-
《关于持久性有机污染物的斯德哥尔摩公约》(以下简称POPs公约)是人类历史上为保护全球生态环境而签订的第三个具有强制性的国际公约[1]。自2001年POPs公约签订,到2019年公约缔约方大会第九次会议召开,POPs名录已扩充至28种[2-5]。据统计,国内在上世纪80年代之前有数十万吨的有机氯农药(organochlorine pesticides, OCPs)通过各种途径进入土壤和水体[6];曾被各国广泛应用于电力、化工等领域的多氯联苯(polychlorinated biphenyls, PCBs),有近40万吨进入环境并造成严重生态问题[7-9]。在工业现代化进程中,大量多氯二苯并二噁英(polychlorinated dibenzodioxin,PCDD)、多氯二苯并呋喃(polychlorinated dibenzofuran, PCDF)、多溴二苯醚(polybrominated diphenyl ethers, PBDEs)以及多氟烷基化合物(polyfluoroalkyl compounds, PFCs)等POPs持续泄露或排放到环境中[10-14]。由于POPs具有持久残留性并能进行远距离迁移,有学者已在上万米深的海底沉积物中发现PCBs、PBDEs、二噁英等POPs的存在[15]。
POPs是一类具有生物蓄积性和毒性效应的化合物,能够对生物体产生危害。上世纪六七十年代在日本及我国台湾发生的“米糠油”事件以及1999年发生在比利时的二噁英食品污染事件,是POPs污染危害生物体健康的典型案例[16-18]。生物体长期接触POPs后,可引起骨骼发育畸形,同时脑、心脏等组织器官在生长发育过程中可出现病变[19-20],机体正常内分泌及代谢功能也会受到干扰,并可导致糖尿病等疾病的发生[21-22]。即使在低水平的暴露下,POPs仍能表现出诸如神经毒性等效应,造成生物体的行为、学习、运动等方面出现异常[23-24]。POPs通过食物链产生生物放大效应,因此需要对POPs毒理学效应进行深入研究。
在毒理学研究中,生物模型的应用是揭示外源化合物毒理机制的一种有效手段。近年来,随着研究人员对POPs等外源化合物毒理效应研究的不断推进,一些水生生物作为模式生物不断被开发应用。其中斑马鱼、青鳉鱼、非洲爪蟾在过去上百年时间被广泛应用于生理学、胚胎学以及毒理学研究,操作技术相对成熟[25-30]。相比于其他水生模式生物,这三种模式生物具有体型较小、产卵周期可控且产卵量大、对外源化合物刺激敏感等特点,有利于POPs毒理学研究的开展[26, 31-32]。以水生生物为模型研究POPs的毒理学效应,不仅能够降低实验成本、提高实验效率,更能反映水环境中的真实污染状况[33-34]。因此,本文综述了水生模式生物在POPs毒理效应研究中的应用进展,对深入探索POPs的毒理学效应机制、实验动物模型的筛选以及水环境污染治理工作的开展具有重要的参考价值。
-
POPs具有亲脂性,进入生物体后代谢速率较慢,可影响机体的正常生长发育[35-36]。有学者跟踪调查了一批在孕期接触PCBs的女性,发现PCBs能够通过胎盘转移至婴儿,干扰子代儿童时期的正常发育,并导致青春期发育延迟[37]。受POPs污染影响的鸟类,其鸣管等发声系统可能会出现异常发育,进而与同类之间的正常交流受到影响[38]。POPs引起的发育毒性已经对各类生物的生存造成威胁,鉴于水生生物的生理周期相对较短,繁殖量大,胚胎发育较快并且易观察,因此水生模式生物在POPs发育毒性效应的研究中逐渐被推广使用[31]。
-
斑马鱼(Danio rerio)饲养条件相对简单,作为一种毒理学研究的经典水生模式生物,与人类分享87%的同源基因,在化合物毒理学效应的评估、疾病模型预测等多数实验结果可推广至人体[39-40]。斑马鱼胚胎已发展成为重要的脊椎动物模型,适用于遗传学、胚胎学、发育和细胞生物学的研究[41]。仔鱼在受精2—3 d后孵化,3—4月可达性成熟,在TCDD等外源化合物的处理下,受精后72 h内可辨认出20多种不同的毒理学终点,被广泛应用于发育毒理学的研究[19, 25, 29, 42]。而成年斑马鱼在POPs蓄积毒性、基因表达、行为研究等方面同样得到广泛应用[43-44]。近二十年来利用斑马鱼开展的关于POPs发育毒性的实验研究及其主要结果见表1。
通过表1研究结果发现,在利用斑马鱼评价POPs发育毒性时,以胚胎为模型开展的研究最为广泛,相关研究充分利用了斑马鱼胚胎体外发育、透明且易观察等优势[29]。POPs的毒性终点主要集中在造成心脏的发育和功能异常、胚胎畸形、发育延迟以及视力干扰等,可导致斑马鱼心包水肿、心力衰竭,体轴弯曲,孵化延迟,视网膜增厚、眼球发育较小等[45, 48, 51, 58]。
-
青鳉鱼(Oryzias latipes)是来自东亚地区的小型鱼种,卵子和胚胎均透明,生长发育过程对水环境中的污染物较为敏感,所产生的毒理效应终点易于观察监测,在评价外源化合物对动物产生的发育毒性效应中应用较为广泛[64]。青鳉对盐度、温度以及常见鱼类疾病的耐受力较强,孵化后2个月达到性成熟[26, 65]。
研究表明,青鳉鱼的胚胎能够对二噁英类化合物作出敏感应答[66]。以青鳉鱼为模型,Dong等和Kawamura等评估了TCDD对骨骼发育的影响,他们发现暴露于TCDD会导致椎骨骨化总体衰减,通过干扰成骨细胞的分化及其基因表达抑制,影响骨骼的正常发育与形成[67-68]。进一步研究发现,TCDD能够对青鳉胚胎血管以及血液凝固产生影响,并导致骨骼发育畸形[69]。Cantrell等[70]利用青鳉鱼胚胎对TCDD的胚胎发育毒性做了深入探讨,他们发现暴露于TCDD的胚胎卵黄内侧静脉中均容易出现凋亡细胞,并推断这种现象可作为野生生物接触二噁英类化合物的标志。而将发育中的青鳉鱼胚胎同时暴露于TCDD和PCBs时,可对心血管系统产生毒性作用,并能观察到多灶性出血、心包和卵黄囊水肿、颅面畸形和鱼鳔膨胀受阻等病变现象[71]。
此外,青鳉鱼在多种POPs发育毒性的研究中均有应用。利用青鳉胚胎研究PFOS对动物心脏发育的毒性效应时,将受精2 d后的胚胎持续暴露于PFOS,结果表明,在PFOS浓度超过4 mg·L-1时会导致静脉窦和大动脉球之间的距离增大,并引起心律失常,从而影响心脏的发育和功能[72]。利用卵内纳米注射技术研究POPs与重金属对青鳉胚胎发育和孵化的综合毒性,发现三丁基锡(tributyltin, TBT)和PCB混合物会引发卵黄囊收缩,胚胎孵化延迟,幼仔发育畸形率增加,游泳上浮受阻[73-74]。以同样的方式向青鳉鱼胚胎注射暴露1, 1-二氯-2-(对氯苯基)-2-(邻氯苯基)乙烯[1, 1-dichloro-2-(p-chlorophenyl)-2-(o-chlorophenyl) ethylene, DDE],对其进行监测直至性成熟,观察到死亡前青鳉体内发生心血管病变和脊柱畸形[75]。另外有研究显示,双对氯苯基三氯乙烷(dichlorodiphenyltrichloroethane, DDT)及其主要代谢产物DDE的暴露会导致青鳉鱼性腺异常发育[76-77]。
在评价POPs不同暴露剂量对青鳉鱼发育造成的影响时发现,幼鱼孵化死亡率增加,骨骼发育出现畸形或缺陷,心、肝、鱼鳔以及性腺等组织器官出现不同程度的功能失常,其生长发育过程受到不利影响。与斑马鱼类似,青鳉鱼的受精卵、胚胎在POPs发育毒理效应研究中不断被开发利用。通过对暴露青鳉鱼生命周期的持续性观察,能够较好地研究POPs对动物体发育过程中产生的影响。
-
非洲爪蟾(Xenopus laevis)原产自南非,体长6—13 cm,雄性个体大小约为雌性的一半,在实验室条件下可存活15年左右[27]。非洲爪蟾胚胎体外发育,胚体较大且早期发育速度较快,其变态发育过程容易受到环境中外源化学物质的干扰,这些特点决定了非洲爪蟾可作为一种理想的动物模型应用于发育毒理研究[78-79]。
以非洲爪蟾为模型探讨PCBs对两栖动物发育的影响,发现PCBs导致的发育畸形或死亡与暴露阶段及观察周期的长短有关,部分实验研究结果可能低估PCBs等污染物对两栖动物的毒性作用[80]。将受精卵暴露在一定浓度的Aroclor 1254中直至变态完全,甲状腺发育出现明显的组织学变化,且该变化与PCBs呈剂量效应关系[81-82]。甲状腺发育异常在一定条件下可能直接导致非洲爪蟾蝌蚪变态发育延迟,这可能与PCBs诱导的氧化应激、能量代谢的适应性改变以及某些细胞蛋白的合成有关[83]。进一步研究显示,PCBs的暴露不仅引起蝌蚪的变态发育延迟、畸形或死亡,还可导致组织学异常,包括尾端出现肌瘤和黑素细胞形态[84]。变态发育完成后的非洲爪蟾暴露于PCBs,性腺发育表型雌性化,实验组雄蛙长出输卵管,且软骨和肌肉的发育受到抑制[85]。
TCDD和卤代芳烃的毒性主要是由芳香烃受体(AhR)介导的,AhR信号通路特性的差异可能是TCDD产生不同毒性的基础。Lavine等[86]研究表明,非洲爪蟾体内表达的AhR1α和AhR1β与TCDD的亲和力比小鼠低20倍,而Philips等发现幼蟾在发育后期体内存在对TCDD的清除作用,这些可能是蛙类对于TCDD相对不敏感的原因[87]。Sakamoto等[88]研究发现暴露于TCDD的非洲爪蟾消化道发育异常,肠腔脱落导致粘膜上皮细胞丢失,可能是由于TCDD的暴露使得幼蟾肠道主要细胞发生明显的凋亡。
相比于其他生物,POPs诱发的发育毒性效应对非洲爪蟾相对不敏感,但对其变态发育的影响最显著。长期接触到POPs的非洲爪蟾在发育过程中会出现发育延迟、畸形或死亡,甲状腺、消化道等组织器官出现异常。以POPs引起的变态发育异常为突破口进行深入探索,能够为进一步阐明POPs的发育毒理机制提供科学论据。
-
PCBs、OCPs等POPs与体内雌激素、甲状腺激素(thyroid hormone,TH)等内分泌物质的化学结构相似,能够通过竞争性抑制干扰这些激素在体内的正常水平,或通过影响其受体活性造成机体内分泌功能紊乱[89-90],这些物质可归为内分泌干扰物(endocrine disruptors, EDs)。鱼类等水生脊椎动物的生理系统与哺乳动物较为相似,以其为模型研究POPs的内分泌干扰作用,结果可推广至其它脊椎动物[91]。研究者在实验室可通过投饵、注射或浸浴等方式将污染物暴露于水生生物体,也能直接在指定地区自然环境中进行实验,尤其是一些小型鱼类,便于转移和实验条件的变换,是研究POPs内分泌干扰效应的理想动物模型。
-
POPs通过干扰内分泌影响生物体代谢、生殖等功能,造成生物体生存和繁殖能力降低。已有的研究证明,利用斑马鱼评价POPs的内分泌干扰效应时,实验灵敏度高,应用技术相对成熟[92]。卵黄蛋白原(vitellogenin, VTG)的诱导水平、性腺指数(gonadosomatic index, GSI)、产卵数以及各激素水平等是利用斑马鱼评价POPs内分泌干扰效应的常用指标[93-94]。
PCBs能够通过与部分激素受体的竞争性结合产生内分泌干扰效应[95]。将处于性腺分化关键时期(30—44 dpf)的斑马鱼幼鱼暴露在PCB77的环境中,其体内VTG表达受到抑制,GSI减小,可能对繁殖产生进一步影响[96]。为研究污染物对TH的干扰效应,Chen等[97]对暴露PCBs的斑马鱼体内TH进行了检测,结果发现甲状腺素(T4)与三碘甲状腺素(T3)的比率增加,而T3与3,3',5'-三碘-1-甲状腺素的比率有所减小。长期接触PCBs、PBDEs等POPs混合物的斑马鱼,卵泡发育、肝脏卵黄原蛋白免疫染色强度均出现被抑制的情况[98]。PBDEs还可通过影响生殖行为降低斑马鱼的繁殖能力[99],且低剂量暴露产生的内分泌干扰效应,可经亲子传递对子代产生更显著的影响[100-101]。Yu等发现暴露于BDE71的斑马鱼,促肾上腺皮质激素释放激素和促甲状腺激素基因的转录水平显著提高[102],不仅导致血浆TH水平升高,更出现产卵量数十倍的下降[103]。五氯酚及其副产物六氯苯同时暴露于成年斑马鱼,可显著提高血浆雌二醇(E2)和睾酮水平,改变下丘脑-垂体-性腺-肝轴基因表达,抑制性腺发育,并可导致生殖障碍[104]。
斑马鱼血清E2浓度和卵泡发育相关,通过评估TCDD诱导的卵巢相关基因转录的变化发现,TCDD通过降低促性腺激素的反应性和/或抑制E2的生物合成来抑制卵泡成熟,对雌激素调节信号的干扰也可能是TCDD对卵泡发育造成影响的原因之一[105]。研究表明,PFOS具有TH受体拮抗作用[106],其暴露可改变下丘脑-垂体-甲状腺(HPT)轴的基因表达,造成TH分泌的紊乱[107]。PFOS还是雌激素受体(estrogen receptor, ER)激动剂,干扰类固醇的合成[106],暴露后雄性和雌性斑马鱼肝脏VTG基因表达均显著增加,调节性激素平衡的基因显著下调[63, 108]。DDE同样能够使雌性斑马鱼VTG的表达增加,导致成熟卵母细胞数量减少,但GSI无显著变化[109]。Raldua等采用T4免疫荧光定量破坏试验测定甲状腺功能,确定DDT等物质可引起斑马鱼体内T4免疫反应性显著降低[110]。值得注意的是,DDT与其主要代谢物DDE在斑马鱼体内产生的TH干扰效应并不相同,但都引起甲状腺功能受损[111]。
另有研究表明,以PCB126暴露于斑马鱼胚胎(24—48 hpf)后,胰腺发育受到影响,进而干扰胰岛素的分泌,增大了暴露个体患糖尿病的风险[112]。然而,体型较小的斑马鱼,为实验操作带来一定困难,同时这也促使显微操作技术的进一步发展。近年来,研究人员已经不再局限于对传统斑马鱼模型的应用,对其进行适当的基因改造成为学者进一步研究POPs内分泌干扰效应的发展趋势[113-114]。
-
青鳉鱼的雌雄易于通过背鳍和臀鳍进行区分,产卵与光照周期密切相关,并且在繁殖过程中,雌鱼产生的卵细胞通过细丝附着于身体,所以繁殖活跃的雌鱼很容易被识别和观察[26, 115]。以上特点为观察内分泌紊乱对两性青鳉性腺异常发育、GSI变化提供方便。此外,雌性青鳉只有在雄性的交配行为下才会成功交配和产卵,生殖行为受促性腺激素释放激素等内分泌物的调控,便于监测外源化学物通过内分泌毒性效应对生殖行为造成的干扰[64, 116]。
PCBs暴露会扰乱青鳉的内分泌系统,产生的部分毒性作用可通过母体转移至下一代卵中,进而影响子代的发育[117]。研究发现,PCBs能够诱导雌性青鳉VTG表达,并可抑制绒毛膜蛋白相关基因的表达[118]。通过对分子水平的进一步研究,监测到暴露后的青鳉鱼体内与内分泌破坏有关的分子标志物的转录显著增加[119]。作为一种雌激素激动剂,DDT在性腺分化期能够改变雄性青鳉的性腺发育,促进绒毛膜促性腺激素、VTG以及ER基因的表达,且亲代暴露后繁殖产生的子代更容易受到DDT的干扰诱导合成VTG[120]。利用实时定量PCR技术,有学者监测到暴露于p, p'-DDE的部分青鳉鱼肝脏中VTG-1、VTG-2、胆囊激素原和ERα的基因表达明显增加,并与暴露的DDE显示出良好的剂量效应关系的VTG-1、VTG-2可作为监测DDE的首选生物标志物[77]。通过卵子显微注射暴露DDE后发现,孵化后性腺发育成熟的雄性青鳉睾丸形态正常但偏小,雌性青鳉卵母细胞减少,两性GSI均较低[121]。DDT能够提高青鳉体内E2的浓度和ER活性,在适当浓度暴露下,p, p'-DDE和o, p'-DDT均可诱导雄性青鳉转变为雌雄同体[122]。
PBDEs也被证明能够增加青鳉促性腺激素及其受体和类固醇生成酶的合成[123]。Zhao等在探索PBDEs和多环芳烃对青鳉联合毒性过程中发现,单独暴露于苯并[a]芘(BaP)能显著抑制F1代胚胎的生殖力和卵蛋白含量,而BDE47能够显著消除BaP的抑制效果,并推测这种现象可能与PBDEs诱导青鳉体内E2水平的增加有关[124]。在对全氟烷基化合物混合物的多代雌激素效应研究时发现,暴露于PFOS、全氟辛酸(perfluorooctanoic acid, PFOA)等混合物的三代青鳉鱼中,F1代性别比率显著改变,GSI下降且孵化率受抑制,而F2代个体VTG表达诱导明显[125]。Kang等证明,尽管PFOS和PFOA在青鳉体内都有EDCs的作用且结构相似,但实验发现,两者对卵黄蛋白生成素和胆囊生成素的转录调控不同,即对繁殖作用的抑制方式存在差异[126]。
利用青鳉鱼雌雄易分辨的特点,可高效监测受POPs内分泌干扰时引起的鱼群性别比例失调、GSI异常等现象。在控制光照条件下,可调控青鳉的产卵周期,为进一步研究POPs对卵母细胞以及对子代的影响提供更大的自由度。卵内纳米注射等高新技术的应用,在准确暴露开展实验的同时,将不断开拓青鳉鱼在POPs内分泌干扰研究中的应用潜力。
