单体铝与纳米铝团簇絮凝剂的残余毒性效应

吴悦菡, 田晨浩, 冯成洪. 单体铝与纳米铝团簇絮凝剂的残余毒性效应[J]. 环境化学, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302
引用本文: 吴悦菡, 田晨浩, 冯成洪. 单体铝与纳米铝团簇絮凝剂的残余毒性效应[J]. 环境化学, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302
WU Yuehan, TIAN Chenhao, FENG Chenghong. Residual toxicity effects of monomeric aluminum and polymeric nanometer aluminum cluster[J]. Environmental Chemistry, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302
Citation: WU Yuehan, TIAN Chenhao, FENG Chenghong. Residual toxicity effects of monomeric aluminum and polymeric nanometer aluminum cluster[J]. Environmental Chemistry, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302

单体铝与纳米铝团簇絮凝剂的残余毒性效应

    通讯作者: E-mail:fengchenghong@bnu.edu.cn
  • 基金项目:
    国家自然科学基金(21677017)资助

Residual toxicity effects of monomeric aluminum and polymeric nanometer aluminum cluster

    Corresponding author: FENG Chenghong, fengchenghong@bnu.edu.cn
  • Fund Project: the National Natural Science Foundation of China (21677017)
  • 摘要: 铝盐絮凝剂是国内外最常用的水处理和水环境修复药剂,一直以来对其残余毒性研究主要是从传统单体铝角度进行探索。残余铝的生物毒性与其赋存形态具有相关性。目前针对铝总量毒性的研究较多,但从形态角度对不同形态羟基铝尤其是纳米Al13团簇毒性效应的研究相对缺乏,且已有研究结果存在争议。单体铝在一定条件下可转化为纳米铝团簇,进一步增大残余铝的毒性效应复杂性。为此,本研究在调查铝残留途径和来源的基础上,深入探讨了不同形态羟基铝(无机单体离子态Alm、纳米多核团簇态Al13)毒性效应的研究进展,分析残余铝的毒性效应特征和影响因素,为优化铝盐絮凝剂投加、残余铝控制标准修订和确保水生态环境安全提供参考。
  • 作为一种具有高毒性、生物累积和生物放大效应的重金属,汞(Hg)主要以气态形式被排放到大气中,随后可通过大气环流进行全球传输并沉降到陆地和海洋生态系统. 化石燃料燃烧、金属冶炼和垃圾焚烧等人为活动每年产生2000—3000 t的汞排放,而地质活动等自然源的每年汞排放量可达5500 t[1]. 目前,在无明显人为源的偏远地区也普遍检出汞[2],如青藏高原的海螺沟冰川融水中汞含量为6.96—10.78 ng·L-1[3],北极苔原也有显著大气汞沉降[4]. 为降低汞污染对生态系统与人体健康的危害,2013年世界上128个国家和地区签署了《关于汞的水俣公约》以减少汞的使用与人为排放[5],2018年全球人为导致的汞排放较2013年已出现下降[6]. 然而,由于历史上累积汞在表生环境中的再释放和循环,汞污染问题仍将长期存在[7]. 此外,全球变暖可能导致冰川与冻土中汞的释放[8],而升温引起的生态系统中初级生产力提高、生物习性改变以及食物网结构的变化也可能加剧生物体中汞的累积[9].

    引起水俣病等公害事件的甲基汞(MeHg)是毒性最高的汞形态之一,其主要来源于硫酸盐还原菌、铁还原菌和产甲烷菌等含有hgcAB基因簇微生物的甲基化[10]. 甲基汞通过与含巯基的蛋白质结合,对生物体造成以神经系统为主的全身性损伤,并可跨过胎盘屏障导致先天性疾病[11-13]. 甲基汞的健康风险与甲基汞暴露直接相关,如食用鱼肉等水产品是甲基汞的重要暴露途径[12,14]. 尽管水中甲基汞在总汞中的占比通常较低,但鱼体中甲基汞可达总汞的95%左右[15],该现象主要是因为甲基汞的生物累积和生物放大效应. 作为海洋中的初级生产者,藻类具有极强的汞富集能力,部分藻中汞浓度可达水环境的103—106[16]. 藻类富集的甲基汞可通过食物链传递并在其他生物体内累积,甲基汞的营养级放大斜率可达0.15 —0.35,表现出显著的生物放大效应[17-20]. 同时,日趋严重的全球变暖、水体酸化和富营养化等问题带来了环境因子、藻类丰度、汞浓度与可利用性的新变化.

    开展甲基汞在藻类中的富集过程研究以及这一过程对水体甲基汞生物累积与放大的关键影响研究对于揭示汞的生物富集、传递特性以及预测其风险至关重要. 因此,本文对藻类富集甲基汞的特征、机理及影响因素进行详细讨论,总结甲基汞在藻类中的分布、转化与后续营养传递特征,并对相关研究的发展方向进行展望.

    藻类对甲基汞的富集涉及吸收、吸附、转运、解吸和外排等多个过程(图1),这些过程对甲基汞在藻类中的累积和食物链传递有重要影响. 首先,藻类可通过吸附、吸收、解吸和外排影响进入食物链的甲基汞的量;此外,藻类及其伴生菌与胞外分泌物可能通过去甲基化或甲基化改变食物链中甲基汞浓度;再者,甲基汞在藻体的不同亚细胞结构中的分布会影响甲基汞在食物链中的传递行为.

    图 1  藻类吸附、吸收、转化、解吸与外排甲基汞的相关机制
    Figure 1.  The proposed mechanisms of adsorption, absorption, transformation, desorption and efflux of MeHg by algae
    (① 未确定甲基汞主动运输的转运蛋白;② 未确定甲基汞是否可以转化为硫化汞颗粒;③ 未确定甲基汞进入液泡的途径;④ 未确定甲基汞的解吸与外排)
    (① The transporter of MeHg via active transport has not been identified; ② It is unknown whether MeHg can be converted to β-HgS; ③ The pathway of MeHg entering the vacuole has not been determined; ④ The desorption and efflux of MeHg are not determined)

    藻类可显著累积水体甲基汞,基于野外数据建立的模型显示浮游植物对甲基汞的生物累积因子(bioaccumulation factor,BAF)达102.4—105.9[21]. 由于实际环境中浮游生物是由多种藻类组成,难以确定不同藻类对甲基汞富集的具体贡献,所以藻类对甲基汞的富集研究通常选择环境中的硅藻与绿藻等优势藻种在实验室条件下开展工作[22]. 该部分论述了藻对甲基汞的累积规律,以及相关的吸附与吸收机制.

