Health Perspectives, 2003, 111(4): 553-556. doi: 10.1289/ehp.5620 [131] 李焕婷, 秦占芬, 秦晓飞, 等. 多氯联苯和多溴联苯醚对非洲爪蟾生长发育和性腺发育的影响 [J]. 西北农林科技大学学报(自然科学版), 2009, 37(4): 31-36. LI H T, QIN Z F, QIN X F, et al. Effects of polychlorinated biphenyls and polybrominated diphenyl ethers on the growth and gonadal development of African clawed frogs(Xenopus laevis) [J]. Journal of Northwest A& F University (Natural Science Edition), 2009, 37(4): 31-36(in Chinese).
[132] TAFT J D, COLONNETTA M M, SCHAFER R E, et al. Dioxin Exposure alters molecular and morphological responses to thyroid hormone in Xenopus laevis cultured cells and Prometamorphic Tadpoles [J]. Toxicological Sciences, 2018, 161(1): 196-206. doi: 10.1093/toxsci/kfx213 [133] YOST A T, THORNTON L M, VENABLES B J, et al. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles [J]. Environmental Toxicology and Pharmacology, 2016, 48: 237-244. doi: 10.1016/j.etap.2016.11.002 [134] HOFFMANN F, KLOAS W. p,p'-Dichlordiphenyldichloroethylene (p,p'-DDE) can elicit antiandrogenic and estrogenic modes of action in the amphibian Xenopus laevis [J]. Physiology & Behavior, 2016, 167: 172-178. [135] LONGNECKER M P, WOLFF M S, GLADEN B C, et al. Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment [J]. Environmental Health Perspectives, 2003, 111(1): 65-70. doi: 10.1289/ehp.5463 [136] CHEN Y C, YU M L, ROGAN W J, et al. A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children [J]. American Journal of Public Health, 1994, 84(3): 415-421. doi: 10.2105/AJPH.84.3.415 [137] PATANDIN S, LANTING C I, MULDER P G H, et al. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age [J]. Journal of Pediatrics, 1999, 134(1): 33-41. doi: 10.1016/S0022-3476(99)70369-0 [138] NISHIDA N, FARMER J D, KODAVANTI P R S, et al. Effects of acute and repeated exposures to aroclor 1254 in adult rats: Motor activity and flavor aversion conditioning [J]. Fundamental and Applied Toxicology, 1997, 40(1): 68-74. doi: 10.1006/faat.1997.2352 [139] TIEDEKEN J A, RAMSDELL J S. DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions [J]. Environmental Health Perspectives, 2009, 117(1): 68-73. doi: 10.1289/ehp.11685 [140] SOUTH J, BOTHA T L, WOLMARANS N J, et al. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour [J]. Ecotoxicology, 2019, 28(7): 771-780. doi: 10.1007/s10646-019-02075-5 [141] TIMME-LARAGY A R, LEVIN E D, DI GIULIO R T. Developmental and behavioral effects of embryonic exposure to the polybrominated diphenylether mixture DE-71 in the killifish (Fundulus heteroclitus) [J]. Chemosphere, 2006, 62(7): 1097-1104. doi: 10.1016/j.chemosphere.2005.05.037 [142] BAILEY J, OLIVERI A, LEVIN E D. Zebrafish model systems for developmental neurobehavioral toxicology [J]. Birth Defects Research Part C-Embryo Today-Reviews, 2013, 99(1): 14-23. doi: 10.1002/bdrc.21027 [143] DE ESCH C, SLIEKER R, WOLTERBEEK A, et al. Zebrafish as potential model for developmental neurotoxicity testing: A mini review [J]. Neurotoxicology and Teratology, 2012, 34(6): 545-553. doi: 10.1016/j.ntt.2012.08.006 [144] TON C, LIN Y X, WILLETT C. Zebrafish as a model for developmental neurotoxicity testing [J]. Birth Defects Research Part a-Clinical and Molecular Teratology, 2006, 76(7): 553-567. doi: 10.1002/bdra.20281 [145] TANAKA Y, FUJIWARA M, SHINDO A, et al. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos [J]. Chemosphere, 2018, 193: 1207-1215. doi: 10.1016/j.chemosphere.2017.11.138 [146] KREILING J A, CRETON R, REINISCH C. Early embryonic exposure to polychlorinated biphenyls disrupts heat-shock protein 70 cognate expression in zebrafish [J]. Journal of Toxicology and Environmental Health, 2007, 70(12): 1005-1013. doi: 10.1080/15287390601171868 [147] GONZALEZ S T, REMICK D, CRETON R, et al. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish [J]. Neurotoxicology, 2016, 53: 93-101. doi: 10.1016/j.neuro.2015.12.018 [148] CHEN L, HUANG C, HU C, et al. Acute exposure to DE-71: effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae [J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2338-2344. doi: 10.1002/etc.1958 [149] CHEN L, YU K, HUANG C, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in Zebrafish Larvae [J]. Environmental Science & Technology, 2012, 46(17): 9727-9734. [150] ZHENG S, LIU C, HUANG Y, et al. Effects of 2,2', 4,4'-tetrabromodiphenyl ether on neurobehavior and memory change and bcl-2, c-fos, grin1b and lingo1b gene expression in male zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 2017, 333: 10-16. doi: 10.1016/j.taap.2017.08.004 [151] CHOU C T, HSIAO Y C, KO F C, et al. Chronic exposure of 2,2', 4,4'-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2010, 98(4): 388-395. doi: 10.1016/j.aquatox.2010.03.012 [152] CHEN X, HUANG C, WANG X, et al. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish [J]. Aquatic Toxicology, 2012, 120: 35-44. [153] HILL A, HOWARD C V, STRAHLE U, et al. Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations [J]. Toxicological Sciences, 2003, 76(2): 392-399. doi: 10.1093/toxsci/kfg241 [154] NAKAYAMA K, OSHIMA Y, HIRAMATSU K, et al. Alteration of general behavior of male medaka, Oryzias latipes, exposed to tributyltin and/or polychlorinated biphenyls [J]. Journal of the Faculty of Agriculture Kyushu University, 2004, 49(1): 85-92. doi: 10.5109/4568 [155] NAKAYAMA K, OSHIMA Y, HIRAMATSU K, et al. Effects of polychlorinated biphenyls on the schooling behavior of Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Chemistry, 2005, 24(10): 2588-2593. doi: 10.1897/04-518R2.1 [156] FERNANDES E C A, HENDRIKS H S, VAN KLEEF R G D M, et al. Activation and Potentiation of Human GABA(A) Receptors by Non-Dioxin-Like PCBs Depends on Chlorination Pattern [J]. Toxicological Sciences, 2010, 118(1): 183-190. doi: 10.1093/toxsci/kfq257 [157] FERNANDES E C A, HENDRIKS H S, VAN KLEEF R G D M, et al. Potentiation of the human GABA(A) receptor As a novel mode of action of lower-chlorinated non-dioxin-like PCBs [J]. Environmental Science & Technology, 2010, 44(8): 2864-2869. [158] JELASO A M, LEHIGH-SHIREY E, MEANS J, et al. Gene expression patterns predict exposure to PCBs in developing Xenopus laevis tadpoles [J]. Environmental and Molecular Mutagenesis, 2003, 42(1): 1-10. doi: 10.1002/em.10173 [159] JELASO A M, DELONG C, MEANS J, et al. Dietary exposure to aroclor 1254 alters gene expression in Xenopus laevis frogs [J]. Environmental Research, 2005, 98(1): 64-72. doi: 10.1016/j.envres.2004.05.014 [160] HENDRIKS H S, FERNANDES E C A, BERGMAN A, et al. PCB-47, PBDE-47, and 6-OH-PBDE-47 differentially modulate human GABA(A) and alpha(4)beta(2) nicotinic acetylcholine receptors [J]. Toxicological Sciences, 2010, 118(2): 635-642. doi: 10.1093/toxsci/kfq284 [161] MURENZI E, TOLTIN A C, SYMINGTON S B, et al. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels [J]. Neurotoxicology, 2017, 60: 260-273. doi: 10.1016/j.neuro.2016.04.004 [162] 梁艺怀, 张京佶, 张琨, 等. 稀有鮈鲫作为鱼类幼体生长试验受试鱼种的适用性研究 [J]. 中国实验动物学报, 2018, 26(5): 618-623. doi: 10.3969/j.issn.1005-4847.2018.05.013 LIANG Y H, ZHAGN J J, ZHAGN K, et al. Applicability of Chinese rare minnows for the juvenile fish growth test [J]. Acta Laboratoriun Animals Scientia Sinica, 2018, 26(5): 618-623(in Chinese). doi: 10.3969/j.issn.1005-4847.2018.05.013
[163] 张京佶, 殷浩文. 有关稀有鮈鲫作为本土模式生物的争议及辨析 [J]. 生态毒理学报, 2017, 12(2): 44-45. doi: 10.7524/AJE.1673-5897.20161126002 ZHANG J J, YIN H W. Is Chinese rare minnow a qualified model organism in China? [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 44-45(in Chinese). doi: 10.7524/AJE.1673-5897.20161126002
[164] 刘汉伟, 章跃龙, 乐琪君, 等. 环磷酰胺对稀有鮈鲫的遗传毒性 [J]. 中国口岸科学技术, 2020(1): 54-57. LIU H W, ZHANG Y L, LE Q J, et al. Genotoxicity of cyclophosphamide to gobiocypris rarus [J]. Chinese Port Science and Technology, 2020(1): 54-57(in Chinese).