-
非洲爪蟾的受精、胚胎发育及变态发育过程均在水环境中发生,其生存容易受到水环境中POPs的影响[127-128]。例如在发育过程中,爪蟾的性别分化及性腺发育极易受到环境中EDs的影响,变态反应过程主要由TH等激素驱动,使得非洲爪蟾对具有内分泌干扰效应的物质较为敏感[129]。经过科学研究的反复筛选,非洲爪蟾被确定为研究化学物质内分泌干扰效应和生殖毒性的实验模型之一[78, 130]。
PCBs能够降低非洲爪蟾体内TH水平,并可显著改变T4转运蛋白、Ⅱ型和Ⅲ型脱碘酶等3个具有调节TH水平的相关蛋白基因的表达[128]。Qin等将PCB3和PCB5暴露于变态期非洲爪蟾,经显微观察发现,实验组雄性非洲爪蟾性腺出现明显异常,包括睾丸结构疏松,生精管、精原细胞和精子减少等,表明PCB3和PCB5对非洲爪蟾的性腺具有明显的雌性化作用[130]。李焕婷等的研究结果与此相似,并发现PBDEs的暴露能够导致雄性非洲爪蟾睾丸组织中出现早期卵细胞并导致精子排列混乱等雌性化特征[131]。TH受体和AhR信号通路之间存在相互联系,通过对比T3和TCDD暴露对变态反应的影响,结果发现TCDD诱导AhR靶细胞细胞色素P450 1A6的表达增加1000倍,并使得变态相关基因Kruppel因子双倍表达,同时导致T3效应降低了40%[132]。不同浓度BDE47暴露于爪蟾蝌蚪后,其大脑中TH相关基因的表达下调,进而阻碍了蝌蚪的生长发育[133]。为探索DDE暴露存在的雌激素或抗雄激素效应,Hoffmann等将雄性非洲爪蟾连续暴露于DDE 4个夜晚之后,DDE同时显示出雌激素和抗雄激素效应,使得非洲爪蟾的性唤起能力降低,生理和生殖行为出现异常[134]。
POPs进入非洲爪蟾体内后,一些酶、蛋白质的合成受到影响,性腺发育以及生殖行为出现异常。变态发育是评价POPs内分泌干扰效应时的重要生理生化过程,POPs造成的内分泌物质紊乱容易通过变态发育异常表现出来。深入研究表明,POPs引起生物体内分泌干扰效应与基因水平的调控有关,需要进一步加大对分子水平开展调查研究的力度。
-
POPs引起的神经毒性在上世纪就得到了广泛关注,以PCBs为例,有学者对人类神经发育相关的10项流行病学中的PCBs水平作了对比研究[135-136]。在孕期接触POPs会导致子代注意力的缺乏和长期的学习障碍,并与学龄前儿童认知能力的低下、智力和运动测试得分不足有关[137-138]。POPs引起的神经毒性可能会对生物体的行为、应急反应等造成影响,从而进一步影响生物的生存和繁殖[139-141]。
-
以斑马鱼研究POPs的神经毒性,能够同时进行神经毒性效应的鉴别和神经毒物的筛选[142-143]。在利用斑马鱼建立模型用于监测外源化合物的神经毒性时,所得数据与哺乳动物相关数据具有较强的相关性,并能在细胞、分子水平深入探索不同外源化合物的神经毒性机理,这表明斑马鱼可以作为神经毒性的预测动物模型[144]。
研究人员发现,PCB126可致斑马鱼适应新环境的能力受损[23]。针对PCBs和BDE47神经元毒性的研究发现,两种物质暴露均降低了整个胚胎中的多巴胺含量,并增加了3,4-二羟基苯基乙酸/多巴胺比率,多巴胺能神经元功能受到抑制[145]。为确定PCBs神经毒性效应作用的分子靶点,研究者将斑马鱼暴露于Aroclor 1254,对其基因组的微阵列分析显示,有21个与神经相关的基因表达发生显著变化,并发现中枢神经系统的结构和生化发生变化[146];与此同时发现,相比于对照组,实验组斑马鱼自由游泳速度下降,视觉惊吓试验中的回避位移量减少[147]。而BDE71则通过下调神经元微管蛋白基因的mRNA表达,对神经传递和神经元发育造成影响,同时引起乙酰胆碱酯酶(AChE)活性显著增加,机体出现过度活跃[148]。有证据显示,亲代暴露于PBDEs后,在F1卵中检测到PBDEs的残留,并发现幼鱼体内AChE的活性被显著抑制,中枢神经系统发育的基因表达水平出现显著降低[149]。有学者对PBDEs暴露后的斑马鱼进行学习记忆测试,并记录相关基因的表达状况,发现行为改变的同时大脑中的神经相关基因表达也受到影响[150]。Chou等观察到斑马鱼总游泳距离和活跃时间均与组织中BDE47浓度呈负相关[151],触觉反应敏感性和游泳速度降低,且仔鱼的神经管和脑室中的脑脊液流动更慢,推测可能与产生的神经行为毒性有关[50, 152]。
TCDD虽然是典型的致畸污染物,但通过对发育性神经毒性的分子基础研究发现,TCDD可显著降低胚胎大脑发育的能力,导致168 hpf幼鱼大脑的神经元总数减少30%[153]。在开展PFOS的神经行为毒性研究时发现,不同的生命阶段长期暴露于PFOS会对成年斑马鱼的行为和F1代的形态、行为和生存产生不利影响[24]。利用斑马鱼癫痫发作行为模型研究DDT对神经发育的交互作用,发现斑马鱼胚胎在接触DDT或DDE之后,对软骨藻酸诱发的癫痫行为更为敏感,最明显的是出现摇头行为[139]。斑马鱼的环境适应性、逃逸反应以及神经递质活性、神经元的生长等生理指标在POPs暴露后出现一种或多种异常,造成行为失常的同时也可对其相关基因的表达造成影响,表明了斑马鱼具有多个毒性监测终点,可用于POPs神经行为毒性的评价。
-
目前青鳉鱼在评价POPs神经行为毒性方面研究较少,可供参考的文献相对缺乏。已有研究表明,POPs能够对青鳉鱼的行为造成影响。在利用青鳉鱼研究TBT和PCBs的神经行为毒性时发现,接触PCBs增加了直游和环游的频率,这表明PCBs会导致青鳉过度活跃[154]。而Nakayama等在研究中发现暴露于PCBs的青鳉鱼游泳速度以剂量依赖的方式降低[155]。暴露于PBDEs会在小鼠和大鼠发育中引起神经行为毒性,而对暴露于PBDEs的青鳉鱼行为测试结果表明,胚胎暴露于BDE71可能会改变其生命后期的活动量、应急反应、捕食率和学习能力[141]。关于利用青鳉鱼评价POPs的神经行为毒性的实验多停留在观察研究阶段,且文献多为早期发表,深入进行机理机制的研究较少。一方面是由于该领域开展的研究相对不足;另一方面,相比于斑马鱼,在评价POPs神经行为毒性过程中,青鳉鱼具有的突出优势有待发掘。
以非洲爪蟾评价POPs的神经行为毒性效应的应用较为深入,不乏在细胞和分子水平开展的研究。非二噁英类多氯联苯(non-dioxin-like PCBs, NDL-PCBs)的神经毒性效应以破坏突触前过程(包括钙稳态和神经递质运输)为特征。在以非洲爪蟾卵母细胞为模型研究NDL-PCBs的神经毒性时发现,不存在神经递质GABA的情况下,PCB19、PCB47、PCB51和PCB100可以充当完全激动剂激活突触后GABA(A)受体,GABA(A)受体的增强和激活取决于NDL-PCBs的暴露浓度,其中PCB47的激活作用最显著[156-157]。以不同浓度的PCBs对18 dpf的蝌蚪进行2 d暴露,表明PCBs显著抑制了神经生长因子和β-肌动蛋白的表达,且高剂量组蝌蚪出现严重的形态学异常、行为缺陷,生存率显著下降[158-159]。为了探索BDE47及其代谢物6-OH-BDE47是否发挥相似的作用,Hendriks等研究了PCB47,BDE47和6-OH-BDE47对非洲爪蟾卵母细胞中GABA(A)表达的影响,结果表明,PCB47和6-OH-BDE47能够充当GABA(A)受体激动剂,但未观察到BDE47对受体产生影响[160]。通过将哺乳动物脑神经膜微移植到非洲爪蟾卵母细胞的质膜中,来研究毒物对中枢神经系统离子通道存在的影响,确定DDT在脉冲退极化时引起TTX敏感性的内向钠电流的浓度依赖性增加,并导致了Na+通道失活、动力学的减慢,而DDE则没有显著影响[161]。另外,DDT的暴露对非洲爪蟾的捕食行为有着显著影响,出现觅食能力下降[140]。以非洲爪蟾为模型对POPs神经毒性研究不断推进,学者们对POPs毒性作用靶点的定位把握的越来越准确,有利于从根本上预防和治疗POPs引起的神经系统疾病。
-
稀有鲫(Gobiocypris rarus)属于硬骨鱼纲、鲤形目、鲤科、鲫属,是一种仅分布于我国四川省大渡河水系的本土鱼种。体长约4 cm,在实验室条件下可实现周年繁殖,5 d左右产1次卵,每次产卵上百颗,作为我国的本土鱼种,2010年稀有鲫被我国环境保护部列为新化学物质测试推荐首选的本土试验鱼种[162-163]。目前国内已有大量学者以稀有鲫为模型,开展了关于外源化合物的胚胎急性毒性、内分泌干扰效应、生殖毒性、基因毒性等研究[164-167]。Li等利用稀有鲫对BDE209的生殖内分泌毒性进行了评价,发现暴露浓度达到10 μg·mL-1后实验组仔鱼体内Ⅱ型脱碘酶(dio2)和碘化钠转运体(nis)mRNA水平显著上调,成年鱼肝脏中甲状腺激素受体a(tra)、dio2和nis mRNA水平显著上调,而大脑中dio2和nis mRNA水平则显著下调,并发现雄性稀有鲫睾丸的精子发生受到抑制[168]。表2列举了国内学者利用稀有鲫研究部分化学物质毒理学效应的实例。
经过实验证明,以稀有鲫为模型进行毒理学研究,不仅灵敏度高,而且研究结果具有良好的重复性[165, 178],在毒理学研究中的应用潜力巨大,可在国际范围内推广使用
-
物种的敏感性差异是影响毒性评价的重要因素,对POPs的毒理评价需要从不同的营养水平选择合适的生物来进行研究[179]。除了以上介绍的斑马鱼、青鳉鱼等营养层级较高的水生生物,处于食物链底端的大型蚤等浮游动物在物质循环和能量流动中起着重要作用,属于水环境中较为重要的初级消费者,对环境中重金属、POPs等物质敏感,对其毒性效应的监测评价能够预防此类物质对营养层级较高生物体的潜在危害[180-182];广泛分布于淡水水体的真核生物四膜虫,培养简单经济、可控性强,并且科学家已经建立起用于四膜虫相对成熟的分子遗传学操作方法与技术,可推动其成为研究外源化合物毒理机制的单细胞生物模型[183-184];用于水体污染研究的指示生物——霍甫水丝蚓,是淡水生态系统中重要的底栖生物,生理结构简单,实验成本低廉,灵敏度高,接触污染物后还会出现自断等异常行为,能够作为一种有效的生物模型应用于毒理学研究[185-186]。在表3中列出了关于以上几种水生生物模型在环境毒物研究中的实际应用情况,为将其应用于POPs的毒理学效应研究提供参考。
-
POPs物质种类繁多,结构复杂多样,已经在全球范围内对生态环境造成了污染。不同环境介质中的POPs可通过大气沉降、雨水冲刷、地表径流等多种方式渗入江、河、湖、海,经食物链传递,蓄积在各级生物体内并能产生多种毒理学效应。对POPs导致的异常生理现象机制的研究,可以帮助人类为相关疾病的诊断、治疗和预防提供具有针对性的有效措施。动物模型可有效解析POPs的毒理效应机制,斑马鱼、青鳉鱼、非洲爪蟾凭借自身优势在POPs毒理学评价中逐渐被广泛应用。斑马鱼和青鳉鱼体型较小,生理周期短,胚胎透明且发育速度快,能够实现在无创条件下的连续观察,被广泛应用于发育毒理学研究;通过对其典型生理指标以及相关基因表达的监测、行为的观察,能够对POPs引起的内分泌干扰效应、神经行为毒性进行有效的研究。非洲爪蟾作为典型的蛙类模式生物,产卵量大、产卵周期可由人工条件控制,由蝌蚪到幼蛙的变态发育过程在评价POPs的发育毒性及内分泌干扰效应中尤为关键。
水生模式生物在进行POPs毒理学评价中具有突出优势,但同样存在无法忽视的问题。例如斑马鱼、青鳉鱼体型微小,在节省成本、提供方便的同时,也为实验操作带来了困难,提高了开展实验的操作条件。其次,需要加紧对POPs在生物体内蓄积、代谢、转化等相关基础研究,以便为开展POPs毒理学评价提供数据支持。另外,需加快推进对转基因、分子生物学技术以及代谢组学的研究应用,进一步开拓水生模式生物在POPs毒理学评价中的应用潜力。聚焦水生模式生物在POPs毒理学研究中的开发应用,对于POPs毒理机制的深入探索、控制生态环境污染、建立相关疾病预测模型具有重要意义。
几种水生模式生物在持久性有机污染物毒理学评价中的研究进展
Research progress of several aquatic biological models in toxicological evaluation of persistent organic pollutants
-
摘要: 持久性有机污染物对环境及生物体产生的危害已引起全球范围内的持续关注。此类物质能够富集在生物体内,并通过食物链传递产生生物放大效应,进而引发“三致”作用、发育毒性、内分泌干扰效应等。水生模式生物具有饲养成本低、生理周期较短、繁殖量大等优点而被广泛应用于POPs毒理学评价。本文聚焦斑马鱼、青鳉鱼、非洲爪蟾等几种水生模式生物,对其在POPs毒性效应研究中的应用进展进行综述,包括POPs所致骨骼发育畸形、心血管系统病变、性腺发育异常等发育毒性,卵黄蛋白原的诱导、性腺指数、甲状腺激素水平的改变等内分泌干扰效应以及神经行为异常等相关研究内容,希望为POPs污染现状评估以及毒理效应的深入探索、疾病预测模型的建立提供资料参考,并对该领域研究过程中生物模型的筛选具有借鉴意义。Abstract: The harm of persistent organic pollutants (POPs) to the environment and organisms has attracted continuous attention all over the world. Such substances can be enriched in organisms and produce biological amplification effect through food chain transmission, which in turn triggers “three toxicity” effects, developmental toxicity, endocrine disrupting effects, etc. Aquatic model organisms have been widely used in toxicological evaluation of POPs because of their low feeding cost, short physiological cycle and large reproduction. In this paper, several aquatic biological models, such as zebrafish (Danio rerio), medaka (Oryzias latipes) and Xenopus laevis, are focused on to review the application of these models in the study of toxic effects caused by POPs. These toxic effects include developmental toxicity such as skeletal malformation, cardiovascular diseases, gonadal dysplasia, reproductive endocrine disrupting effects such as vitellogenin induction, gonadal index and thyroid hormone levels, as well as neurobehavioral abnormalities and other related research contents. We hope to provide reference for the assessment of POPs pollution status, the in-depth exploration of the toxicological effects of POPs, and establishment of disease prediction model. At the same time, it provides reference for the screening of biological models in the research process of this field.