    藻类累积甲基汞研究的主要指标包括藻类的体积富集因子(volume concentration factor,VCF)、富集率以及累积速率(具体计算方法见表1注). 表1比较了不同研究结果,其中,甲基汞的形态和暴露时间是影响藻类富集甲基汞的重要因素. 首先,不同形态甲基汞在藻类中的富集存在差异,相较于氯化甲基汞,半胱氨酸与蛋氨酸与甲基汞的络合会减弱藻类对甲基汞的富集[23-24]. 此外,藻类对甲基汞的富集具有一定的时间变化规律,通常在初始5 min内非常迅速,在24 h左右达到平衡[25],因此暴露24 h可测定平衡状态下藻类的富集率等指标,暴露1 h内可反映短期的甲基汞富集动力学变化.

    表 1  实验室条件下常见藻类对甲基汞的富集效果
    Table 1.  Bioconcentration of MeHg in common algae under laboratory conditions
    所属纲Class受试藻类Subject algae甲基汞形态MeHg species甲基汞浓度/(nmol·L−1)Concentration暴露时间/hExposure time是否清洗Whether cleaned吸收速率/(cell−1 h−1·nmol·L−1aAbsorption ratelgVCFb/生物累积因子lgVCF/BCF富集率cEnrichment ratio文献References
    绿藻纲葡萄鼓藻Cosmarium botrytisCH3HgCl0.0224ef5.94 ± 0.69bf[30]
    绿藻纲钙化裂须藻Schizothrix calcicolaCH3HgCl0.0224df5.60 ± 0.21bf[30]
    绿藻纲小球藻Chlorella autotrophicaCH3HgCl3.2972g8 mmol·L−1半胱氨酸pH = 8.2,1 minf113.8hf[31]
    绿藻纲羊角月牙藻Selenastrum capricornutumCH3HgCl1.511.3×10−4f0.97[23]
    绿藻纲羊角月牙藻Selenastrum capricornutumCH3Hg-GSH1.5i11.03×10−4f0.93[23]
    绿藻纲羊角月牙藻Selenastrum capricornutumCH3HgCl0.0224ef6.67 ± 0.13bf[30]
    绿藻纲羊角月牙藻Selenastrum capricornutumCH3Hg-Cys1.5i11.11×10−4f0.92[23]
    绿藻纲蛋白核小球藻Chlorella pyrenoidsaCH3HgCl0.424e0.8 mmol·L−1半胱氨酸pH = 7.1,5 min0.08f0.46[28]
    绿藻纲杜氏藻Dunaliella tertiolectaCH3HgCl0.29—0.424d0.63 ± 0.034.46bf[32]
    绿藻纲斜生栅藻Scenedesmus obliquusCH3HgCl0.424e0.8 mmol·L−1半胱氨酸pH = 7.1,5 min0.02f0.86[28]
    蓝藻纲聚球藻Synechococcus bacillarisCH3HgCl0.29—0.424d0.97±0.036.34bf[32]
    硅藻纲海链藻Thalassiosira sp.CH3HgCl0.0224ef5.37 ± 0.04bf[30]
    硅藻纲假微型海链藻Thalassiosira pseudonanaCH3Hg-Cys4×10−31d11—14×10−35.47bf[32]
    硅藻纲假微型海链藻Thalassiosira pseudonanaCH3HgCl0.29—0.424d15.00 ± 3.005.44bf[32]
    硅藻纲假微型海链藻Thalassiosira pseudonanaCH3Hg-Met0.28—0.48 l416.9 ± 0.26.22bf[24]
    硅藻纲假微型海链藻Thalassiosira pseudonanaCH3Hg-HA0.28—0.48l411.9 ± 1.56.07bf[24]
    硅藻纲假微型海链藻Thalassiosira pseudonanaCH3HgCl7.3272g8 mmol·L−1半胱氨酸pH = 8.2,1 minf14.7hf[31]
    硅藻纲威氏海链藻Thalassiosira weissflogiiCH3HgCl1.851d8 mmol·L−1半胱氨酸pH = 8.2,1 min4.69.8×106 jf[33]
    硅藻纲威氏海链藻Thalassiosira weissflogiiCH3HgCl1.851k8 mmol·L−1半胱氨酸pH = 8.2,1 min3.017.4×106 jf[33]
    硅藻纲布氏双尾藻Ditylum brightwelliiCH3HgCl0.11d1305.49bf[34]
    硅藻纲旋链角毛藻Chaetoceros curvisetusCH3HgCl2.55d1.86.04bf[34]
    鞭藻纲等鞭金藻Isochrysis galbanaCH3HgCl4.5972g8 mmol·L−1 半胱氨酸pH = 8.2,1 minf79.23hf[31]
      注:GSH: Glutathione; Cys: Cysteine; Met: Methionine; HA: Humic acid.  (a. 单位为cell−1 h−1 nmol·L−1;b.体积富集因子(Volume concentration factor,VCF)=平衡后藻类中的甲基汞浓度(mol·µm−3)/水中的甲基汞浓度(mol·µm−3);c.富集率 = 平衡后藻类中的甲基汞含量(µg)/水中的甲基汞含量(µg);d.培养过程为全程光照条件;e.培养中明暗时间比为12 : 12;f.文章内未给出具体数据,用“—”表示;g.培养中明暗时间比为14 : 10;h.生物富集因子(Bioaccumulation factor,BAF)= 平衡后藻类中的甲基汞浓度(µg·g−1 湿重)/水中的甲基汞浓度(µg·g−1);i.藻类暴露甲基汞浓度为1.5 nmol·L−1,表中谷胱甘肽或半胱氨酸的浓度为90 nmol·L−1;j.生物富集因子 = 平衡后藻类中的甲基汞浓度(µg·mol−1 以生物炭计)/水中的甲基汞浓度(µg·L−1);k.藻在暴露前在2 µg·L−1的甲基汞溶液中驯化18 d(明暗时间比为14 : 10),大约为第18代藻类;l.暴露的蛋氨酸浓度为1 nmol·L−1,胡敏酸浓度为1 mg·L−1 C)  (a. cell−1 h−1 nmol−1; b. VCF = MeHg concentration in algae (mol·µm−3) / MeHg concentration in water (mol·µm−3) after equilibrium; c. The enrichment rate = MeHg concentration in algae (µg) / MeHg concentration in water (µg) after equilibrium; d. The cultivation process was under full light; e. The ratio of light and dark time in culture was 12 : 12; f. No specific data is given in the reference, which is indicated by "-"; g. The ratio of light and dark time in culture was 14 : 10; h. BAF = MeHg concentration in algae (µg·g−1 wet weight) / MeHg concentration in water (µg·g−1) after equilibrium; i. The concentration of MeHg exposed to algae is 1.5 nmol·L−1, and the concentration of glutathione or cysteine in the table is 90 nmol·L−1; j. Bioconcentration factor = MeHg concentration in algae (µg·mol−1 in biochar) / MeHg concentration in water (µg·L−1) after equilibrium; k. Algae were acclimated in 2 µg·L−1 MeHg solution for 18 days before exposure (the ratio of light and dark time was 14:10), which was about the 18th generation of algae; l. The exposed methionine concentration was 1 nmol·L−1 and the humic acid concentration was 1 mg·L−1 C.)
     | Show Table
    DownLoad: CSV