[165] 张京佶, 王绿平, 张琨. 稀有鮈鲫在鱼类胚胎急性毒性试验中的适用性研究 [J]. 环境科学研究, 2019, 32(7): 1162-1169. ZHANG J J, WANG L P, ZHANG K. Applicability of Gobiocypris rarus in Fish Embryo Acute Toxicity Test [J]. Research of Environmental Science, 2019, 32(7): 1162-1169(in Chinese).
[166] ZHU L, LI W, ZHA J, et al. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): Docking study, hormone levels, histology, and transcriptional responses [J]. Ecotoxicology and Environmental Safety, 2019, 185: 109683. doi: 10.1016/j.ecoenv.2019.109683 [167] 郭勇勇, 周炳升. 苯并芘对稀有鮈鲫的内分泌干扰效应研究 [J]. 环境科学学报, 2015, 35(9): 3006-3012. GUO Y Y, ZHOU B S. Endocrine disruption effects of benzo (a)pyrene on Chinese rare minnow (Gobiocypris rarus) [J]. Acta Scientiae Circumstantiae, 2015, 35(9): 3006-3012(in Chinese).
[168] LI W, ZHU L, ZHA J, et al. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus) [J]. Environmental Toxicology, 2014, 29(1): 1-9. doi: 10.1002/tox.20767 [169] ZHU B, LIU L, LI D L, et al. Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd [J]. Ecotoxicology and Environmental Safety, 2014, 104: 269-277. doi: 10.1016/j.ecoenv.2014.03.018 [170] SHI L, WANG N, HU X, et al. Acute toxic effects of lead (Pb2+) exposure to rare minnow (Gobiocypris rarus) revealed by histopathological examination and transcriptome analysis [J]. Environmental Toxicology and Pharmacology, 2020, 78: 103385. doi: 10.1016/j.etap.2020.103385 [171] QIU N, SU L, WU B, et al. Chemicals affect color preference in rare minnow (Gobiocypris rarus) [J]. Environment Science and Pollution Research International, 2020, 27(18): 23206-23214. doi: 10.1007/s11356-020-08924-9 [172] TIAN X, HONG X, YAN S, et al. Neonicotinoids caused oxidative stress and DNA damage in juvenile Chinese rare minnows (Gobiocypris rarus) [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110566. doi: 10.1016/j.ecoenv.2020.110566 [173] 付娟娟, 郭勇勇, 韩建, 等. 苯并芘和邻苯二甲酸二(2-乙基己基)酯复合暴露对稀有鮈鲫的内分泌干扰效应研究 [J]. 生态毒理学报, 2019, 14(6): 93-103. FU J J, GUO Y Y, HAN J, et al. Endocrine disruption effects of benzo(a) pyrene and di-2-ethylhexyl phthalate on chinese rare minnow(gobiocypris rarus) [J]. Asian Journal of Ecotoxicology, 2019, 14(6): 93-103(in Chinese).
[174] LIU Y, WANG L, ZHU L, et al. Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation [J]. Chemosphere, 2020, 240: 124935. doi: 10.1016/j.chemosphere.2019.124935 [175] CHEN R, HONG X, YAN S, et al. Three organophosphate flame retardants (OPFRs) reduce sperm quality in Chinese rare minnows (Gobiocypris rarus) [J]. Environment Pollution, 2020, 263(Pt A): 114525. [176] ZHANG J, ZHANG C, MA D, et al. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus) [J]. Fish & Shellfish Immunology, 2017, 71: 10-18. [177] CHEN R, YUAN L, ZHA J, et al. Developmental toxicity and thyroid hormone-disrupting effects of 2, 4-dichloro-6-nitrophenol in Chinese rare minnow (Gobiocypris rarus) [J]. Aquatic Toxicology, 2017, 185: 40-47. doi: 10.1016/j.aquatox.2017.02.005 [178] 范博, 樊明, 刘征涛, 等. 稀有鮈鲫物种敏感性及其在生态毒理学与水质基准中的应用 [J]. 环境科学研究, 2019, 32(7): 1153-1161. FAN B, FAN M, LIU Z T, et al. Species sensitivity and application in ecotoxicology and water quality criterion for Gobiocypris rarus [J]. Research of Environmental Science, 2019, 32(7): 1153-1161(in Chinese).
[179] 伍辛泷, 黄乾生, 方超, 等. 新兴海洋生态毒理学模式生物——海洋青鳉鱼(Oryzias melastigma) [J]. 生态毒理学报, 2012, 7(4): 345-353. WU X L, HUANG Q S, FANG C, et al. Emerging model organism in marine ecotoxicology——Oryzias melastigma [J]. Asian Journal of Ecotoxicology, 2012, 7(4): 345-353(in Chinese).