-
六溴环十二烷(HBCD)是一种高含溴量的添加型阻燃剂,其产量仅次于多溴联苯醚(decaBDE)和四溴双酚A(TBBPA),被广泛用于建筑、纺织材料、电子设备、塑料制品等产品中[1]。基于其广泛污染及具有富集性、远距离迁移性、生物毒性等特点,HBCD作为持久性有机污染物,于2013年被列入斯德哥尔摩公约受控名单[2]。
HBCD具有手性中心,理论而言共含有16种同分异构体,常见的有α-HBCD、β-HBCD和γ-HBCD,以及其相应的(+)和(−)对映体。不同立体构型的HBCD在环境中的富集、代谢和毒性行为均存在差异[3]。一般而言,在土壤[4]和水体[5]等非生物介质中γ-HBCD含量较高,在生物介质中α-HBCD则占主导。尽管β-HBCD在环境介质中的检出浓度一般不是最高的,但有研究表明,其累积能力和毒性作用不容忽视。对斜生栅藻[6]和玉米[7]的研究发现,β-HBCD在其体内的累积动力学速率和最高吸收量均高于α-和γ-HBCD。奥斯卡鱼肠对β-和γ-HBCD的吸收速率也高于对α-HBCD的吸收[8]。在生物毒性方面,Palace等[9]发现,与α-HBCD相比,β和γ-HBCD会显著增高鱼体内脱碘酶的活性,从而降低鱼对碘的吸收能力。对人肝细胞L02和人肝癌细胞HepG2的研究表明β-HBCD的毒性影响高于γ-和α-HBCD[10]。可见,在特定环境下β-HBCD的富集能力及生物毒性高于其他异构体。同时,在生物体内亦有研究表明,γ-HBCD会发生向β-HBCD的异构体转化,导致β-构型浓度增加[11],加剧其环境生态风险。因此,在研究HBCD的环境行为及影响时,对β-HBCD的考察需要引起重视。而目前关于β-HBCD的毒性研究较为匮乏,亟待开展更多工作。
有关HBCD植物毒性方面的考察相对较少,植物是生态系统中的第一营养级,植物对污染物的吸收及其迁移转化、环境影响和归趋均有重要作用,研究HBCD对植物的毒性作用具有深远意义。Zhang等[12]研究了商品HBCD混合物对拟南芥的基因表达和蛋白功能的毒性作用,发现机体能量产生-转化和氨基酸转运-代谢方面均受到不同程度的负面影响。Huang等[13]在体外研究α-和γ-HBCD对玉米细胞色素P450(CYP)酶的影响表明,(−)/(+)γ-HBCD会诱导CYP酶活性增加,α-HBCD则表现为抑制,且(−)α-HBCD对CYP酶活性的抑制高于(+)α-HBCD。本团队前期研究发现HBCD可诱导玉米体内羟基自由基产生,造成一定程度的DNA损伤,其中β-HBCD的毒性高于γ-HBCD[7];在对映体水平上也分别考察了α-和γ-HBCD对玉米的生长、形态改变、抗氧化酶和DNA损伤方面的对映体选择性影响[14-15]。然而遗憾的是上述研究均未开展对β-HBCD对映体的相关探讨,不同光旋纯活性的β-HBCD是否会对植物产生选择性毒性还需要进一步判断。
本研究选择玉米为受试植物,采用不同浓度梯度的β-HBCD及其对映体对玉米开展水培暴露研究,通过玉米体内抗氧化物质活性及含量变化,从抗氧化酶系统和非酶抗氧化系统两方面说明机体对β-HBCD选择性毒性的响应,结合细胞内典型活性氧(ROS)物质超氧阴离子(
)水平和植物根系活力,判断暴露后玉米体内ROS失衡对其生长代谢的对映体选择性影响机制,为全面评价HBCD的环境生态风险提供重要信息。O⋅−2 1. 实验部分 (Experimental section)
1.1 试剂与仪器
主要试剂:β-HBCD标准品(50 μg·mL−1)购于AccuStandard公司。流动相甲醇为色谱纯,其余试剂均为分析纯。
主要仪器:高效液相色谱(HPLC,岛津LC-20AD)、紫外-可见分光光度计(岛津UV-2550)、高速冷冻离心机(Multifuge X1R,Thermo公司)、恒温培养箱(A1000,Conviron公司)、多功能酶标仪(SPARK,德国TECAN公司)、电子天平(精度±0.0001g,上海双杰有限公司)。
1.2 对映体的分离与制备
选择β-PM手性柱(200 mm×4 mm,5 μm,德国MN公司),采用高效液相色谱法(HPLC)优化得到最佳色谱分离条件:流动相为95%甲醇:5%水,流速0.4 mL·min−1,柱温25 ℃,检测器波长220 nm。在最佳分离条件下制备单一对映体,根据紫外检测器出峰信号和保留时间手动收集相应的流出液,并采用外标法进行定量。根据Zhang等[16]的研究,流出检测器的对映体依次为(−)β-HBCD、(+)β-HBCD对映体。分离后的对映体纯度均在98%以上,最终获得的(+)和(−)β-HBCD浓度分别为1.81 μg·mL−1和1.63 μg·mL−1。分离谱图如图1所示。
1.3 植物的暴露与培养
选取均匀且饱满的玉米种子(购于中国农业科学研究院),去离子水清洗后,用10%H2O2的消毒溶液浸泡10 min,用去离子清洗干净后,将玉米种子均匀平铺在覆盖有湿滤纸的托盘上,置于(27±0.5)℃的恒温培养箱中于暗处发芽,保持相对湿度在60%—80%。配置不同浓度梯度(0.5、1.0、2.0、3.0、5.0 μg·L−1)的(+)β-HBCD、(rac)β-HBCD和(−)β-HBCD暴露液。挑选培养4 d后长势均一的玉米幼苗转移至盛有150 mL HBCD溶液的黑色玻璃水培罐中进行暴露,每盆放置5棵幼苗,每24 h更换1次暴露液,更换暴露液前检测溶液中对映体外消旋化的比率(< 9%),确定对映体转化的影响可忽略不计。恒温培养箱每天设置14 h光照时间,相对湿度为60%—80%,每天改变玉米幼苗的位置以减少光照和温度的空间差异。暴露3 d后进行毒性指标测定。实验中,每个处理设置3个平行,每个实验重复3次,设置去离子水和甲醇空白对照,两组对照结果一致,说明溶剂甲醇未对植物生长产生影响。
1.4 酶提取与测定
将玉米幼苗用去离子水清洗并用滤纸吸干,分别称取0.5 g玉米根部与地上部,置于研钵中,在冰浴下加入6 mL磷酸缓冲液(0.05 mol·L−1、pH =7.8)研磨成匀浆,于4 ℃,5000 r·min−1离心15 min,提取上清液,即得到样品粗酶液。
采用Bradford的方法[17],以100 μg·mL−1牛血清蛋白为标准溶液,0.005%的考马斯亮蓝G-250溶液为染料,在595 nm下绘制标准曲线,检测样品中的蛋白水平。超氧化物歧化酶(SOD)的测定参照Beauchamp等[18]的方法并略作改动。采用氮蓝四唑(NBT)光还原法进行检测,将粗酶液与显色液(50 mmol·L−1磷酸缓冲液(pH =7.8)、130 mmol·L−1甲硫氨酸、750 μmol·L−1氮蓝四唑、100 μmol·L−1 EDTA-Na2及20 μmol·L−1核黄素)混匀,将1支对照管避光放置作为空白,其它于4000 lx光照下反应15—30 min,在560 nm处测定各管吸光值。抗坏血酸过氧化物酶(APX)的测定参照Nakano[19]的方法,0.5 mL上清液混于1 mL反应体系(包含50 mmol·L−1磷酸钾,0.5 mmol·L−1抗坏血酸,0.1 mmol·L−1过氧化氢以及0.1 mmol·L−1 EDTA),在290 nm处测定各管吸光值以确定抗坏血酸活性。
1.5 花青素的测定
称取幼苗叶片0.10 g,剪成1—2 mm碎片,置于5 mL 2%的盐酸甲醇溶液中,于37 ℃恒温箱中放置3 h,直到叶片用肉眼观察已完全变白,取出过滤获得上清液,于530 nm下测花青素的含量,由于可溶性糖和叶绿素的干扰,需要在620 nm下测可溶性糖和650 nm下叶绿素的光密度值。计算公式为:
OD花青素=(OD530−OD620)−0.1×(OD650−OD620) (1) 花青素含量(nmol⋅g−1)=[(OD花青素/ε)×(V/m)×106] (2) 其中,ε为花青素的摩尔消光系数值为4.62×106;V为所取上清液体积(mL);m为所取样品质量(g);nmol·g−1为每克样品中的花青素含量。
1.6 超氧阴离子的检测
植物样品的提取和粗酶液的提取方法一致,获得的上清液采用NBT法[20]检测。取0.5 mL样品、0.5 mL 65 mol·L−1的磷酸缓冲液和1.5 mL 1.0 mol·L−1的盐酸羟胺混匀,于25 ℃保温1 h,加入2 mL 17 mmol·L−1对氨基苯磺酸和2 mL 7 mmol·L−11-萘胺,摇匀后在25 ℃保温20 min,在波长530 nm下测吸光度。
1.7 根系活力检测
根系活力采用TTC法[21]并略作改动。在0.1 mL 1%的2,3,5-三苯基氯化四氮唑溶液中加入少许Na2S2O4粉末,无水甲醇定容至10 mL,即得到三苯甲月替(TTF)标准溶液,以空白作参比,在485 nm下测定吸光度值绘制标准曲线。称取0.3 g根样品于小烧杯中,加入5 mL 1% TTC和5 mL 0.1 mol·L−1磷酸缓冲液(pH =7.0)摇匀,使溶液完全浸没根,37 ℃无光保温2 h,加入2 mL 1 mol·L−1硫酸停止反应。取出根,用滤纸吸干反应液并切段置于10 mL甲醇中,于40 ℃恒温箱中放置,使根尖切段完全变白为止(4—6 h),在485 nm下测定吸光度值,通过标准曲线计算出四氮唑还原量。
1.8 数据分析
所有数据均为3次重复实验所得结果,实验数据以平均值±标准偏差(Mean±SD)来表示。采用Origin 8.0对数据进行回归分析,SPSS 17.0对数据进行显著性检验。
2. 结果与讨论 (Results and discussion)
2.1 β-HBCD对玉米抗氧化酶活性的影响
SOD是生物体抗氧化系统的第一道防线,可催化
自由基发生歧化反应,生成氧气(O2)和过氧化氢(H2O2),APX以抗坏血酸(ASA)为电子供体,将H2O2转化为H2O[22]。它们在植物体内可清除过量的活性氧,使植物在一定程度上减缓伤害。O⋅−2 随着β-HBCD暴露浓度的增加,玉米体内SOD和APX活性(除(−)β-HBCD处理外)均呈现显著的先增加后减少的趋势(图2),表明β-HBCD诱发了玉米机体的氧化应激效应。图2a显示玉米根部SOD活性在(+)、(rac)和(−)β-HBCD最低暴露浓度下(0.5 μg·L−1)即显著增加到最大值(P < 0.05),分别为对照组的1.85倍、1.71倍和1.63倍,但三者之间未呈现出显著性差异,可能是因为低浓度的污染物对玉米SOD活性的影响较小;在最高浓度5.0 μg·L−1时,SOD活性降到最低,但仍比对照组增加了58.7%、56.0%和26.8%,表明β-HBCD对玉米产生了氧化胁迫,且不同立体构型产生的毒性为(+)β-HBCD > (rac)β-HBCD > (−)β-HBCD。在(+)和(rac)β-HBCD暴露下,玉米地上部SOD活性分别在3.0 μg·L−1与2.0 μg·L−1时达到最大(图2b),较对照组分别增加了15.6%和9.5%,表明根部受到的影响更大。(−)β-HBCD处理的地上部SOD活性与对照组相比无显著差异,可见(−)β-HBCD对玉米的影响较小。
图 2 β-HBCD对玉米体内SOD和APX活性的影响Figure 2. Effects of β-HBCD on SOD and APX activity in maize(不同字母表示不同浓度之间存在显著差异(P < 0.05),* 表示不同对映体之间存在显著差异(P < 0.05))(Different letters represent statistically significant difference between different concentrations at P << 0.05,while * represents a significant difference between the enantiomers at P < 0.05)β-HBCD及其对映体均诱导了玉米根部和地上部APX活性增加(图2c和d)。玉米根部在暴露浓度为1.0 μg·L−1时APX活性最高,(+)、(rac)和(−)β-HBCD处理分别是对照组的5.26倍、4.91倍和3.90倍,随后与浓度呈现负相关关系。地上部分,APX活性在(+)和(rac)β-HBCD浓度为3.0 μg·L−1时达到最大值,较对照组分别增加了114.6%和97.6%,随后逐渐降低;(−)β-HBCD处理的玉米地上部APX活性在低浓度下无显著差异,仅在最大暴露浓度(5.0 μg·L−1)时显著增加到对照组的1.45倍。可见,APX活性变化结果与SOD类似,均表现出了(+)β-HBCD的影响最大,其次是(rac)β-HBCD,(−)β-HBCD影响最小。Fang等[23]在甲霜灵对映体对烟草幼苗的影响研究中发现:R-对映体比S-对映体对SOD活性的促进作用更高,对幼苗的影响更大,说明同种物质不同立体构型对生物体产生的毒性作用亦是存在差异的。
外源污染物会影响植物体内的活性氧(ROS)平衡,ROS的大量生成,可以激发植物自身的抗氧化防御系统,显著诱导酶活性增加以消除过量的ROS[24]。本研究中β-HBCD诱导了玉米体内ROS的产生,使细胞抗氧化酶SOD和APX活性增加以清除玉米体内的
与H2O2。随着胁迫的加深,SOD和APX活性逐渐降低,可能是由于植物机体内其他抗氧化机制也被诱发,而使得SOD和APX活性所受的影响变小,但其活性并未降到对照组以下,说明SOD和APX仍对β-HBCD有响应。由于根部先于地上部接触暴露液,且有研究表明,在培养玉米的过程中,地上部对β-HBCD的积累主要来源于根部吸收和茎向传输,且总富集量低于根部[25],因此使得根部SOD和APX活性在较低浓度下即产生应激响应,且变化量均高于地上部的最大变化量。与α-HBCD[14]和γ-HBCD[15]的玉米毒性研究对比,在异构体水平上,对SOD酶活性的影响为β-HBCD>α-HBCD>γ-HBCD;在对映体水平上,α-、β-和γ-HBCD均分别表现出(+)体>(rac)体>(−)体,且对于毒性较强的(+)构型,又呈现(+)α-HBCD>(+)β-HBCD>(+)γ-HBCD的顺序,(−)构型则为(−)β-HBCD>(−)α-HBCD>(−)γ-HBCD。因此,在生物体内不同异构体和对映体可能表现出不同的效应程度。同时,数据结果显示玉米体内APX活性的变化程度明显高于SOD活性的变化,可能是β-HBCD诱发了sod基因表达量上升[26],从而减轻了对SOD活性的影响压力,也可能是由于抗氧化酶APX比SOD更加敏感导致。O⋅−2 2.2 β-HBCD对玉米体内花青素含量的影响
植物在受到氧化胁迫时,为保护自身生理发育及新陈代谢的正常进行,形成了一套复杂完善的抗氧化保护系统,包括抗氧化酶系统和非酶系统,花青素是非酶系统中一种重要的抗氧化剂,属于生物类黄酮物质,主要存在于植物叶片中,和酚类化合物的作用机理相似,花青素可通过酚羟基与自由基反应生成较稳定的半醌式自由基,从而终止自由基链式反应[27]。
随着β-HBCD暴露浓度的增加,玉米地上部花青素含量与抗氧化酶类似,亦呈现先增加后减少的趋势(图3)。1.0 μg·L−1的(+)、(rac)和(−)β-HBCD处理下玉米叶片中花青素含量最高,分别达到对照组的3.55倍、3.22倍和2.28倍;在最高浓度5.0 μg·L−1时,花青素含量最低,(+)、(rac)和(−)β-HBCD处理组分别比对照组增加了77.6%、94.2%和43.9%。研究表明,花青素具有清除自由基、促进激活抗氧化酶系统的能力,是植物抗氧化的基础[27],本研究中植物体内抗氧化酶系统和非酶系统随β-HBCD暴露的变化趋势一致,说明其在植物防御外源氧化胁迫过程中同样起到非常重要的作用。不同对映体处理组相比,与抗氧化酶系统的SOD和APX活性检测结果一致,均表现出对玉米的毒性作用大小顺序为(+)β-HBCD > (rac)β-HBCD > (−)β-HBCD。