    藻类富集甲基汞主要通过吸收和吸附两种途径[26]. 一些研究采用乙二胺四乙酸(EDTA)或半胱氨酸等络合剂清洗藻类表面吸附的甲基汞,用以区分藻类通过吸附与吸收富集的甲基汞. 其中,0.8 mmol·L−1半胱氨酸清洗5 min或8 mmol·L−1半胱氨酸清洗1 min,藻类吸附甲基汞的解吸率可达90%以上[27]. 研究发现,藻类富集甲基汞的差异可能来源于藻类对甲基汞吸附与吸收的比例不同. 如5 ng·L−1 的甲基汞暴露下,斜生栅藻(Scenedesmus obliquus)平衡后的吸附率(藻吸收的甲基汞量/水体甲基汞量)为16.3%,低于蛋白核小球藻(Chlorella pyrenoidosa)(28.2%),但二者的吸附率(藻吸附的甲基汞量/水体甲基汞量)接近,且随甲基汞暴露浓度增加,斜生栅藻吸收率的增加幅度显著高于蛋白核小球藻[28]. 另外,暴露时间由24 h增加至168 h,蛋白核小球藻的吸附率由21.2%下降至11.3%,吸收率则由38.3%上升至46.9%[28]. 由于吸附速率大于吸收速率,推测藻类富集甲基汞前期以胞外快速吸附为主,平衡后通过胞内缓慢吸收进行富集[29].

    藻类累积甲基汞的反应动力学研究发现水华束丝藻(Aphanizomenon flosaquae)与铜绿微囊藻(Microcystis aeruginosa)对甲基汞的吸附均较好地符合准二级动力学模型(R2 > 0.99),提示这一过程可能涉及物理吸附与化学吸附,化学吸附可能涉及藻类表面基团与甲基汞间的电子转移或共用;这两种藻类对甲基汞的吸附也可较好地由Freundlich等温吸附模型(R2 = 0.9248与0.8614)拟合[25],提示在藻细胞表面可能存在多个吸附位点同时起作用,且吸附位点间表现出不同的吸附自由能与剩余度.

    通过对椭圆小球藻(Chlorella ellipticus)、鱼腥藻(Anabaena)、水华束丝藻和铜绿微囊藻的红外光谱研究,藻类通过细胞壁或胞外多聚物(extracellular polymeric substances,EPS)上广泛存在的氨基、巯基、羧基和羟基等官能团与甲基汞结合[35-36]. 不同官能团与甲基汞的结合机理不同,羟基和羧基等官能团通过孤对电子与甲基汞形成配位键[37],磺酸基等官能团则通过失去电子形成负电荷后的静电作用吸附甲基汞[38]. 与藻体内含量较低的巯基等含硫基团相比,羟基与羧基对藻类吸附甲基汞的贡献可能较大也更易体现[36,39]. 羟基与羧基的吸附过程为环境中的甲基汞-配体复合物(CH3Hg-L)与细胞表面的官能团(R)经配体交换形成新的络合物(CH3Hg-R),CH3Hg-L与CH3Hg-R的相对热力学稳定常数决定了络合速率,此外L与R的空间位阻也可能影响吸附的速率,如谷胱甘肽、N-乙酰-L-半胱氨酸和N-乙酰-青霉胺等较大尺寸或支链较多的硫醇配体结合甲基汞的程度小于半胱氨酸和巯基乙酸等小分子配体[23].

    研究发现三磷酸腺苷(adenosine triphosphate,ATP)和转运蛋白参与了藻类对甲基汞的吸收,表明藻类可以通过主动运输富集甲基汞. 光系统Ⅰ抑制剂(甲基紫精)、光系统Ⅱ抑制剂(二氯酚二甲基脲)、避光与γ-辐射等减少ATP的措施可抑制藻类对甲基汞的吸收,证明藻类存在需要ATP的甲基汞吸收过程[40-41]. 尽管藻类的甲基汞转运蛋白尚未确定,但在仓鼠卵巢细胞(ATCC CCL-61)中,LAT1转运蛋白承担了甲基汞-半胱氨酸复合物(MeHg-L-cysteine)的运输功能[41]. 研究猜测MeHg-L-cysteine的结构类似于LAT1转运蛋白的底物蛋氨酸,从而导致甲基汞被错误运输[42]. LAT1蛋白过表达的CHO-k1细胞中MeHg-L-cysteine与蛋氨酸的竞争吸收现象进一步支持了上述猜测的合理性[41]. 而参与藻类主动吸收甲基汞途径的转运蛋白仍需进一步研究.

    另外,藻类也可通过被动扩散吸收水体中的甲基汞. 如不同pH和氯离子浓度下,甲基汞的辛醇-水分配系数与威氏海链藻对甲基汞的吸收速率呈正相关关系(r = 0.75)[43],而且温度升高10 ℃对甲基汞吸收速率的影响(Q10)值仅为0.7,显著低于温度对主动运输吸收速率的影响(普遍为2—3)[40,44],表明甲基汞可通过被动扩散进入藻细胞. 但有研究发现经热灭活破坏主动运输途径后,梅尼小环藻(Cyclotella meneghiniana)的甲基汞吸收量显著下降,甲基汞在细胞质中占比由64%降至4%,证明被动扩散在甲基汞吸收中的贡献可能较低[45].