[180] 韩文亮, 郑小燕. 十溴二苯醚及其降解产物对浮游生物的毒性 [J]. 环境科学学报, 2018, 38(2): 821-828. HAN W L, ZHENG X Y. Toxicity of decabromodiphenyl ether and its degradation products to plankton [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 821-828(in Chinese).
[181] 刘冉, 曹志会, 赵月, 等. PFOA和PFOS对大型蚤急性毒性试验研究 [J]. 安全与环境工程, 2015, 22(4): 51-55+74. LIU R, CAO Z H, ZHAO Y, et al. Experiment study on acute toxicity of PFOA and PFOS to daphnia magna [J]. Safety and Environmental Engineering, 2015, 22(4): 51-55+74(in Chinese).
[182] FLAHERTY C M, DODSON S I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction [J]. Chemosphere, 2005, 61(2): 200-207. doi: 10.1016/j.chemosphere.2005.02.016 [183] 畅悦, 冯立芳, 缪炜. 有污染物二氯二苯三氯乙烷、三丁锡和2,3,7,8-四氯二苯并二噁英暴露下的四膜虫毒理因组学研究 [J]. 中国科学: 生命科学, 2011, 41(6): 502-511. CHANG Y, FENG L F, MIAO W. Toxicogenomic research on tetrahymena thermophila exposed to dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Chinese Bulletin of Life Sciences, 2011, 41(6): 502-511(in Chinese).
[184] 缪炜. 原生动物四膜虫“小材”有“大用” [J]. 生物学通报, 2010, 45(12): 1-4. doi: 10.3969/j.issn.0006-3193.2010.12.001 LIAO W. Protozoan tetrahymena: the great contributions to the fundamental research [J]. Bulletin of Biology, 2010, 45(12): 1-4(in Chinese). doi: 10.3969/j.issn.0006-3193.2010.12.001
[185] 杨扬, 李雅洁, 崔益斌, 等. 3种典型有机污染物对2种水生生物的急性毒性及安全评价 [J]. 环境科学, 2015, 36(8): 3074-3079. YANG Y, LI Y J, CUI Y B, et al. Acute toxicity and safety assessment of three typical organic pollutants to two aquatic organisms [J]. Environmental Science, 2015, 36(8): 3074-3079(in Chinese).
[186] QU R J, LIU J Q, WANG L S, et al. The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values [J]. Chemosphere, 2016, 152: 496-502. doi: 10.1016/j.chemosphere.2016.03.024 [187] TOYOTA K, MCNABB N A, SPYROPOULOS D D, et al. Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna [J]. Journal of Applied Toxicology, 2017, 37(2): 201-206. doi: 10.1002/jat.3343 [188] LIU Y, WANG L, PAN B, et al. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna [J]. Aquat Toxicol, 2017, 183: 104-113. [189] PENG Y, LUO Y, NIE X P, et al. Toxic effects of triclosan on the detoxification system and breeding of Daphnia magna [J]. Ecotoxicology, 2013, 22(9): 1384-1394. doi: 10.1007/s10646-013-1124-3 [190] YE Q, ZHANG C N, WANG Z L, et al. Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila [J]. PloS One, 2019, 14(2): 15. [191] 廖苑辰, 常叶倩, 徐晨珂, 等. 氧化石墨烯对嗜热四膜虫的毒性效应 [J]. 中国环境科学, 2019, 39(3): 1299-1305. doi: 10.3969/j.issn.1000-6923.2019.03.048 LIAO Y C, CHANG Y Q, XU C K, et al. Toxicity effects of graphene oxide to Tetrahymena thermophila [J]. China Environmental Science, 2019, 39(3): 1299-1305(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.03.048
[192] 柳郁滨, 范学铭, 王哲娟. Cu2+离子对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2010, 26(19): 423-425. LIU Y B, FAN X M, WANG Z J. Effects of Cu2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2010, 26(19): 423-425(in Chinese).
[193] 孙娜, 王宇佳, 柳郁滨, 等. Hg2+对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2012, 28(17): 143-146. doi: 10.3969/j.issn.1000-6850.2012.17.027 SUN N, WANG Y J, LIU Y B, et al. Effects of Hg2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2012, 28(17): 143-146(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.17.027
[194] 赵双菁, 李艳秋, 柳郁滨, 等. Pb2+对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2012, 28(8): 87-89. doi: 10.3969/j.issn.1000-6850.2012.08.019 ZHAO S R, LIU Y Q, LIU Y B, et al. Effect of Pb2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2012, 28(8): 87-89(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.08.019
[195] ORTEGA M, ORDONEZ E O, FAVARI L, et al. Biochemical and mitochondrial changes induced by Cd, Fe and Zn in limnodrillus hoffmeisteri [J]. International Journal of Morphology, 2011, 29(2): 412-419. doi: 10.4067/S0717-95022011000200018