图 3 β-HBCD对花青素含量的影响Figure 3. Effect of β-HBCD on anthocyanidin content in maize(不同字母表示不同浓度之间存在显著差异(P < 0.05),* 表示不同对映体之间存在显著差异(P < 0.05))(Different letters represent statistically significant difference between different concentrations at P < 0.05,while * represents a significant difference between the enantiomers at P < 0.05)2.3 β-HBCD对玉米超氧阴离子含量的影响
β-HBCD的暴露诱导了玉米体内SOD、APX酶活性和花青素含量的增加,那么这种应激响应是否对机体内部的ROS进行了有效的控制呢?本研究进一步考察了玉米组织中的
水平,以衡量植物对逆境抗性的防御程度。O⋅−2 结果显示(图4),玉米体内的
含量随暴露浓度的增加呈现先增后降趋势,且不同对映体之间存在显著差异(P < 0.05)。玉米根部O⋅−2 含量在最低暴露浓度(0.5 μg·L−1)的(+)和(−)β-HBCD、1.0 μg·L−1的(rac)β-HBCD处理下达到最大值,分别是对照组的2.70、2.14、2.39倍;在最大暴露浓度5.0 μg·L−1时,(rac)和(−)β-HBCD处理组玉米根部O⋅−2 水平与对照组无显著差异,(+)β-HBCD处理组仍高于对照组,(+)构型的β-HBCD对机体影响更大;在玉米地上部中,(+)β-HBCD处理的O⋅−2 含量在2.0 μg·L−1时最高,达到空白对照组的2.02倍,且不同浓度间无显著差异,(rac)和(−) β-HBCD处理组的地上部O⋅−2 水平分别在1.0 μg·L−1和0.5 μg·L−1时达到最高,分别是空白对照组的1.86倍和1.71倍,随后显著下降。O⋅−2 图 4 β-HBCD对映体对玉米体内 含量的影响O⋅−2 Figure 4. Effects of β-HBCD enantiomers on concentration in maizeO⋅−2 (不同字母表示不同浓度之间存在显著差异(P < 0.05),* 表示不同对映体之间存在显著差异(P < 0.05))(Different letters represent statistically significant difference between different concentrations at P < 0.05,while * represents a significant difference between the enantiomers at P < 0.05)在外界胁迫下,生物体内更多的分子氧经过单电子还原反应转变为
,进而衍生出羟基自由基等一系列的ROS物质[28],破坏植物细胞膜及蛋白、核酸等生物大分子。本研究发现β-HBCD能显著诱导玉米体内的O⋅−2 水平,进而机体抗氧化系统被激活,高效清除过量的ROS,然而仅高浓度的(rac)和(−)β-HBCD处理组的植物根部O⋅−2 含量恢复到对照组水平,相比而言,(+)β-HBCD胁迫下的玉米体内O⋅−2 增加得最快、水平最高、恢复得也最慢,表明(+)β-HBCD对玉米的毒性作用更强。这与Zhang等[16]关于β-HBCD对肝细胞毒性作用的结果(+)β-HBCD毒性更强一致。O⋅−2 2.4 β-HBCD对玉米根系活力的影响
根系是植物获得营养和水分,维持稳定较大生物量的关键部位,根系活力的高低直接影响作物的正常生长并间接干扰叶片的光合效率[29-30]。本研究中玉米根系是直接接触暴露液的部位,根部
的变化程度比地上部更显著,为了明确植物中O⋅−2 的失衡是否会影响其健康状态,本研究进一步开展了植物根系活力的检测。O⋅−2 由图5可以看出,经(+)和(rac)β-HBCD胁迫后,幼苗根系活力在0.5 μg·L−1时与空白对照组无显著差异,在1.0 μg·L−1时显著下降,于最大浓度(5.0 μg·L−1)时降到最低,分别较对照组减少了65.1%和39.7%;(−)β-HBCD胁迫下,幼苗根系活力仅在最大浓度胁迫下,较空白对照组显著下降了28.5%,其余处理均与空白无显著差异。显然,尽管植物机体存在庞大的抗氧化保护系统,但β-HBCD及其对映体仍降低了玉米幼苗的根系活力,影响了其健康状态,且不同对映体对幼苗根系活力的抑制作用为(+)β-HBCD > (rac)β-HBCD > (−)β-HBCD。植物根系活力反映根系整体的代谢强度,包括根系呼吸、氧化、还原和合成能力等[31],植物处于逆境生理环境时,其呼吸代谢关键酶表达量会发生改变,进而影响植物的呼吸过程[30]。本研究中β-HBCD很可能是通过诱导ROS的变化影响了玉米根部代谢关键酶的表达或活性,从而导致其代谢强度的改变,根系活力发生变化。这与Zhang等[32]关于碱环境胁迫下大米机体ROS累积导致根系损伤的作用结果一致。不同的β-HBCD对映体对幼苗根系活力的抑制作用存在显著差异,可能与其空间立体构型有关。有文献报道,不同立体构型的HBCD与细胞内代谢相关酶的结合位点具有差异性,其中(−)β-HBCD能够选择性进入玉米代谢相关酶-细胞色素氧化酶(CYP)和谷胱甘肽转移酶(GST)亚型酶CYP71C3v2、GST31的活性位点并与其键合,进而被转化成不同的代谢产物,从而降低了其在植物体内的浓度[25],这可能是(−)β-构型产生的毒性效应较小的主要原因。
图 5 β-HBCD对玉米根系活力的影响Figure 5. Effects of β-HBCD on root activity in maize(不同字母表示不同浓度之间存在显著差异(P < 0.05),* 表示不同对映体之间存在显著差异(P < 0.05))(Different letters represent statistically significant difference between different concentrations at P < 0.05,while * represents a significant difference between the enantiomers at P < 0.05)3. 结论 (Conclusion)
手性化合物β-HBCD对玉米的生长代谢具有显著的对映体选择性影响,毒性大小为(+)β-HBCD>(rac)β-HBCD>(−)β-HBCD,主要源于植物抗氧化酶系统和非酶抗氧化系统未能有效控制玉米体内
水平,ROS自由基平衡被打破,进而幼苗根系活力显著下降,这是导致植物生长代谢受阻的重要影响因素。本研究从植物角度出发,在对映体水平上评价了β-HBCD对植物生长代谢的影响,为评价HBCD的环境行为和毒理提供重要数据,对综合评估其环境生态风险具有重要意义。O⋅−2 -
表 1 斑马鱼在POPs发育毒性研究中的应用
Table 1. Application of zebrafish in POPs developmental toxicity studies
物质Substances 暴露浓度Exposure concentration 暴露时间Exposure time 发育毒性Developmental toxicity 文献References TCDD 1.50 ng·g −1卵 12—240 hpf 心包水肿,颅面畸形,卵黄囊水肿和死亡 [45] 1 nmol·L−1 0—24 hpf 颌骨发育被阻断,出现颅面畸形 [46] 0.005 nmol·L−1 0—48 hpf 与肿瘤相关基因的表达水平受到调控 [47] 1.00 ng·mL−1 0—120 hpf 抑制心外膜的发育与扩张,出现心力衰竭 [48] 1.00 ng·mL−1 0—120 hpf 心室紧凑,心房狭长,心肌细胞总数减少,出现心室停顿 [49] BDE47 100—5000 mg·L−1 0—96 hpf 身体背侧及后脑弯曲,房室传导阻滞性心律失常 [50] 10.0、5.0、2.5、0.635 mg·L−1 0—168 hpf 体轴弯曲,发育畸形,并出现死亡 [51] 5、10、50 ng·L−1 0—96 hpf 发育抑制,氧化应激,细胞凋亡和DNA损伤 [52] 0.06、0.20、0.60 nmol·L−1 2—72 hpf 主静脉的生长略有下降,肠下及卵黄血管化面积显著减少 [53] BDE49 4—32 mmol·L−1 0—144 hpf 尾部背侧弯曲,心率显著降低 [54] BDE 71 0、31.0、68.7、227.6 mg·L−1 2—120 hpf 视黄酸含量明显降低,眼球发育受阻 [55] PCBs >0.25 mg·L−1 0—96 hpf 视网膜、感光细胞层厚度均明显增厚,感光层细胞排列紊乱 [56] 1.00 mg·L−1 0—120 hpf 脊柱弯曲畸形,存活率降低 [57] 1.00 mg·L−1 0—96 hpf 形态畸变,视网膜层发育被延迟 [58] 0.25 mg·L−1 0—96 hpf 形态畸变,感光细胞排列不规则以及感光层增厚 0、0.125、0.50、1.0 mg·L−1 0—120 hpf 与骨形成、胚胎发育相关基因的表达被抑制,骨骼发育缺陷 [59] 0.25、0.5、0.75、1 μg·L−1 0—120 hpf 形态畸形,脑细胞坏死,眼睛发育较小 [20] 0.125、0.25、0.50、1 mg·L−1 0—168 hpf 与感光细胞发育相关基因的表达下调,感光行为发生改变 [60] 32 μg·L−1 0—144 hpf 幼鱼心包卵黄囊水肿率显著增加 [61] >125 μg·L−1 0—48 hpf 胚胎发育畸形及延迟,心脏形态发育异常 [19] PFOS 0、367、1834、3668、18338、36676 ng·g−1(胚胎湿重) 0—96 hpf 延迟孵化和脊柱弯曲,胚胎发育异常或死亡 [62] 1、3、5 mg·L−1 4—132 hpf 孵化延迟,孵化率和存活率显著降低,发育畸形 [63] 注:TCDD表示Tetrachlorodibenzo-p−dioxin,四氯二苯并-p−二噁英.;hpf 表示hours post fertilization, 受精后小时数.;PFOS表示Perfluorooctane sulfonate, 全氟辛烷磺酸盐. 表 2 稀有鮈鲫在外源化合物毒理学研究中的应用
Table 2. Application of Gobiocypris rarus in toxicology research of exogenous compounds
暴露物质Exposed substances 暴露浓度Exposure concentration 暴露时间Exposure period 毒性效应Toxicological effects 文献References 铜(Cu)、锌(Zn)、镉(Cd) 0.001—1.000 mg·L−1 72 h 发育畸形,与代谢、发育相关的基因表达发生改变 [169] 铅 (Pb) — 96 h 肝脏线粒体功能紊乱和结构损伤,免疫相关基因表达水平显著提高 [170] Cd2+、三卡因甲磺酸盐、对氯苯胺 ≥0.4、3、10 mg·L−1 — 在颜色偏好上由蓝色和绿色转变为黄色和红色 [171] 吡虫啉、硝苯并吡喃、二甲呋喃 0.1、0.5、2 mg·L−1 60 d 造成氧化应激,SOD、CAT活性显著增加,并出现DNA损伤 [172] 噻虫嗪 0、0.5、5、50 ng·L−1 90 d 肝脏组织学损伤和性腺发育延迟,对HPG轴基因表达的调控显示出性别差异 [166] BaP 0、0.1、0.3、1.0、3.0 μg·L−1 28 d 鱼体睾酮和E2的含量变化,肝脏中VTG基因的表达被显著抑制 [167] BaP、邻苯二甲酸二酯 0.1、1.0,10、100 μg·L−1 28 d 睾酮含量升高,但E2含量下降,部分基因表达量发生变化 [173] 双酚A — 63 d E2和睾酮水平以及卵巢基因组DNA甲基化程度均呈现剂量效应关系 [174] 有机磷系阻燃剂 1.0、10、100 ng·L−1 60 d Na+/K+ ATPase相关基因被显著下调,精子质量下降 [175] 十溴联苯醚 (BDE209) 0.01、0.1、1.0、10 ng·L−1 21 d 雌鱼的肝脏损伤,雄鱼睾丸中精子的发生受到抑制 [168] TBT 1.0、10、100 ng·L−1 60 d 鱼体总脂质、总胆固醇、甘油三酯和脂肪酸的含量显著增加 [176] 环磷酰胺 0.3、0.6、1.2、2.4、9.6 ng·L−1 120 h 外周血红细胞微核和异常率增加,与环磷酰胺存在浓度-效应和时间-效应关系 [164] 2,4-二氯-6-硝基苯酚 2.0、20、200 μg·L−1 — 死亡率和畸形率增加,孵化率、体长和体重均降低,甲状腺激素水平改变 [177] 注:SOD表示Superoxide Dismutase,超氧化物歧化酶;CAT表示Catalase,过氧化氢酶;HPG轴表示Hypothalamus-Pituitary-Gonadal axis,下丘脑-垂体-性腺轴. 表 3 其它水生生物模型在外源化合物毒理学研究中的应用
Table 3. Application of other aquatic biological models in toxicology research of exogenous compounds
生物模型Biological models 暴露物质Exposed substances 主要结论Conclusions 文献References 大型蚤 BDE 209 繁殖毒性大于发育毒性,降解生成的还原中间产物毒性更大 [180] 化学分散剂Corexit 9500 表现出慢性生殖毒性,并阻碍幼蚤生长发育 [187] 双氯芬酸 与代谢、发育和繁殖相关基因的表达量与暴露剂量和时间呈现依赖性关系 [188] PFOA、PFOS 对活动抑制的程度均随暴露时间延长而增强 [181] PFOS 总产卵量、体长和内禀增长率均受到显著抑制 [179] 三氯生(TCS) 新生蚤数量、体长及自然增长率均增大,SOD活性变化 [189] 四膜虫 钩吻碱 抑制生长,造成氧化应激,抗氧化酶的表达上调 [190] 氧化石墨烯 增殖显著受到抑制,部分出现明显凋亡现象,SOD水平呈先升后降的趋势 [191] 水丝蚓 Cu2+、Hg2+、Pb2+ 随着暴露浓度的升高,水丝蚓体内SOD活性呈先升后降的趋势 [192-194] Cd、PFOS SOD活性、谷胱甘肽水平和丙二醛含量均显著变化 [186] Cd SD活性受抑制,AP活性增加,消化道上皮细胞线粒体结构损伤 [195] 注:SD表示Succinate Dehydrogenase,琥珀酸脱氢酶;AP表示Alkaline Phosphatase,碱性磷酸酶. -
[1] 沈平. 《斯德哥尔摩公约》与持久性有机污染物(POPs) [J]. 化学教育, 2005(6): 6-10. doi: 10.3969/j.issn.1003-3807.2005.06.003 SHEN P. Stockholm Convention and persistent organic pollutants (POPs) [J]. Chemical Education, 2005(6): 6-10(in Chinese). doi: 10.3969/j.issn.1003-3807.2005.06.003
[2] 王亚韡, 蔡亚岐, 江桂斌. 斯德哥尔摩公约新增持久性有机污染物的一些研究进展 [J]. 中国科学: 化学, 2010, 40(2): 99-123. WANG Y W, CAI Y Z, JIANG G B. Research processes of persistent organic pollutants (POPs) newly listed and candidate POPs in Stockholm Convention [J]. Chinese Science: Chemistry, 2010, 40(2): 99-123(in Chinese).