    藻类可能存在解吸与外排降低藻类中甲基汞的含量(图1). 在暴露168 h后,蛋白核小球藻的甲基汞吸附量相较最高吸附量(24 h)下降约40%,单个斜生栅藻的甲基汞吸收量相较最高吸收量(24 h)下降约74%[28]. 以上藻类对甲基汞的吸附和吸收的降低与藻类生长稀释以及增殖稀释有关[21],但也可能是由于甲基汞发生解吸和外排.

    由于藻类对甲基汞的吸附、吸收、解吸和外排等过程可能同时发生,藻类对甲基汞的吸附和外排过程难以观察与定量. 藻类中甲基汞的解吸过程未见报道,但有研究表明震荡可使椭圆小球藻、水华束丝藻和铜绿微囊藻中69%、42%和34%的二价汞发生解吸[46]. 对于藻类中甲基汞的外排,过去研究认为甲基汞胁迫下藻类细胞膜通透性改变是原因之一[47]. 另外,甲基汞胁迫会导致莱茵衣藻(Chlamydomonas reinhardtii)中的铁转运蛋白、锌转运蛋白、ATP结合转运蛋白与阳离子扩散蛋白等金属转运相关蛋白质表达上调,因此,甲基汞外排可能需要转运蛋白的参与[26]. 但甲基汞胁迫下,一些蛋白质的高表达并非参与甲基汞的外排,如ATP结合蛋白的基因表达上调增加了胞内MRP2蛋白的含量,此蛋白可将甲基汞转移到液泡中而非排出体外[48]. 因此,后续需对甲基汞外排相关转运蛋白的具体作用机制进行研究.

    目前,没有证据表明藻类可以直接产生甲基汞,但有研究认为藻类逆境中产生的代谢物二甲基硫分解为甲磺酸的过程可能导致甲基汞的生成[49]. 以往研究发现北极环境雪与地表水样品中的甲磺酸量与甲基汞量呈正相关[50],且二甲基硫转化过程中具有与硫还原菌相似的四氢叶酸途径[51],表明该途径可能存在,但暂未得到证实.

    已有研究证据表明藻类可通过影响产甲基汞菌活性间接改变甲基汞浓度. 如向巴西采集的含微生物环境样品中加入蓝藻后,甲基汞净产率由6.8%增加至24.6%,而仅存在蓝藻的对照组水样中无甲基汞的产生[52]. 产甲基汞菌活性的提高可能是因为蓝藻增加了细菌群落所需的氢气[53],同时藻源性的叶绿素、蛋白质、细胞壁和脂质等物质也可增加产甲基汞细菌活性[54]. 另外,不同环境样品中蓝藻生物量与甲基汞含量呈正相关趋势[55]. 然而,藻类也可能抑制甲基汞产生,如中肋骨条藻(Skeletonema costatum)通过吸附二价汞(47%)降低了铁还原菌的甲基汞产量[56]. 此外,藻类也可能通过改变水体透光率以及溶解氧含量等影响汞的甲基化[57].

    除光致去甲基化[58]与化学去甲基化[59]外,最近研究发现浮游生物群落也可在24 h内降解水样中12%的甲基汞[60]. 双富集同位素技术证明三角褐指藻(Phaeodactylum tricornutum)与旋链角毛藻(Chaetoceros curvisetus)等6种藻类可以引起甲基汞去甲基化,其中三角褐指藻等藻类可通过胞外分泌物实现甲基汞的光致去甲基化,东海原甲藻(Prorocentrum donghaiense)的去甲基化能力源于其伴生细菌,旋链角刺藻的去甲基化作用则来自于伴生细菌与胞外分泌物的共同作用[61]. 上述不同途径的去甲基化速率存在差异,胞外分泌物介导的光致去甲基化速率(0.01—0.39 d−1)显著高于伴生细菌的生物去甲基化(0.03—0.14 d−1[61],该降解速率差异是由于反应机理不同[62-63]. 胞外分泌物被认为通过硫醇介导光致去甲基化[61],其可作为软碱与甲基汞的结合促进甲基汞的光降解[64];伴生细菌则可能通过甲基汞裂解酶(MerB)等途径降解甲基汞[65]. 但针对藻类及其伴生菌去甲基化过程的研究较少.

    藻体内还存在其他改变环境中汞迁移性和生物可利用性的转化途径. 藻类可将二价汞还原为毒性低而挥发性强的溶解性零价汞[66],但此途径效率较低(< 5%),且机理尚不明确[67]. 通过冷原子荧光检测改进的酸碱还原差值法分析,硫化汞(β-HgS)也可能存在于藻类细胞中[68]. 有观点认为β-HgS是藻类中主要的无机汞形态(20%—90%),并推断其主要来源于液泡中二价汞的转化,但此前检测方法可能无法有效区分二价汞与硫化汞[69]. 未来可借助扩展X射线吸收精细结构谱等手段对硫化汞的生成过程进行详细研究[70].

    通过差速离心、热处理与化学处理可将藻类分为细胞碎屑(包括细胞壁与细胞膜等)、细胞器、热稳定蛋白(如植物螯合肽等)、热变性蛋白(如酶等)与富金属矿体5部分[71-72]. 通常将富金属矿体、细胞碎屑与热稳定蛋白统称为金属解毒部分即生物非活性部分,将细胞器与热变性蛋白划分为金属敏感组分. 热稳定蛋白是甲基汞在藻类中的主要结合部分,其中甲基汞的累积量可占细胞总累积量的44%(假微型海链藻)、68%(小球藻)和80%(等鞭金藻)[31]. 在热稳定蛋白中,甲基汞主要与含巯基的半胱氨酸、谷胱甘肽和植物螯合肽等组分络合[33,73]. 与二价汞类似,甲基汞在热稳定蛋白中达到饱和后,可能会进一步累积到其他结构中,因此细胞碎屑与细胞器组分中也存在甲基汞,但均未超过总累积量的30%[31].