[3] 武丽辉, 张文君. 《斯德哥尔摩公约》受控化学品家族再添新丁 [J]. 农药科学与管理, 2017, 38(10): 17-20. doi: 10.3969/j.issn.1002-5480.2017.10.005 WU L H, ZHANG W J. New POPs under the Stockholm Convention [J]. Pesticide Science and Administration, 2017, 38(10): 17-20(in Chinese). doi: 10.3969/j.issn.1002-5480.2017.10.005
[4] VIJGEN J, ABHILASH P C, LI Y F, et al. Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs-a global perspective on the management of Lindane and its waste isomers [J]. Environmental Science and Pollution Research, 2011, 18(2): 152-162. doi: 10.1007/s11356-010-0417-9 [5] AHRENS L. Polyfluoroalkyl compounds in the aquatic environment: A review of their occurrence and fate [J]. Journal of Environmental Monitoring, 2011, 13(1): 20-31. doi: 10.1039/C0EM00373E [6] WONG M H, LEUNG A O W, CHAN J K Y, et al. A review on the usage of POP pesticides in China, with emphasis on DDT loadings in human milk [J]. Chemosphere, 2005, 60(6): 740-752. doi: 10.1016/j.chemosphere.2005.04.028 [7] DHAKAL K, GADUPUDI G S, LEHMLER H J, et al. Sources and toxicities of phenolic polychlorinated biphenyls (OH-PCBs) [J]. Environment Science and Pollution Research International, 2018, 25(17): 16277-16290. doi: 10.1007/s11356-017-9694-x [8] GRIMM F A, HU D, KANIA-KORWEL I, et al. Metabolism and metabolites of polychlorinated biphenyls [J]. Critical Reviews in Toxicology, 2015, 45(3): 245-272. doi: 10.3109/10408444.2014.999365 [9] 毕新慧, 徐晓白. 多氯联苯的环境行为 [J]. 化学进展, 2000, 12(2): 152-160. doi: 10.3321/j.issn:1005-281X.2000.02.004 BI X H, XU X B. Behaviors of PCBs in Environment [J]. Progress in Chemistry, 2000, 12(2): 152-160(in Chinese). doi: 10.3321/j.issn:1005-281X.2000.02.004
[10] JAWARD F M, FARRAR N J, HARNER T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe [J]. Environmental Science & Technology, 2004, 38(1): 34-41. [11] 金一和, 刘晓, 秦红梅, 等. 我国部分地区自来水和不同水体中的PFOS污染 [J]. 中国环境科学, 2004, 24(2): 39-42. JIN Y H, LIU X, QIN H M, et al. The status quo of perfluorooctane sulfonate (PFOS) pollution in tap water and different waters in partial areas of China [J]. China Environmental Science, 2004, 24(2): 39-42(in Chinese).
[12] GIESY J P, KANNAN K. Global distribution of perfluorooctane sulfonate in wildlife [J]. Environmental Science & Technology, 2001, 35(7): 1339-1342. [13] BATOOL S, AB RASHID S, MAAH M J, et al. Geographical distribution of persistent organic pollutants in the environment: A review [J]. Journal of Environmental Biology, 2016, 37(5): 1125-1134. [14] 员晓燕, 杨玉义, 李庆孝, 等. 中国淡水环境中典型持久性有机污染物(POPs)的污染现状与分布特征 [J]. 环境化学, 2013, 32(11): 2072-2081. doi: 10.7524/j.issn.0254-6108.2013.11.009 YAN X Y, YANG Y Y, LING Q X, et al. Present situation and distribution characteristics of persistent organic pollutants in freshwater in China [J]. Environmental Chemistry, 2013, 32(11): 2072-2081(in Chinese). doi: 10.7524/j.issn.0254-6108.2013.11.009
[15] 于燕妮, 徐承旭. 毒性污染物抵达世界最深海洋 [J]. 水产科技情报, 2019, 46(2): 117. YU Y N, XU C X. Toxic pollutants reach the deepest ocean in the world [J]. Fisheries Science & Technology Information, 2019, 46(2): 117(in Chinese).
[16] TSAI P C, KO Y C, HUANG W, et al. Increased liver and lupus mortalities in 24-year follow-up of the Taiwanese people highly exposed to polychlorinated biphenyls and dibenzofurans [J]. Science of The Total Environment, 2007, 374(2/3): 216-222. [17] AKAHANE M, MATSUMOTO S, KANAGAWA Y, et al. Long-term health effects of PCBs and related compounds: A comparative analysis of patients suffering from Yusho and the general population [J]. Archives of Environmental Contamination and Toxicology, 2018, 74(2): 203-217. doi: 10.1007/s00244-017-0486-6 [18] BERNARD A, BROECKAERT F, DE POORTER G, et al. The belgian PCB/dioxin incident: Analysis of the food chain contamination and health risk evaluation [J]. Environmental Research, 2002, 88(1): 1-18. doi: 10.1006/enrs.2001.4274 [19] 王薛洁, 余章斌, 韩树萍, 等. 整体原位杂交方法研究多氯联苯对斑马鱼心脏发育的影响 [J]. 实用儿科临床杂志, 2012, 27(7): 537-539. WANG X J, YU Z B, HAN S P, et al. Effect of polychlorinated biphenyls in heart development ofzebrafish in situ hybridization [J]. Chinese Journal of Applied Clinical Pediatrics, 2012, 27(7): 537-539(in Chinese).
[20] RANASINGHE P, THORN R J, SETO R, et al. Embryonic exposure to 2,2',3,5',6-pentachlorobiphenyl (PCB-95) causes developmental malformations in zebrafish [J]. Environmental Toxicology and Chemistry, 2020, 39(1): 162-170. doi: 10.1002/etc.4587 [21] PARK C M, KIM K T, RHYU D Y. Low-concentration exposure to organochlorine pesticides (OCPs) in L6 myotubes and RIN-m5F pancreatic beta cells induces disorders of glucose metabolism [J]. Toxicology in Vitro, 2020, 65: 8. [22] KO E, KIM D, KIM K, et al. The action of low doses of persistent organic pollutants (POPs) on mitochondrial function in zebrafish eyes and comparison with hyperglycemia to identify a link between POPs and diabetes [J]. Toxicology Mechanisms and Methods, 2020, 30(4): 275-283. doi: 10.1080/15376516.2020.1717704 [23] GLAZER L, HAHN M E, ALURU N. Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior [J]. Neurotoxicology, 2016, 52: 134-143. doi: 10.1016/j.neuro.2015.11.012 [24] CHEN J, DAS S R, LA DU J, et al. Chronic PFOS exposures induce life stage-specific behavioral deficits in adult zebrafish and produce malformation and behavioral deficits in F1 offspring [J]. Environmental Toxicology and Chemistry, 2013, 32(1): 201-206. doi: 10.1002/etc.2031 [25] DAI Y J, JIA Y F, CHEN N, et al. Zebrafish as a model system to study toxicology [J]. Environmental Toxicology and Chemistry, 2014, 33(1): 11-17. doi: 10.1002/etc.2406 [26] WITTBRODT J, SHIMA A, SCHARTL M. Medaka - A model organism from the Far East [J]. Nature Reviews Genetics, 2002, 3(1): 53-64. doi: 10.1038/nrg704 [27] 毛炳宇. 非洲爪蟾: 模式生物里的青蛙王子 [J]. 生命世界, 2008(5): 60-63. MAO B Y. Xenopus laevis: the frog prince in model organisms [J]. World of Life, 2008(5): 60-63(in Chinese).
[28] STADNICKA J, SCHIRMER K, ASHAUER R. Predicting concentrations of organic chemicals in fish by using toxicokinetic models [J]. Environmental Science & Technology, 2012, 46(6): 3273-3280. [29] HILL A J, TERAOKA H, HEIDEMAN W, et al. Zebrafish as a model vertebrate for investigating chemical toxicity [J]. Toxicological Sciences, 2005, 86(1): 6-19. doi: 10.1093/toxsci/kfi110 [30] BHANDARI R K. Medaka as a model for studying environmentally induced epigenetic transgenerational inheritance of phenotypes [J]. Environmental Epigenetics, 2016, 2(1): 1-9. [31] 沈敏, COADY K, 董晶, 等. 化学品生态毒性测试鱼类模式生物的应用与展望 [J]. 生态毒理学报, 2017, 12(2): 34-43. doi: 10.7524/AJE.1673-5897.20161126004 SHEN M, COADY K, DOGN J, et al. Application and outlook of various fish models used in chemical ecotoxicity test [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 34-43(in Chinese). doi: 10.7524/AJE.1673-5897.20161126004
[32] BELIAEVA N F, KASHIRTSEVA V N, MEDVEDEVA N V, et al. Zebrafish as a model organism for biomedical studies [J]. Biomeditsinskaia khimiia, 2010, 56(1): 120-131. doi: 10.18097/pbmc20105601120 [33] 杜青平, 刘伍香, 袁保红, 等. 1,2,4-三氯苯对斑马鱼生殖和胚胎发育毒性效应 [J]. 中国环境科学, 2012, 32(4): 736-741. doi: 10.3969/j.issn.1000-6923.2012.04.025 DU Q P, LIU W X, YUAN B H, et al. Reproduction and embrvonic development toxicity of 1,2,4-TCB on zebrafish embryos [J]. China Environmental Science, 2012, 32(4): 736-741(in Chinese). doi: 10.3969/j.issn.1000-6923.2012.04.025
[34] HE J H, GAO J M, HUANG C-J, et al. Zebrafish models for assessing developmental and reproductive toxicity [J]. Neurotoxicology and Teratology, 2014, 42: 35-42. doi: 10.1016/j.ntt.2014.01.006 [35] TANG B, LUO X J, HUANG C C, et al. Characterizing the influence of metabolism on the halogenated organic contaminant biomagnification in two artificial food chains using compound- and enantiomer-specific stable carbon isotope analysis [J]. Environment Science & Technology, 2018, 52(18): 10359-10368. [36] TANG B, POMA G, BASTIAENSEN M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio) [J]. Environment International, 2019, 126: 512-522. doi: 10.1016/j.envint.2019.02.063 [37] BERGHUIS S A, ROZE E. Prenatal exposure to PCBs and neurological and sexual/pubertal development from birth to adolescence [J]. Current Problems in Pediatric and Adolescent Health Care, 2019, 49(6): 133-159. doi: 10.1016/j.cppeds.2019.04.006 [38] DELEON S, HALITSCHKE R, HAMES R S, et al. The effect of polychlorinated biphenyls on the song of two passerine species [J]. PLoS One, 2013, 8(9): 11. [39] RUBINSTEIN A L. Zebrafish assays for drug toxicity screening [J]. Expert Opinion on Drug Metabolism & Toxicology, 2006, 2(2): 231-240. [40] HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446): 498-503. doi: 10.1038/nature12111 [41] PARNG C, SENG W L, SEMINO C, et al. Zebrafish: A preclinical model for drug screening [J]. Assay and Drug Development Technologies, 2002, 1(1): 41-48. doi: 10.1089/154065802761001293 [42] NAGEL R. DarT: The embryo test with the zebrafish Danio rerio - a general model in ecotoxicology and toxicology [J]. Altex-Alternativen Zu Tierexperimenten, 2002, 19: 38-48. [43] NORTON W, BALLY-CUIF L. Adult zebrafish as a model organism for behavioural genetics [J]. Bmc Neuroscience, 2010, 11: 90. doi: 10.1186/1471-2202-11-90 [44] CHAI T, CUI F, MU X, et al. Stereoselective induction by 2,2',3,4',6-pentachlorobiphenyl in adult zebrafish (Danio rerio): Implication of chirality in oxidative stress and bioaccumulation [J]. Environmental Pollution, 2016, 215: 66-76. doi: 10.1016/j.envpol.2016.04.075 [45] HENRY T R, SPITSBERGEN J M, HORNUNG M W, et al. Early life stage toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin in zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 1997, 142(1): 56-68. doi: 10.1006/taap.1996.8024 [46] PLANCHART A, MATTINGLY C J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin Upregulates FoxQ1b in Zebrafish Jaw Primordium [J]. Chemical Research in Toxicology, 2010, 23(3): 480-487. doi: 10.1021/tx9003165 [47] LUO J J, SU D S, XIE S L, et al. Hypersensitive assessment of aryl hydrocarbon receptor transcriptional activity using a novel truncated cyp1a promoter in zebrafish [J]. The FASEB Journal, 2018, 32(5): 2814-2826. doi: 10.1096/fj.201701171R [48] PLAVICKI J, HOFSTEEN P, PETERSON R E, et al. Dioxin inhibits zebrafish epicardium and proepicardium development [J]. Toxicological Sciences, 2013, 131(2): 558-567. doi: 10.1093/toxsci/kfs301 [49] ANTKIEWICZ D S, BURNS C G, CARNEY S A, et al. Heart malformation is an early response to TCDD in embryonic zebrafish [J]. Toxicological Sciences, 2005, 84(2): 368-377. doi: 10.1093/toxsci/kfi073 [50] LEMA S C, SCHULTZ I R, SCHOLZ N L, et al. Neural defects and cardiac arrhythmia in fish larvae following embryonic exposure to 2,2',4,4'-tetrabromodiphenyl ether (PBDE 47) [J]. Aquatic Toxicology, 2007, 82(4): 296-307. doi: 10.1016/j.aquatox.2007.03.002 [51] USENKO C Y, ROBINSON E M, USENKO S, et al. PBDE developmental effects on embryonic zebrafish [J]. Environmental Toxicology and Chemistry, 2011, 30(8): 1865-1872. doi: 10.1002/etc.570 [52] WANG W, ZHAO X, REN X, et al. Antagonistic effects of multi-walled carbon nanotubes and BDE-47 in zebrafish (Danio rerio): Oxidative stress, apoptosis and DNA damage [J]. Aquatic Toxicology (Amsterdam, Netherlands), 2020, 225: 105546. doi: 10.1016/j.aquatox.2020.105546 [53] XING X, KANG J, QIU J, et al. Waterborne exposure to low concentrations of BDE-47 impedes early vascular development in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2018, 203: 19-27. doi: 10.1016/j.aquatox.2018.07.012 [54] MCCLAIN V, STAPLETON H M, TILTON F, et al. BDE 49 and developmental toxicity in zebrafish [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2012, 155(2): 253-258. [55] XU T, CHEN L, HU C, et al. Effects of acute exposure to polybrominated diphenyl ethers on retinoid signaling in zebrafish larvae [J]. Toxicology and Pharmacology, 2013, 35(1): 13-20. doi: 10.1016/j.etap.2012.10.004 [56] 王艳萍, 洪琴, 寇春兆, 等. 多氯联苯暴露对斑马鱼视网膜形态学及CRX基因表达的影响 [J]. 中国儿童保健杂志, 2010, 18(12): 963-966. WANG Y P, HONG Q, KOU C Z, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish retinal morphology and the expression of CRX gene [J]. Chinese Journal of Child Health Care, 2010, 18(12): 963-966(in Chinese).
[57] 鞠黎, 楼跃, 王艳萍, 等. 多氯联苯暴露对斑马鱼脊柱形态及BMP-2、BMP-4基因表达的影响 [J]. 南京医科大学学报(自然科学版), 2011, 31(9): 1277-1281. JU L, LOU Y, WANG Y P, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish spinal morphology and the expression of BMP-2 and BMP-4 gene [J]. Journal of Nanjing Medical University (Natural Science), 2011, 31(9): 1277-1281(in Chinese).
[58] WANG Y P, HONG Q, QIN D N, et al. Effects of embryonic exposure to polychlorinated biphenyls on zebrafish (Danio rerio) retinal development [J]. Journal of Applied Toxicology, 2012, 32(3): 186-193. doi: 10.1002/jat.1650 [59] JU L, ZHOU Z, JIANG B, et al. miR-21 is involved in skeletal deficiencies of zebrafish embryos exposed to polychlorinated biphenyls [J]. Environment Science and Pollution Research International, 2017, 24(1): 886-891. doi: 10.1007/s11356-016-7874-8 [60] ZHANG X, HONG Q, YANG L, et al. PCB1254 exposure contributes to the abnormalities of optomotor responses and influence of the photoreceptor cell development in zebrafish larvae [J]. Ecotoxicology and Environmental Safety, 2015, 118: 133-138. doi: 10.1016/j.ecoenv.2015.04.026 [61] 刘寒, 林红英, 聂芳红, 等. PCB126暴露对斑马鱼胚胎发育及氧化应激的影响 [J]. 毒理学杂志, 2012, 26(1): 9-13. LIU H, LIN H Y, NIE F H, et al. Developmental toxicity and oxidative stress of PCB126 to zebrafish embryos [J]. Journal of Toxicology, 2012, 26(1): 9-13(in Chinese).
[62] LI Y, HAN Z, ZHENG X, et al. Comparison of waterborne and in ovo nanoinjection exposures to assess effects of PFOS on zebrafish embryos [J]. Environmental Science and Pollution Research, 2015, 22(3): 2303-2310. doi: 10.1007/s11356-014-3527-y [63] SHI X, DU Y, LAM P K S, et al. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS [J]. Toxicology and Applied Pharmacology, 2008, 230(1): 23-32. doi: 10.1016/j.taap.2008.01.043 [64] SHIMA A, MITANI H. Medaka as a research organism: Past, present and future [J]. Mechanisms of Development, 2004, 121(7/8): 599-604. [65] SASADO T, TANAKA M, KOBAYASHI K, et al. The national bioresource project medaka (NBRP Medaka): An integrated bioresource for biological and biomedical sciences [J]. Experimental Animals, 2010, 59(1): 13-23. doi: 10.1538/expanim.59.13 [66] XU H Y, LI C X, SUKLAI P, et al. Differential sensitivities to dioxin-like compounds PCB 126 and PeCDF between Tg(cyp1a: gfp) transgenic medaka and zebrafish larvae [J]. Chemosphere, 2018, 192: 24-30. doi: 10.1016/j.chemosphere.2017.10.130 [67] WATSON A T D, PLANCHART A, MATTINGLY C J, et al. Embryonic exposure to TCDD impacts osteogenesis of the axial skeleton in japanese medaka, oryzias latipes [J]. Toxicological Sciences, 2017, 155(2): 485-496. doi: 10.1093/toxsci/kfw229 [68] DONG W, HINTON D E, KULLMAN S W. TCDD disrupts hypural skeletogenesis during medaka embryonic development [J]. Toxicological Sciences, 2012, 125(1): 91-104. doi: 10.1093/toxsci/kfr284 [69] KAWAMURA T, YAMASHITA I. Aryl hydrocarbon receptor is required for prevention of blood clotting and for the development of vasculature and bone in the embryos of medaka fish, Oryzias latipes [J]. Zoology Science, 2002, 19(3): 309-319. doi: 10.2108/zsj.19.309 [70] CANTRELL S M, JOY-SCHLEZINGER J, STEGEMAN J J, et al. Correlation of 2,3,7,8-tetrachlorodibenzo- p -dioxin-induced apoptotic cell death in the embryonic vasculature with embryotoxicity [J]. Toxicology and Applied Pharmacology, 1998, 148(1): 24-34. doi: 10.1006/taap.1997.8309 [71] KIM Y, COOPER K R. Toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and polychlorinated biphenyls (PCBs) in the embryos and newly hatched larvae of the Japanese medaka (Oryzias latipes) [J]. Chemosphere, 1999, 39(3): 527-538. doi: 10.1016/S0045-6535(98)00603-1 [72] HUANG Q, FANG C, WU X, et al. Perfluorooctane sulfonate impairs the cardiac development of a marine medaka (Oryzias melastigma) [J]. Aquatic Toxicology, 2011, 105(1/2): 71-77. [73] QIU X, KIM S, KANG I J, et al. Combined toxicities of tributyltin and polychlorinated biphenyls on the development and hatching of Japanese medaka (Oryzias latipes) embryos via in ovo nanoinjection [J]. Chemosphere, 2019, 225: 927-934. doi: 10.1016/j.chemosphere.2019.03.104 [74] QIU X, IWASAKI N, CHEN K, et al. Tributyltin and perfluorooctane sulfonate play a synergistic role in promoting excess fat accumulation in Japanese medaka (Oryzias latipes) via in ovo exposure [J]. Chemosphere, 2019, 220: 687-695. doi: 10.1016/j.chemosphere.2018.12.191 [75] VILLALOBOS S A, PAPOULIAS D M, PASTVA S D, et al. Toxicity of o,p'-DDE to medaka d-rR strain after a one-time embryonic exposure by in ovo nanoinjection: an early through juvenile life cycle assessment [J]. Chemosphere, 2003, 53(8): 819-826. doi: 10.1016/S0045-6535(03)00583-6 [76] METCALFE T L, METCALFE C D, KIPARISSIS Y, et al. Gonadal development and endocrine responses in Japanese medaka (Oryzias latipes) exposed to o,p'-DDT in water or through maternal transfer [J]. Environmental Toxicology and Chemistry, 2000, 19(7): 1893-1900. doi: 10.1002/etc.5620190725 [77] ZHANG Z, HU J. Effects of p,p'-DDE exposure on gonadal development and gene expression in Japanese medaka (Oryzias latipes) [J]. Journal of Environmental Sciences, 2008, 20(3): 347-352. doi: 10.1016/S1001-0742(08)60054-6 [78] 秦占芬, 徐晓白. 非洲爪蟾在生态毒理学研究中的应用: 概述和实验动物质量控制 [J]. 科学通报, 2006, 51(8): 873-878. doi: 10.3321/j.issn:0023-074X.2006.08.001 QIN Z F, XU X B. Application of Xenopus laevis in ecotoxicology research: overview and quality control of laboratory animals [J]. Chinese Science Bulletin, 2006, 51(8): 873-878(in Chinese). doi: 10.3321/j.issn:0023-074X.2006.08.001
[79] WOLMARANS N J, BERVOETS L, MEIRE P, et al. Current status and future prognosis of malaria vector control pesticide Ecotoxicology and Xenopus sp [J]. Reviews of Environmental Contamination and Toxicology, 2020, 252: 131-171. [80] GUTLEB A C, APPELMAN J, BRONKHORST M C, et al. Delayed effects of pre- and early-life time exposure to polychlorinated biphenyls on tadpoles of two amphibian species (Xenopus laevis and Rana temporaria) [J]. Environmental Toxicology and Pharmacology, 1999, 8(1): 1-14. doi: 10.1016/S1382-6689(99)00023-X [81] 周景明, 秦晓飞, 秦占芬, 等. 多氯联苯(Aroclor 1254)对非洲爪蟾变态发育的影响 [J]. 生态毒理学报, 2007, 2(1): 111-116. ZHOU J M, QIN X F, QIN Z F, et al. Effects of polychlorinated biphenyls (Aroclor 1254) on metamorphic development of Xenopus laevis [J]. Asian Journal of Ecotoxicology, 2007, 2(1): 111-116(in Chinese).
[82] 周景明, 秦占芬, 徐晓白. 多氯联苯对非洲爪蟾变态发育的影响研究 [J]. 动物医学进展, 2007, 28(7): 1-6. doi: 10.3969/j.issn.1007-5038.2007.07.001 ZHOU J M, QIN Z F, XU X B. Effects of polychlorinated biphenyl on the developmental by metamorphosis of Xenopus Laevis [J]. Progress in Veterinary Medicine, 2007, 28(7): 1-6(in Chinese). doi: 10.3969/j.issn.1007-5038.2007.07.001
[83] GILLARDIN V, SILVESTRE F, DIEU M, et al. Protein expression profiling in the African clawed frog Xenopus laevis tadpoles exposed to the polychlorinated biphenyl mixture aroclor 1254 [J]. Molecular and Cellular Proteomics, 2009, 8(4): 596-611. doi: 10.1074/mcp.M800323-MCP200 [84] FISHER M A, JELASO A M, PREDENKIEWICZ A, et al. Exposure to the polychlorinated biphenyl mixture Aroclor (R) 1254 alters melanocyte and tail muscle morphology in developing Xenopus laevis tadpoles [J]. Environmental Toxicology and Chemistry, 2003, 22(2): 321-328. doi: 10.1002/etc.5620220212 [85] QIN Z F, QIN X F, YANG L, et al. Feminizing/demasculinizing effects of polychlorinated biphenyls on the secondary sexual development of Xenopus laevis [J]. Aquatic Toxicology, 2007, 84(3): 321-327. doi: 10.1016/j.aquatox.2007.06.011 [86] LAVINE J A, ROWATT A J, KLIMOVA T, et al. Aryl hydrocarbon receptors in the frog Xenopus laevis: Two AhR1 paralogs exhibit low affinity for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Toxicological Sciences, 2005, 88(1): 60-72. doi: 10.1093/toxsci/kfi228 [87] PHILIPS B H, SUSMAN T C, POWELL W H. Developmental differences in elimination of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during Xenopus laevis development [J]. Marine Environmental Research, 2006, 62(Suppl): 34-37. [88] SAKAMOTO M K, MIMA S, TANIMURA T. Apoptosis of the intestinal principal cells of Xenopus larvae exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin [J]. Journal of Environmental Pathology Toxicology and Oncology, 1999, 18(4): 289-295. [89] BROWN S B, ADAMS B A, CYR D G, et al. Contaminant effects on the teleost fish thyroid [J]. Environmental Toxicology and Chemistry, 2004, 23(7): 1680-1701. doi: 10.1897/03-242 [90] 陈蝶, 高明, 吴南翔. 持久性有机污染物的毒性及其机制研究进展 [J]. 环境与职业医学, 2018, 35(6): 558-565. CHEN D, GAO M, WU N X. Progress on toxicity and mechanisms of persistent organic pollutants [J]. Journal of Environmental & Occupational Medicine, 2018, 35(6): 558-565(in Chinese).
[91] SOFFKER M, TYLER C R. Endocrine disrupting chemicals and sexual behaviors in fish - a critical review on effects and possible consequences [J]. Critical Reviews in Toxicology, 2012, 42(8): 653-668. doi: 10.3109/10408444.2012.692114 [92] CABALLERO-GALLARDO K, OLIVERO-VERBEL J, FREEMAN J L. Toxicogenomics to evaluate endocrine disrupting effects of environmental chemicals using the Zebrafish Model [J]. Current Genomics, 2016, 17(6): 515-527. doi: 10.2174/1389202917666160513105959 [93] DAOUK T, LARCHER T, ROUPSARD F, et al. Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability [J]. Aquatic Toxicology, 2011, 105(3/4): 270-278. [94] 谭燕, 李远友. 鱼类在内分泌干扰研究中的应用 [J]. 水产科学, 2006, 25(11): 583-587. doi: 10.3969/j.issn.1003-1111.2006.11.013 TAN Y, LI Y Y. Application of fish in the study of endocrine disruption [J]. Fisheries Science, 2006, 25(11): 583-587(in Chinese). doi: 10.3969/j.issn.1003-1111.2006.11.013
[95] 黄苑, 苏晓鸥, 王瑞国, 等. 多氯联苯羟基化代谢物及其雌激素效应研究进展 [J]. 生态毒理学报, 2018, 13(5): 58-68. doi: 10.7524/AJE.1673-5897.20180111001 HUANG Y, SU X O, WANG R G, et al. Advances on hydroxylated polychlorinated biphenyls metabolites and the estrogenic effects [J]. Asian Journal of Ecotoxicology, 2018, 13(5): 58-68(in Chinese). doi: 10.7524/AJE.1673-5897.20180111001
[96] QUINTANEIRO C, SOARES A, COSTA D, et al. Effects of PCB-77 in adult zebrafish after exposure during early life stages [J]. Journal of Environmental Science And Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2019, 54(5): 478-483. [97] CHEN X, WALTER K M, MILLER G W, et al. Simultaneous quantification of T4, T3, rT3, 3,5-T2 and 3,3'-T2 in larval zebrafish (Danio rerio) as a model to study exposure to polychlorinated biphenyls [J]. Biomedical Chromatography, 2018, 32(6): e4185. doi: 10.1002/bmc.4185 [98] KRAUGERUD M, DOUGHTY R W, LYCHE J L, et al. Natural mixtures of persistent organic pollutants (POPs) suppress ovarian follicle development, liver vitellogenin immunostaining and hepatocyte proliferation in female zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2012, 116-117: 16-23. doi: 10.1016/j.aquatox.2012.02.031 [99] HUANG Y, ZHU G, PENG L, et al. Effect of 2,2', 4,4'-tetrabromodiphenyl ether (BDE-47) on sexual behaviors and reproductive function in male zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2015, 111: 102-108. doi: 10.1016/j.ecoenv.2014.09.037 [100] 余丽琴, 陈联国, 王蔷薇, 等. 阻燃剂对斑马鱼的传递毒性效应-影响子代健康// 中国化学会. 中国化学会第29届学术年会摘要集——第20分会: 环境与健康[C]. 中国化学会: 中国化学会, 2014: 1. YU L Q, CHEN L G, WANG Q W, et al. Transgenerational toxicity of PBDEs and TDCPP in zebrafish[A]. Chinese Chemical Society. Abstracts of the 29th Annual Meeting of the Chinese Chemical Society-Session 20: Environment and Health[C]. Chinese Chemical Society: Chinese Chemical Society, 2014: 1(in Chinese).