    藻类中甲基汞的亚细胞分布对其生物可利用性可能有重要影响[74]. 图2总结了不同累积位点重金属的生物可利用性差异,细胞器与热变性蛋白等金属敏感部分中镉与银等重金属可沿食物链传递,而细胞碎屑与富金属颗粒等解毒组分中的重金属则不会沿食物链传递[75-77]. 以往研究通过明胶包裹含甲基汞的贻贝不同亚细胞组分喂食鱼类发现,热稳定蛋白、热变性蛋白和细胞器等组分中甲基汞被同化的比例高于不溶物等其他组分[78]. 而分布于不同亚细胞结构的重金属在食物链传递中存在差异[79]. 目前尚未开展藻类富集甲基汞的相关研究,藻类不同亚细胞结构在甲基汞传递中的作用还需进一步研究.

    图 2  生物不同亚细胞储存位点与重金属生物可利用性[75,77]
    Figure 2.  Bioavailability of heavy metal at different subcellular fractions[75,77]

    藻类富集甲基汞受生物因素和环境因素影响. 藻类的相对表面积、结构以及活性均是影响富集效果的重要生物因素,环境因素则包括pH、温度、溶解性有机质(dissolved organic matter,DOM)、氯离子和硒等.

    藻类的相对表面积可影响藻类富集甲基汞的能力. 齿状藻等藻类甲基汞的VCF与相对表面积的相关系数可达0.97[34]. 因此,相对表面积更大的原核藻类蓝藻的甲基汞富集能力高于常见的硅藻与隐藻等真核藻类[47].

    藻类结构也影响甲基汞的富集. 如没有叶绿体的原核藻类裂须藻的甲基汞富集率显著低于被内质网包裹叶绿体的真核藻类海链藻[80],且这两种藻类的甲基汞富集量均小于含有完整的脂质双分子层叶绿体的鼓藻与月牙藻(Selenastrum[40],说明了叶绿体膜在转运和累积甲基汞可能发挥重要功能. 此外,藻类结构差异可能导致甲基汞的后续传递差异,如浮游动物与聚球藻以及原绿球藻的甲基汞浓度之比仅为0.7左右,显著低于硅藻等真核藻类,这可能因为原核细胞的细胞器较少,胞内膜结构不发达使甲基汞更趋于在藻类细胞碎屑等金属解毒部分累积,进而降低甲基汞在食物链中的传递效率(图2[81].

    藻类的细胞活性也是影响其富集甲基汞的重要因素. 稳定生长阶段藻类用于主动运输的能量较多[40],因此鼓藻在稳定生长阶段甲基汞吸收量(759 amol·cell−1)显著高于其在指数生长阶段的吸收量(38.1 amol·cell−1).

    (1)pH:藻类对重金属的吸收受pH调控. 以往研究认为pH下降时,甲基汞与H+竞争细胞表面的阳离子吸附位点引起藻类的甲基汞吸附量的降低[82],但目前证据显示pH下降增加藻类对甲基汞的富集. 研究发现全球范围内pH较低水体中藻类甲基汞含量普遍高于高pH水体[83]. 进一步的研究发现酸化增加藻类对甲基汞的富集,如当pH由6.5降低至5.5后,莱茵衣藻对氯化甲基汞的富集程度增加了1.6倍到2倍[84]. 这种现象可能与水体中甲基汞的赋存形态以及浓度改变有关:首先,酸化导致水体中与有机质结合的甲基汞释放,增加了具有生物可利用性的甲基汞量[85];其次,pH较低时,甲基汞的主要形态为更易进入细胞的氯化甲基汞,其生物可利用高于其他汞形态[43];另外,酸化条件下,细胞膜通透性会随藻类脂质与叶绿体改变而变化,促进甲基汞的扩散[86].

    (2)温度:气候变暖已经成为全球面临的重要问题. 2010年全球海水表层平均温度较100年前升高了0.6 ℃[87]. 温度升高不仅引起海洋的酸化[88],也可促进藻类的生长繁殖,提高藻类生产力,进而影响藻类对甲基汞的富集[89]. 实验室条件下模拟实验显示温度由20 ℃增长至40 ℃时,羊角月牙藻的甲基汞吸收速率上升70%[40]. 但温度改变对单位生物量藻中甲基汞含量影响较小,提示升温可能通过增加藻类生物量促进其累积甲基汞[90]. 因此,虽然藻类生长繁殖受温度改变影响较大,藻类富集甲基汞的能力对温度变化并不敏感[21].

    (3)溶解性有机质:多数情况下,DOM通过巯基结合甲基汞进而降低藻类对甲基汞的富集[91]. 高浓度DOM(20 mg·L−1)的添加可使梅尼小环藻甲基汞的VCF下降90%,低浓度的DOM(1.5 mg·L−1)也使其VCF下降一半[92]. 此外,疏水DOM对藻类富集甲基汞的抑制效果比亲水DOM更显著,这可能是由于疏水DOM中与甲基汞结合的双齿芳香基团的含量更高,比亲水DOM更易络合甲基汞[92].

    但是,也有研究发现梅尼小环藻、莱茵衣藻和隐鞭藻在高DOM环境水体(旧金山湾三角洲)中甲基汞VCF是其在低DOM环境水体(科苏姆内斯河)中的2倍以上[45]. 该现象可能与DOM的异质性有关. 不同来源的DOM对藻类累积甲基汞的影响存在差异. 通过大肠杆菌生物传感器揭示DOM对甲基汞细胞富集的影响,结果为来自原绿藻和易变裸藻的EPS严重抑制了甲基汞的富集,而来自纤细裸藻的EPS的抑制效果并不显著[93]. 此外,蓝藻的EPS也在一定程度上降低铜绿假单胞菌(Microcystis aeruginosa)对甲基汞的富集[94],上述结果提示了不同来源的EPS可能对藻类富集甲基汞的影响效果存在差异. 通过分离和分析EPS中不同分子量的组分发现氨基酸与多胺的量与甲基汞富集量呈正相关,而羧基及其衍生物与甲基汞富集量呈负相关[93]. 对小分子DOM模型研究发现,不同DOM的形态与配位作用差异也影响了谷胱甘肽、半胱氨酸和巯基乙酸等含巯基化合物对藻类富集甲基汞的抑制效果[24].