[101] HE J, YANG D, WANG C, et al. Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring [J]. Ecotoxicology, 2011, 20(8): 1813-1822. doi: 10.1007/s10646-011-0720-3 [102] YU L, DENG J, SHI X, et al. Exposure to DE-71 alters thyroid hormone levels and gene transcription in the hypothalamic-pituitary-thyroid axis of zebrafish larvae [J]. Aquatic Toxicology, 2010, 97(3): 226-233. doi: 10.1016/j.aquatox.2009.10.022 [103] KUIPER R V, VETHAAK A D, CANTON R F, et al. Toxicity of analytically cleaned pentabromodiphenylether after prolonged exposure in estuarine European flounder (Platichthys flesus), and partial life-cycle exposure in fresh water zebrafish (Danio rerio) [J]. Chemosphere, 2008, 73(2): 195-202. doi: 10.1016/j.chemosphere.2008.04.079 [104] SUN W, JIA Y, DING X, et al. Combined effects of pentachlorophenol and its byproduct hexachlorobenzene on endocrine and reproduction in zebrafish [J]. Chemosphere, 2019, 220: 216-226. doi: 10.1016/j.chemosphere.2018.12.100 [105] HEIDEN T C K, STRUBLE C A, RISE M L, et al. Molecular targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) within the zebrafish ovary: Insights into TCDD-induced endocrine disruption and reproductive toxicity [J]. Reproductive Toxicology, 2008, 25(1): 47-57. doi: 10.1016/j.reprotox.2007.07.013 [106] DU G, HU J, HUANG H, et al. Perfluorooctane sulfonate (PFOS) affects hormone receptor activity, steroidogenesis, and expression of endocrine-related genes in vitro and in vivo [J]. Environmental Toxicology and Chemistry, 2013, 32(2): 353-360. doi: 10.1002/etc.2034 [107] SHI X, LIU C, WU G, et al. Waterborne exposure to PFOS causes disruption of the hypothalamus-pituitary-thyroid axis in zebrafish larvae [J]. Chemosphere, 2009, 77(7): 1010-1018. doi: 10.1016/j.chemosphere.2009.07.074 [108] DU Y, SHI X, LIU C, et al. Chronic effects of water-borne PFOS exposure on growth, survival and hepatotoxicity in zebrafish: A partial life-cycle test [J]. Chemosphere, 2009, 74(5): 723-729. doi: 10.1016/j.chemosphere.2008.09.075 [109] MONTEIRO M S, PAVLAKI M, FAUSTINO A, et al. Endocrine disruption effects of p,p'-DDE on juvenile zebrafish [J]. Journal of Applied Toxicology, 2015, 35(3): 253-260. doi: 10.1002/jat.3014 [110] RALDUA D, BABIN P J. Simple, rapid zebrafish larva bioassay for assessing the potential of chemical pollutants and drugs to disrupt thyroid gland function [J]. Environmental Science & Technology, 2009, 43(17): 6844-6850. [111] WU L, RU H, NI Z, et al. Comparative thyroid disruption by o,p'-DDT and p,p'-DDE in zebrafish embryos/larvae [J]. Aquatic Toxicology, 2019, 216: 105280. doi: 10.1016/j.aquatox.2019.105280 [112] TIMME-LARAGY A R, SANT K E, ROUSSEAU M E, et al. Deviant development of pancreatic beta cells from embryonic exposure to PCB-126 in zebrafish [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2015, 178: 25-32. [113] CHEN H, HU J, YANG J, et al. Generation of a fluorescent transgenic zebrafish for detection of environmental estrogens [J]. Aquatic Toxicology, 2010, 96(1): 53-61. doi: 10.1016/j.aquatox.2009.09.015 [114] GORELICK D A, HALPERN M E. Visualization of estrogen receptor transcriptional activation in zebrafish [J]. Endocrinology, 2011, 152(7): 2690-2703. doi: 10.1210/en.2010-1257 [115] LIN C Y, CHIANG C Y, TSAI H J. Zebrafish and Medaka: New model organisms for modern biomedical research [J]. Journal of Biomedical Science, 2016, 23: 11. doi: 10.1186/s12929-016-0226-7 [116] OKUYAMA T, YOKOI S, TAKEUCHI H. Molecular basis of social competence in medaka fish [J]. Development Growth & Differentiation, 2017, 59(4): 211-218. [117] NAKAYAMA K, OSHIMA Y, NAGAFUCHI K, et al. Early-life-stage toxicity in offspring from exposed parent medaka, Oryzias latipes, to mixtures of tributyltin and polychlorinated biphenyls [J]. Environmental Toxicology and Chemistry, 2005, 24(3): 591-596. doi: 10.1897/04-157R.1 [118] NAKAYAMA K, SEI N, HANDOH I C, et al. Effects of polychlorinated biphenyls on liver function and sexual characteristics in Japanese medaka (Oryzias latipes) [J]. Marine Pollution Bulletin, 2011, 63(5-12): 366-369. doi: 10.1016/j.marpolbul.2011.01.015 [119] YUM S, WOO S, KAGAMI Y, et al. Changes in gene expression profile of medaka with acute toxicity of Arochlor 1260, a polychlorinated biphenyl mixture [J]. Comparative Biochemistry and Physiology C-toxicology & Pharmacology, 2010, 151(1): 51-56. [120] UCHIDA M, NAKAMURA H, KAGAMI Y, et al. Estrogenic effects of o,p'-DDT exposure in Japanese medaka (Oryzias latipes) [J]. Journal of Toxicological Sciences, 2010, 35(4): 605-608. doi: 10.2131/jts.35.605 [121] PAPOULIAS D M, VILLALOBOS S A, MEADOWS J, et al. In ovo exposure to o,p'-DDE affects sexual development but not sexual differentiation in Japanese medaka (Oryzias latipes) [J]. Environmental Health Perspectives, 2003, 111(1): 29-32. doi: 10.1289/ehp.5540 [122] SUN J, WANG C, PENG H, et al. p,p'-DDE Induces Gonadal Intersex in Japanese Medaka (Oryzias latipes) at Environmentally Relevant Concentrations: Comparison with o,p'-DDT [J]. Environmental Science & Technology, 2016, 50(1): 462-469. [123] TSE A C K, LAU K Y T, GE W, et al. A rapid screening test for endocrine disrupting chemicals using primary cell culture of the marine medaka [J]. Aquatic Toxicology, 2013, 144: 50-58. [124] ZHAO Y B, LUO K, FAN Z L, et al. Modulation of Benzo a pyrene-Induced Toxic Effects in Japanese Medaka (Oryzias latipes) by 2,2', 4,4'-Tetrabromodiphenyl Ether [J]. Environmental Science & Technology, 2013, 47(22): 13068-13076. [125] LEE J W, LEE J W, SHIN Y J, et al. Multi-generational xenoestrogenic effects of Perfluoroalkyl acids (PFAAs) mixture on Oryzias latipes using a flow-through exposure system [J]. Chemosphere, 2017, 169: 212-223. doi: 10.1016/j.chemosphere.2016.11.035 [126] KANG J S, AHN T G, PARK J W. Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes) [J]. Journal of Hazardous Materials, 2019, 368: 97-103. doi: 10.1016/j.jhazmat.2019.01.034 [127] GUTLEB A C, APPELMAN J, BRONKHORST M, et al. Effects of oral exposure to polychlorinated biphenyls (PCBs) on the development and metamorphosis of two amphibian species (Xenopus laevis and Rana temporaria) [J]. Science of The Total Environment, 2000, 262(1/2): 147-157. [128] LEHIGH SHIREY E A, JELASO LANGERVELD A, MIHALKO D, et al. Polychlorinated biphenyl exposure delays metamorphosis and alters thyroid hormone system gene expression in developing Xenopus laevis [J]. Environmental Research, 2006, 102(2): 205-214. doi: 10.1016/j.envres.2006.04.001 [129] GUTLEB A C, MOSSINK L, SCHRIKS M, et al. Delayed effects of environmentally relevant concentrations of 3,3', 4,4'-tetrachlorobiphenyl (PCB-77) and non-polar sediment extracts detected in the prolonged-FETAX [J]. Science of the Total Environment, 2007, 381(1/3): 307-315. [130] QIN Z F, ZHOU J M, CHU S G, et al. Effects of Chinese domestic polychlorinated biphenyls (PCBs) on gonadal differentiation in Xenopus laevis [J]. Environmental Health Perspectives, 2003, 111(4): 553-556. doi: 10.1289/ehp.5620 [131] 李焕婷, 秦占芬, 秦晓飞, 等. 多氯联苯和多溴联苯醚对非洲爪蟾生长发育和性腺发育的影响 [J]. 西北农林科技大学学报(自然科学版), 2009, 37(4): 31-36. LI H T, QIN Z F, QIN X F, et al. Effects of polychlorinated biphenyls and polybrominated diphenyl ethers on the growth and gonadal development of African clawed frogs(Xenopus laevis) [J]. Journal of Northwest A& F University (Natural Science Edition), 2009, 37(4): 31-36(in Chinese).
[132] TAFT J D, COLONNETTA M M, SCHAFER R E, et al. Dioxin Exposure alters molecular and morphological responses to thyroid hormone in Xenopus laevis cultured cells and Prometamorphic Tadpoles [J]. Toxicological Sciences, 2018, 161(1): 196-206. doi: 10.1093/toxsci/kfx213 [133] YOST A T, THORNTON L M, VENABLES B J, et al. Dietary exposure to polybrominated diphenyl ether 47 (BDE-47) inhibits development and alters thyroid hormone-related gene expression in the brain of Xenopus laevis tadpoles [J]. Environmental Toxicology and Pharmacology, 2016, 48: 237-244. doi: 10.1016/j.etap.2016.11.002 [134] HOFFMANN F, KLOAS W. p,p'-Dichlordiphenyldichloroethylene (p,p'-DDE) can elicit antiandrogenic and estrogenic modes of action in the amphibian Xenopus laevis [J]. Physiology & Behavior, 2016, 167: 172-178. [135] LONGNECKER M P, WOLFF M S, GLADEN B C, et al. Comparison of polychlorinated biphenyl levels across studies of human neurodevelopment [J]. Environmental Health Perspectives, 2003, 111(1): 65-70. doi: 10.1289/ehp.5463 [136] CHEN Y C, YU M L, ROGAN W J, et al. A 6-year follow-up of behavior and activity disorders in the Taiwan Yu-cheng children [J]. American Journal of Public Health, 1994, 84(3): 415-421. doi: 10.2105/AJPH.84.3.415 [137] PATANDIN S, LANTING C I, MULDER P G H, et al. Effects of environmental exposure to polychlorinated biphenyls and dioxins on cognitive abilities in Dutch children at 42 months of age [J]. Journal of Pediatrics, 1999, 134(1): 33-41. doi: 10.1016/S0022-3476(99)70369-0 [138] NISHIDA N, FARMER J D, KODAVANTI P R S, et al. Effects of acute and repeated exposures to aroclor 1254 in adult rats: Motor activity and flavor aversion conditioning [J]. Fundamental and Applied Toxicology, 1997, 40(1): 68-74. doi: 10.1006/faat.1997.2352 [139] TIEDEKEN J A, RAMSDELL J S. DDT exposure of zebrafish embryos enhances seizure susceptibility: relationship to fetal p,p'-DDE burden and domoic acid exposure of California sea lions [J]. Environmental Health Perspectives, 2009, 117(1): 68-73. doi: 10.1289/ehp.11685 [140] SOUTH J, BOTHA T L, WOLMARANS N J, et al. Assessing predator-prey interactions in a chemically altered aquatic environment: the effects of DDT on Xenopus laevis and Culex sp. larvae interactions and behaviour [J]. Ecotoxicology, 2019, 28(7): 771-780. doi: 10.1007/s10646-019-02075-5 [141] TIMME-LARAGY A R, LEVIN E D, DI GIULIO R T. Developmental and behavioral effects of embryonic exposure to the polybrominated diphenylether mixture DE-71 in the killifish (Fundulus heteroclitus) [J]. Chemosphere, 2006, 62(7): 1097-1104. doi: 10.1016/j.chemosphere.2005.05.037 [142] BAILEY J, OLIVERI A, LEVIN E D. Zebrafish model systems for developmental neurobehavioral toxicology [J]. Birth Defects Research Part C-Embryo Today-Reviews, 2013, 99(1): 14-23. doi: 10.1002/bdrc.21027 [143] DE ESCH C, SLIEKER R, WOLTERBEEK A, et al. Zebrafish as potential model for developmental neurotoxicity testing: A mini review [J]. Neurotoxicology and Teratology, 2012, 34(6): 545-553. doi: 10.1016/j.ntt.2012.08.006 [144] TON C, LIN Y X, WILLETT C. Zebrafish as a model for developmental neurotoxicity testing [J]. Birth Defects Research Part a-Clinical and Molecular Teratology, 2006, 76(7): 553-567. doi: 10.1002/bdra.20281 [145] TANAKA Y, FUJIWARA M, SHINDO A, et al. Aroclor 1254 and BDE-47 inhibit dopaminergic function manifesting as changes in locomotion behaviors in zebrafish embryos [J]. Chemosphere, 2018, 193: 1207-1215. doi: 10.1016/j.chemosphere.2017.11.138 [146] KREILING J A, CRETON R, REINISCH C. Early embryonic exposure to polychlorinated biphenyls disrupts heat-shock protein 70 cognate expression in zebrafish [J]. Journal of Toxicology and Environmental Health, 2007, 70(12): 1005-1013. doi: 10.1080/15287390601171868 [147] GONZALEZ S T, REMICK D, CRETON R, et al. Effects of embryonic exposure to polychlorinated biphenyls (PCBs) on anxiety-related behaviors in larval zebrafish [J]. Neurotoxicology, 2016, 53: 93-101. doi: 10.1016/j.neuro.2015.12.018 [148] CHEN L, HUANG C, HU C, et al. Acute exposure to DE-71: effects on locomotor behavior and developmental neurotoxicity in zebrafish larvae [J]. Environmental Toxicology and Chemistry, 2012, 31(10): 2338-2344. doi: 10.1002/etc.1958 [149] CHEN L, YU K, HUANG C, et al. Prenatal transfer of polybrominated diphenyl ethers (PBDEs) results in developmental neurotoxicity in Zebrafish Larvae [J]. Environmental Science & Technology, 2012, 46(17): 9727-9734. [150] ZHENG S, LIU C, HUANG Y, et al. Effects of 2,2', 4,4'-tetrabromodiphenyl ether on neurobehavior and memory change and bcl-2, c-fos, grin1b and lingo1b gene expression in male zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 2017, 333: 10-16. doi: 10.1016/j.taap.2017.08.004 [151] CHOU C T, HSIAO Y C, KO F C, et al. Chronic exposure of 2,2', 4,4'-tetrabromodiphenyl ether (PBDE-47) alters locomotion behavior in juvenile zebrafish (Danio rerio) [J]. Aquatic Toxicology, 2010, 98(4): 388-395. doi: 10.1016/j.aquatox.2010.03.012 [152] CHEN X, HUANG C, WANG X, et al. BDE-47 disrupts axonal growth and motor behavior in developing zebrafish [J]. Aquatic Toxicology, 2012, 120: 35-44. [153] HILL A, HOWARD C V, STRAHLE U, et al. Neurodevelopmental defects in zebrafish (Danio rerio) at environmentally relevant dioxin (TCDD) concentrations [J]. Toxicological Sciences, 2003, 76(2): 392-399. doi: 10.1093/toxsci/kfg241 [154] NAKAYAMA K, OSHIMA Y, HIRAMATSU K, et al. Alteration of general behavior of male medaka, Oryzias latipes, exposed to tributyltin and/or polychlorinated biphenyls [J]. Journal of the Faculty of Agriculture Kyushu University, 2004, 49(1): 85-92. doi: 10.5109/4568 [155] NAKAYAMA K, OSHIMA Y, HIRAMATSU K, et al. Effects of polychlorinated biphenyls on the schooling behavior of Japanese medaka (Oryzias latipes) [J]. Environmental Toxicology and Chemistry, 2005, 24(10): 2588-2593. doi: 10.1897/04-518R2.1 [156] FERNANDES E C A, HENDRIKS H S, VAN KLEEF R G D M, et al. Activation and Potentiation of Human GABA(A) Receptors by Non-Dioxin-Like PCBs Depends on Chlorination Pattern [J]. Toxicological Sciences, 2010, 118(1): 183-190. doi: 10.1093/toxsci/kfq257 [157] FERNANDES E C A, HENDRIKS H S, VAN KLEEF R G D M, et al. Potentiation of the human GABA(A) receptor As a novel mode of action of lower-chlorinated non-dioxin-like PCBs [J]. Environmental Science & Technology, 2010, 44(8): 2864-2869. [158] JELASO A M, LEHIGH-SHIREY E, MEANS J, et al. Gene expression patterns predict exposure to PCBs in developing Xenopus laevis tadpoles [J]. Environmental and Molecular Mutagenesis, 2003, 42(1): 1-10. doi: 10.1002/em.10173 [159] JELASO A M, DELONG C, MEANS J, et al. Dietary exposure to aroclor 1254 alters gene expression in Xenopus laevis frogs [J]. Environmental Research, 2005, 98(1): 64-72. doi: 10.1016/j.envres.2004.05.014 [160] HENDRIKS H S, FERNANDES E C A, BERGMAN A, et al. PCB-47, PBDE-47, and 6-OH-PBDE-47 differentially modulate human GABA(A) and alpha(4)beta(2) nicotinic acetylcholine receptors [J]. Toxicological Sciences, 2010, 118(2): 635-642. doi: 10.1093/toxsci/kfq284 [161] MURENZI E, TOLTIN A C, SYMINGTON S B, et al. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels [J]. Neurotoxicology, 2017, 60: 260-273. doi: 10.1016/j.neuro.2016.04.004 [162] 梁艺怀, 张京佶, 张琨, 等. 稀有鮈鲫作为鱼类幼体生长试验受试鱼种的适用性研究 [J]. 中国实验动物学报, 2018, 26(5): 618-623. doi: 10.3969/j.issn.1005-4847.2018.05.013 LIANG Y H, ZHAGN J J, ZHAGN K, et al. Applicability of Chinese rare minnows for the juvenile fish growth test [J]. Acta Laboratoriun Animals Scientia Sinica, 2018, 26(5): 618-623(in Chinese). doi: 10.3969/j.issn.1005-4847.2018.05.013
[163] 张京佶, 殷浩文. 有关稀有鮈鲫作为本土模式生物的争议及辨析 [J]. 生态毒理学报, 2017, 12(2): 44-45. doi: 10.7524/AJE.1673-5897.20161126002 ZHANG J J, YIN H W. Is Chinese rare minnow a qualified model organism in China? [J]. Asian Journal of Ecotoxicology, 2017, 12(2): 44-45(in Chinese). doi: 10.7524/AJE.1673-5897.20161126002
[164] 刘汉伟, 章跃龙, 乐琪君, 等. 环磷酰胺对稀有鮈鲫的遗传毒性 [J]. 中国口岸科学技术, 2020(1): 54-57. LIU H W, ZHANG Y L, LE Q J, et al. Genotoxicity of cyclophosphamide to gobiocypris rarus [J]. Chinese Port Science and Technology, 2020(1): 54-57(in Chinese).
[165] 张京佶, 王绿平, 张琨. 稀有鮈鲫在鱼类胚胎急性毒性试验中的适用性研究 [J]. 环境科学研究, 2019, 32(7): 1162-1169. ZHANG J J, WANG L P, ZHANG K. Applicability of Gobiocypris rarus in Fish Embryo Acute Toxicity Test [J]. Research of Environmental Science, 2019, 32(7): 1162-1169(in Chinese).
[166] ZHU L, LI W, ZHA J, et al. Chronic thiamethoxam exposure impairs the HPG and HPT axes in adult Chinese rare minnow (Gobiocypris rarus): Docking study, hormone levels, histology, and transcriptional responses [J]. Ecotoxicology and Environmental Safety, 2019, 185: 109683. doi: 10.1016/j.ecoenv.2019.109683 [167] 郭勇勇, 周炳升. 苯并芘对稀有鮈鲫的内分泌干扰效应研究 [J]. 环境科学学报, 2015, 35(9): 3006-3012. GUO Y Y, ZHOU B S. Endocrine disruption effects of benzo (a)pyrene on Chinese rare minnow (Gobiocypris rarus) [J]. Acta Scientiae Circumstantiae, 2015, 35(9): 3006-3012(in Chinese).
[168] LI W, ZHU L, ZHA J, et al. Effects of decabromodiphenyl ether (BDE-209) on mRNA transcription of thyroid hormone pathway and spermatogenesis associated genes in Chinese rare minnow (Gobiocypris rarus) [J]. Environmental Toxicology, 2014, 29(1): 1-9. doi: 10.1002/tox.20767 [169] ZHU B, LIU L, LI D L, et al. Developmental toxicity in rare minnow (Gobiocypris rarus) embryos exposed to Cu, Zn and Cd [J]. Ecotoxicology and Environmental Safety, 2014, 104: 269-277. doi: 10.1016/j.ecoenv.2014.03.018 [170] SHI L, WANG N, HU X, et al. Acute toxic effects of lead (Pb2+) exposure to rare minnow (Gobiocypris rarus) revealed by histopathological examination and transcriptome analysis [J]. Environmental Toxicology and Pharmacology, 2020, 78: 103385. doi: 10.1016/j.etap.2020.103385 [171] QIU N, SU L, WU B, et al. Chemicals affect color preference in rare minnow (Gobiocypris rarus) [J]. Environment Science and Pollution Research International, 2020, 27(18): 23206-23214. doi: 10.1007/s11356-020-08924-9 [172] TIAN X, HONG X, YAN S, et al. Neonicotinoids caused oxidative stress and DNA damage in juvenile Chinese rare minnows (Gobiocypris rarus) [J]. Ecotoxicology and Environmental Safety, 2020, 197: 110566. doi: 10.1016/j.ecoenv.2020.110566 [173] 付娟娟, 郭勇勇, 韩建, 等. 苯并芘和邻苯二甲酸二(2-乙基己基)酯复合暴露对稀有鮈鲫的内分泌干扰效应研究 [J]. 生态毒理学报, 2019, 14(6): 93-103. FU J J, GUO Y Y, HAN J, et al. Endocrine disruption effects of benzo(a) pyrene and di-2-ethylhexyl phthalate on chinese rare minnow(gobiocypris rarus) [J]. Asian Journal of Ecotoxicology, 2019, 14(6): 93-103(in Chinese).
[174] LIU Y, WANG L, ZHU L, et al. Bisphenol A disturbs transcription of steroidogenic genes in ovary of rare minnow Gobiocypris rarus via the abnormal DNA and histone methylation [J]. Chemosphere, 2020, 240: 124935. doi: 10.1016/j.chemosphere.2019.124935 [175] CHEN R, HONG X, YAN S, et al. Three organophosphate flame retardants (OPFRs) reduce sperm quality in Chinese rare minnows (Gobiocypris rarus) [J]. Environment Pollution, 2020, 263(Pt A): 114525. [176] ZHANG J, ZHANG C, MA D, et al. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus) [J]. Fish & Shellfish Immunology, 2017, 71: 10-18. [177] CHEN R, YUAN L, ZHA J, et al. Developmental toxicity and thyroid hormone-disrupting effects of 2, 4-dichloro-6-nitrophenol in Chinese rare minnow (Gobiocypris rarus) [J]. Aquatic Toxicology, 2017, 185: 40-47. doi: 10.1016/j.aquatox.2017.02.005 [178] 范博, 樊明, 刘征涛, 等. 稀有鮈鲫物种敏感性及其在生态毒理学与水质基准中的应用 [J]. 环境科学研究, 2019, 32(7): 1153-1161. FAN B, FAN M, LIU Z T, et al. Species sensitivity and application in ecotoxicology and water quality criterion for Gobiocypris rarus [J]. Research of Environmental Science, 2019, 32(7): 1153-1161(in Chinese).
[179] 伍辛泷, 黄乾生, 方超, 等. 新兴海洋生态毒理学模式生物——海洋青鳉鱼(Oryzias melastigma) [J]. 生态毒理学报, 2012, 7(4): 345-353. WU X L, HUANG Q S, FANG C, et al. Emerging model organism in marine ecotoxicology——Oryzias melastigma [J]. Asian Journal of Ecotoxicology, 2012, 7(4): 345-353(in Chinese).
[180] 韩文亮, 郑小燕. 十溴二苯醚及其降解产物对浮游生物的毒性 [J]. 环境科学学报, 2018, 38(2): 821-828. HAN W L, ZHENG X Y. Toxicity of decabromodiphenyl ether and its degradation products to plankton [J]. Acta Scientiae Circumstantiae, 2018, 38(2): 821-828(in Chinese).
[181] 刘冉, 曹志会, 赵月, 等. PFOA和PFOS对大型蚤急性毒性试验研究 [J]. 安全与环境工程, 2015, 22(4): 51-55+74. LIU R, CAO Z H, ZHAO Y, et al. Experiment study on acute toxicity of PFOA and PFOS to daphnia magna [J]. Safety and Environmental Engineering, 2015, 22(4): 51-55+74(in Chinese).
[182] FLAHERTY C M, DODSON S I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction [J]. Chemosphere, 2005, 61(2): 200-207. doi: 10.1016/j.chemosphere.2005.02.016 [183] 畅悦, 冯立芳, 缪炜. 有污染物二氯二苯三氯乙烷、三丁锡和2,3,7,8-四氯二苯并二噁英暴露下的四膜虫毒理因组学研究 [J]. 中国科学: 生命科学, 2011, 41(6): 502-511. CHANG Y, FENG L F, MIAO W. Toxicogenomic research on tetrahymena thermophila exposed to dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [J]. Chinese Bulletin of Life Sciences, 2011, 41(6): 502-511(in Chinese).
[184] 缪炜. 原生动物四膜虫“小材”有“大用” [J]. 生物学通报, 2010, 45(12): 1-4. doi: 10.3969/j.issn.0006-3193.2010.12.001 LIAO W. Protozoan tetrahymena: the great contributions to the fundamental research [J]. Bulletin of Biology, 2010, 45(12): 1-4(in Chinese). doi: 10.3969/j.issn.0006-3193.2010.12.001
[185] 杨扬, 李雅洁, 崔益斌, 等. 3种典型有机污染物对2种水生生物的急性毒性及安全评价 [J]. 环境科学, 2015, 36(8): 3074-3079. YANG Y, LI Y J, CUI Y B, et al. Acute toxicity and safety assessment of three typical organic pollutants to two aquatic organisms [J]. Environmental Science, 2015, 36(8): 3074-3079(in Chinese).
[186] QU R J, LIU J Q, WANG L S, et al. The toxic effect and bioaccumulation in aquatic oligochaete Limnodrilus hoffmeisteri after combined exposure to cadmium and perfluorooctane sulfonate at different pH values [J]. Chemosphere, 2016, 152: 496-502. doi: 10.1016/j.chemosphere.2016.03.024 [187] TOYOTA K, MCNABB N A, SPYROPOULOS D D, et al. Toxic effects of chemical dispersant Corexit 9500 on water flea Daphnia magna [J]. Journal of Applied Toxicology, 2017, 37(2): 201-206. doi: 10.1002/jat.3343 [188] LIU Y, WANG L, PAN B, et al. Toxic effects of diclofenac on life history parameters and the expression of detoxification-related genes in Daphnia magna [J]. Aquat Toxicol, 2017, 183: 104-113. [189] PENG Y, LUO Y, NIE X P, et al. Toxic effects of triclosan on the detoxification system and breeding of Daphnia magna [J]. Ecotoxicology, 2013, 22(9): 1384-1394. doi: 10.1007/s10646-013-1124-3 [190] YE Q, ZHANG C N, WANG Z L, et al. Induction of oxidative stress, apoptosis and DNA damage by koumine in Tetrahymena thermophila [J]. PloS One, 2019, 14(2): 15. [191] 廖苑辰, 常叶倩, 徐晨珂, 等. 氧化石墨烯对嗜热四膜虫的毒性效应 [J]. 中国环境科学, 2019, 39(3): 1299-1305. doi: 10.3969/j.issn.1000-6923.2019.03.048 LIAO Y C, CHANG Y Q, XU C K, et al. Toxicity effects of graphene oxide to Tetrahymena thermophila [J]. China Environmental Science, 2019, 39(3): 1299-1305(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.03.048
[192] 柳郁滨, 范学铭, 王哲娟. Cu2+离子对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2010, 26(19): 423-425. LIU Y B, FAN X M, WANG Z J. Effects of Cu2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2010, 26(19): 423-425(in Chinese).
[193] 孙娜, 王宇佳, 柳郁滨, 等. Hg2+对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2012, 28(17): 143-146. doi: 10.3969/j.issn.1000-6850.2012.17.027 SUN N, WANG Y J, LIU Y B, et al. Effects of Hg2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2012, 28(17): 143-146(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.17.027
[194] 赵双菁, 李艳秋, 柳郁滨, 等. Pb2+对水丝蚓的急性毒性及超氧化物歧化酶活性的影响 [J]. 中国农学通报, 2012, 28(8): 87-89. doi: 10.3969/j.issn.1000-6850.2012.08.019 ZHAO S R, LIU Y Q, LIU Y B, et al. Effect of Pb2+on limnodilus claparedianu acute toxicity and superoxide dismutase activity [J]. Chinese Agricultural Science Bulletin, 2012, 28(8): 87-89(in Chinese). doi: 10.3969/j.issn.1000-6850.2012.08.019
[195] ORTEGA M, ORDONEZ E O, FAVARI L, et al. Biochemical and mitochondrial changes induced by Cd, Fe and Zn in limnodrillus hoffmeisteri [J]. International Journal of Morphology, 2011, 29(2): 412-419. doi: 10.4067/S0717-95022011000200018 -