    (4)其他因素:研究发现水体中氯离子和硒也影响藻类累积甲基汞. 氯离子可与甲基汞络合,当氯离子浓度由0.47 mmol·L−1增加至470 mmol·L−1时,水体中氯化甲基汞的占比由13%增至99%,布氏双尾藻对甲基汞的VCF由4.0×104增至1.1×105[34],这可能是由于氯化甲基汞的膜渗透率高于氢氧化甲基汞[43]. 硒代甲硫氨酸可使海链藻对二价汞的4 h富集率由30%增长至70%,使甲基汞的4 h富集率从75%下降至44%[95]. 这可能是由于二价汞、甲基汞与硒代甲硫氨酸形成的复合物的跨膜特性不同[96],而胞内汞硒复合物的生成也可能影响藻类对甲基汞的吸收、外排及营养级传递[95].

    浮游动物可通过摄食藻类进而累积汞,其对甲基汞与二价汞的同化效率存在显著差异[20,97]. 如汤氏纺锤水溞(Acartia tonsa)对藻类饵料中甲基汞的同化效率为58%—79%,对二价汞的同化效率仅为25%—31%,导致甲基汞的营养级放大因子(> 1)显著高于二价汞(0.2)[98].

    甲基汞营养级传递受藻类和浮游动物等生物因素影响. 研究表明藻类细胞质中甲基汞含量与浮游动物的同化率有密切关系(r = 0.95),提示细胞质中甲基汞更易被浮游动物同化[98]. 另外,藻类种类也影响甲基汞在浮游动物中的同化作用,如汤氏纺锤水溞对小型假微型海链藻甲基汞的同化率(71%)低于同属大体积的威氏海链藻的同化率(88%)[99]. 因此,不同藻类对食物链甲基汞传递的贡献不同,模型结果表明硅藻与聚球藻分别贡献了沿食物链转移甲基汞的35%与25%,而其余藻类对甲基汞的贡献为40%[81]. 此外,浮游动物的甲基汞浓度随其体积增加而增加[100],甲基汞同化率随着肠道通过时间的增加而增加[101].

    环境变化也是影响甲基汞食物链传递的重要因素[102]. 升温可在一定程度上增加产甲基汞菌的甲基化活性[103]以及藻类对甲基汞的累积[100],也可通过改变藻类消费者的生命活动(如排泄与生长速率等)影响甲基汞的食物链传递[90]. 当从14 ℃增至24 ℃时,大型溞对藻类的甲基汞同化率无显著变化,但显著影响排泄和生殖过程对大型溞体内甲基汞排出量的贡献,其中排泄的贡献率由52%升至85%,生殖的贡献率由43%降至11%,总外排量降低使甲基汞累积增加[104]. 因此,温度变化可通过改变浮游动物生命活动来影响甲基汞食物链传递.

    目前广泛发生的富营养化也影响甲基汞的食物链传递,但是具体效果存在争议. 一种观点认为富营养化可以增加藻类生物量,降低单个藻类甲基汞的累积,如富营养化使藻类生物量增加3倍时,浮游植物甲基汞含量降低,进而导致水溞的甲基汞含量下降70%[105]. 另一种观点认为富营养化可提高水体中甲基汞的浓度. 富营养化引起的藻源性有机质的增加可刺激微生物汞甲基化[106],藻类的大规模凋亡阶段也会释放大量甲基汞[107]. 模型结果表明富营养化可使波罗的海水体内甲基汞总量增加4倍,间接增加藻类对甲基汞的富集[106]. 在巢湖、东湖与滇池水样品中加入藻类可使甲基汞产量提升了24.3%—15918%[108]. 但是,富营养化对甲基汞食物链传递的综合影响尚需深入探究.

    藻类可通过吸附、主动运输和被动扩散富集水中的甲基汞,并通过转化、解吸、外排和食物链传递等过程影响甲基汞的环境归趋. 生物与环境因素是影响甲基汞藻类累积及其食物链传递的重要因素. 由于藻类种类繁多且生理状态多变,不同区域pH、温度和DOM等环境条件差异巨大,因此藻类富集和传递甲基汞过程非常复杂. 目前,藻类富集甲基汞的机制与影响因素尚待厘清. 如藻类主动吸收甲基汞的转运蛋白与机制仍不清楚,藻类对甲基汞的主动外排和转化途径(如甲基化与硫化)仍有待证实. 此外,pH和DOM等环境因素对藻类富集甲基汞与后续食物链传递的影响存在争议,需深入研究.

    目前,藻类富集甲基汞及其食物链传递的研究大部分为实验室模拟实验,未来可将实验室模拟实验与长期的现场研究相结合,以明确实际环境中甲基汞的藻类累积和食物链传递行为. 多同位素示踪、全细胞生物传感器和同步辐射等技术可望在阐明酸化、富营养化和全球变暖等背景下藻类对甲基汞富集与后续营养传递中扮演重要角色.

  • 图 1  铝形态 “双水解模式”转化[53]

    Figure 1.  “Double hydrolysis mode” of Al speciation transformation[53]

    表 1  国内外生活饮用水铝残留标准 (单位: mg·L−1)

    Table 1.  Standard for residual aluminum concentration in drinking water (Unit: mg·L−1)

    世界卫生组织World Health Organization欧共体European Community日本Japan美国America前苏联Former Soviet Union中国China
    残留铝浓度标准Standard of residual aluminum concentration0.200.200.200.050.500.20
    世界卫生组织World Health Organization欧共体European Community日本Japan美国America前苏联Former Soviet Union中国China
    残留铝浓度标准Standard of residual aluminum concentration0.200.200.200.050.500.20
    下载: 导出CSV

    表 2  无机单体铝离子生物毒性研究现状

    Table 2.  Research status of biological toxicity effects of inorganic mononuclear Al

    赋存形态Speciation浓度Concentration受试生物Organisms测试指标Indexs暴露时间Exposure time结果Results文献References
    AlCl32 mg·kg−1大鼠记忆能力脂质过氧化反应84 d记忆力下降MDA↑ SOD↓[55]
    AlCl3430 mg·L−1大鼠血浆Al、转铁蛋白(TF)、可溶性转铁蛋白受体(sTfR)含量及总铁结合力(TIBC)120 d体重抑制干扰体内铁代谢[44]
    AlCl31 g大鼠富集率120 d45%[39]
    0.03 g大鼠富集率120 d59%
    AlCl36.53 mg·L−1鳟鱼鳃组织损伤96 h渗透调节紊乱酶活↓[32]
    AlCl3(矿山废水)0.2 mg·L−1枝角类植物急性毒性(致死率)24 h与离子交换位点结合[56]
    AlCl33 g·L−1蛋白核小球藻生物累积生长抑制24 h低pH下毒性↓[57]
    赋存形态Speciation浓度Concentration受试生物Organisms测试指标Indexs暴露时间Exposure time结果Results文献References
    AlCl32 mg·kg−1大鼠记忆能力脂质过氧化反应84 d记忆力下降MDA↑ SOD↓[55]
    AlCl3430 mg·L−1大鼠血浆Al、转铁蛋白(TF)、可溶性转铁蛋白受体(sTfR)含量及总铁结合力(TIBC)120 d体重抑制干扰体内铁代谢[44]
    AlCl31 g大鼠富集率120 d45%[39]
    0.03 g大鼠富集率120 d59%
    AlCl36.53 mg·L−1鳟鱼鳃组织损伤96 h渗透调节紊乱酶活↓[32]
    AlCl3(矿山废水)0.2 mg·L−1枝角类植物急性毒性(致死率)24 h与离子交换位点结合[56]
    AlCl33 g·L−1蛋白核小球藻生物累积生长抑制24 h低pH下毒性↓[57]
    下载: 导出CSV

    表 3  非单体铝的生物毒性研究现状

    Table 3.  Biological toxicity effects of no-nmonomeric Al species

    赋存形态Speciation浓度Concentration受试生物Organisms测试指标Indexs暴露时间Exposure time结果Results文献References
    Al13、Al3+0.01 m mol·L−1体外苹果酸脱氢酶MDAH50 s毒性作用Al13>Al3+[65]
    0.1 mol·L−1体外还原型谷胱甘肽GSH50 s[66]
    0.25 mol·L−1烟酰胺腺嘌呤二核苷酸构象谷氨酸脱氢酶谷胱甘肽还原酶GR50 s[5167]
    Al13、Al3+0—100 μmol·L−1大豆根尖红细胞12 h毒性作用Al13>Al3+[64]
    Al2O350—200 μm3000 mg·kg−1蚯蚓繁殖和行为28 d回避行为繁殖未减少[68]
    11 nm3000 mg·kg−1蚯蚓繁殖和行为28 d回避行为繁殖减少[68]
    Al(OH)350 mg·L−1鲑鱼慢性毒性28 d慢性中毒[69]
    赋存形态Speciation浓度Concentration受试生物Organisms测试指标Indexs暴露时间Exposure time结果Results文献References
    Al13、Al3+0.01 m mol·L−1体外苹果酸脱氢酶MDAH50 s毒性作用Al13>Al3+[65]
    0.1 mol·L−1体外还原型谷胱甘肽GSH50 s[66]
    0.25 mol·L−1烟酰胺腺嘌呤二核苷酸构象谷氨酸脱氢酶谷胱甘肽还原酶GR50 s[5167]
    Al13、Al3+0—100 μmol·L−1大豆根尖红细胞12 h毒性作用Al13>Al3+[64]
    Al2O350—200 μm3000 mg·kg−1蚯蚓繁殖和行为28 d回避行为繁殖未减少[68]
    11 nm3000 mg·kg−1蚯蚓繁殖和行为28 d回避行为繁殖减少[68]
    Al(OH)350 mg·L−1鲑鱼慢性毒性28 d慢性中毒[69]
    下载: 导出CSV
  • [1] 冯成洪, 毕哲, 伍晓红. 聚合氯化铝絮凝形态学与凝聚絮凝机理[M]. 北京: 科学出版社, 2015.

    FENG C H, BI Z, WU X H. Flocculation morphology and mechanism of PACl[M]. Beijing: Science Press, 2015 (in Chinese).

    [2] 冯成洪, 汤鸿霄. 活性羟基铝聚合体形态的Al-Ferron反应动力学与核磁共振光谱分析 [J]. 环境科学学报, 2007, 27(11): 1868-1873. doi: 10.3321/j.issn:0253-2468.2007.11.020

    FENG C H, TANG H X. Al ferron reaction kinetics and NMR analysis of active hydroxy aluminum polymer morphology [J]. Journal of Environmental Science, 2007, 27(11): 1868-1873(in Chinese). doi: 10.3321/j.issn:0253-2468.2007.11.020

    [3] STUMM W, MORGAN J J. Fresh water and ocean. (book reviews: Aquatic chemistry. an introduction emphasizing chemical equilibria in natural waters) [J]. Science, 1971(7): 172.
    [4] SHARP E L, PARSONS S A, JEFFERSON B. Seasonal variations in natural organic matter and its impact on coagulation in water treatment [J]. Science of the Total Environment, 2006, 363(1-3): 183-194. doi: 10.1016/j.scitotenv.2005.05.032
    [5] MACDONALD T, HUMPHREYS W, MARTIN R. Promotion of tubulin assembly by aluminum ionin vitro [J]. Science, 1987, 236(4798): 183-186. doi: 10.1126/science.3105058
    [6] FENG C H, BI Z, TANG H X. Electrospray ionization time-of-flight mass spectrum analysis method of polyaluminum chloride flocculants [J]. Environmental Science & Technology, 2015, 49(1): 474-480.
    [7] TIAN C H, WU Y H, WEI M Z, et al. A novel understanding of residual nano-Al-13 formation and degradation during coagulation and flocculation: A proof based on ESI-TOF-MS [J]. Environmental Science-Nano, 2018, 5(11): 2712-2721. doi: 10.1039/C8EN00921J
    [8] WU Y H, GU E X, LI H X, et al. Oxidative stress and histological changes in corbicula fluminea exposed to nano-Al13 and monomeric Al coagulants [J]. Environmental Science: Nano, 2019(6): 2736-2748.
    [9] 李威, 周启星, 华涛. 常用化学絮凝剂的环境效应与生态毒性研究进展 [J]. 生态学杂志, 2007(6): 171-175.

    LI W, ZHOU Q X, HUA T. Research progress of environmental effect and ecotoxicity of common chemical flocculants [J]. Journal of Ecology, 2007(6): 171-175(in Chinese).

    [10] RENGEL Z. Aluminium cycling in the soil-plant-animal-human continuum [J]. Biometals, 2004, 17(6): 669-689. doi: 10.1007/s10534-004-1201-4
    [11] 张本忠, 屈卫东, 吴德生. 铝盐在水溶液中的水解和聚合反应对铝致大鼠发育毒性的影响 [J]. 环境与健康杂志, 2001, 18(3): 143-145. doi: 10.3969/j.issn.1001-5914.2001.03.005

    HANG B Z, QU W D, WU D S. Effects of hydrolysis and polymerization of aluminum salts in aqueous solution on aluminum induced developmental toxicity in rats [J]. Journal of Environment and Health, 2001, 18(3): 143-145(in Chinese). doi: 10.3969/j.issn.1001-5914.2001.03.005

    [12] 曲志军. 饮用水中铝的控制措施研究[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    QU Z J. Study on control measures of aluminum in drinking water[D]. Harbin: Harbin University of Technology, 2007 (in Chinese).

    [13] 高秀清. 水中残留铝对水质的影响及其监测必要性 [J]. 环境与健康杂志, 2000(6): 381-383. doi: 10.3969/j.issn.1001-5914.2000.06.036

    GAO X Q. Influence of residual aluminum in water on water quality and necessity of monitoring [J]. Journal of Environment and Health, 2000(6): 381-383(in Chinese). doi: 10.3969/j.issn.1001-5914.2000.06.036

    [14] 中华人民共和国卫生部. 中国国家标准化管理委员会. GB5749—2006 生活饮用水卫生标准[S]. 北京: 中国标准出版社, 2006.
    [15] 杨忠莲, 高宝玉, 岳钦艳. 氯化铝和聚合氯化铝(PAC)在黄河水中的混凝效果与残留铝含量及组分 [J]. 科学通报, 2011,56(14): 37-45.

    YANG Z L, GAO B Y, YUE Q Y. Coagulation effect and residual aluminum content and components of aluminum chloride and polyaluminium chloride (PAC) in Yellow River water [J]. Science Bulletin, 2011,56(14): 37-45(in Chinese).

    [16] 崔福义, 李名锐. 饮用水中铝的危害, 来源及现状 [J]. 哈尔滨建筑大学学报, 1997, 30(6): 51-54.

    CUI F Y, LI M R. Harm, source and current situation of aluminum in drinking water [J]. Journal of Harbin University of Architecture, 1997, 30(6): 51-54(in Chinese).

    [17] 崔福义, 胡明成, 张燕, 等. 我国部分城市饮用水中铝含量调查 [J]. 中国给水排水, 2002,18(1): 5-8.

    CUI F Y, HU M C, ZHANG Y, et al. Investigation of aluminum content in drinking water of cities in China [J]. China Water Supply and Drainage, 2002,18(1): 5-8(in Chinese).

    [18] 王文东, 杨宏伟, 祝万鹏, 等. 北方某市给水管网系统中的铝含量及形态分布状况调查 [J]. 环境科学, 2007,28(11): 151-155.

    WANG W D, YANG H W, ZHU W P, et al. Investigation of aluminum content and form distribution in water supply network system of a city in North China [J]. Environmental Science, 2007,28(11): 151-155(in Chinese).

    [19] 吴彦瑜, 陈文纳. 聚合硫酸铝铁处理水后残留铝量的测定 [J]. 广西师范学院学报(自然科学版), 2008, 25(1): 46-49.

    WU Y Y, CHEN W N. Determination of residual aluminum content after water treatment with polyaluminium ferric sulfate [J]. Journal of Guangxi Normal University (Natural Science Edition), 2008, 25(1): 46-49(in Chinese).

    [20] SPARLING D W, LOWE T P. Environmental hazards of aluminum to plants, invertebrates, fish, and wildlife [J]. Reviews of Environmental Contamination and Toxicology, 1996, 145(1): 1-127.
    [21] 陈瑞瑞, 蔡晓妍, 杨波, 等. 典型城市黑臭河道水体生物毒性研究 [J]. 生态毒理学报, 2012, 7(2): 201-208.

    CHEN R R, CAI X Y, YANG B, et al. Study on biotoxicity of black and smelly river water in typical cities [J]. Journal of Ecotoxicology, 2012, 7(2): 201-208(in Chinese).

    [22] 曹志刚, 魏祥甲. 强化混凝应用于黑臭水体预处理的研究 [J]. 绿色科技, 2017(12): 75-77.

    CAO Z G, WEI X J. Study on the application of enhanced coagulation in the pretreatment of black and odorous water [J]. Green Technology, 2017(12): 75-77(in Chinese).

    [23] 周萍, 李荣林. 铝盐絮凝剂对人体及水生物的毒性效应 [J]. 山西化工, 2003(2): 78-79. doi: 10.3969/j.issn.1004-7050.2003.02.031

    ZHOU P, LI R L. Toxic effect of aluminum salt flocculant on human body and aquatic organisms [J]. Shanxi Chemical Industry, 2003(2): 78-79(in Chinese). doi: 10.3969/j.issn.1004-7050.2003.02.031

    [24] JIAO R, XU H, XU W, et al. Influence of coagulation mechanisms on the residual aluminum – The roles of coagulant species and MW of organic matter [J]. Journal of Hazardous Materials, 2015, 290: 16-25. doi: 10.1016/j.jhazmat.2015.02.041
    [25] KIMURA M, MATSUI Y, KONDO K, et al. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants [J]. Water Research, 2013, 47(6): 2075-2084. doi: 10.1016/j.watres.2013.01.037
    [26] GAUTHIER E, FORTIER I, COURCHESNE F, et al. Aluminum forms in drinking water and risk of alzheimer's disease [J]. Environmental Research, 2000, 84(3): 234-246.
    [27] SNOEYINK V L, SCHOCK M R, SARIN P, et al. Aluminium-containing scales in water distribution systems: Prevalence and composition [J]. Journal of Water Supply Research and Technology-Aqua, 2003, 52(7): 455-474. doi: 10.2166/aqua.2003.0042
    [28] 梁怡婷, 刘睿倩. 饮用水中残余铝的危害和研究现状 [J]. 西南给排水, 2001, 23(5): 9-11.

    LIANG Y T, LIU R Q. Harm and research status of residual aluminum in drinking water [J]. Southwest Water Supply and Drainage, 2001, 23(5): 9-11(in Chinese).

    [29] DOUGLAS B D, MERRILL D T, CATLIN J O. Water quality deterioration from corrosion of cement-mortar linings [J]. American Water Works Association, 1996, 88(7): 99-107. doi: 10.1002/j.1551-8833.1996.tb06588.x
    [30] DONNACHIE R L, JOHNSON A C, MOECKEL C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK [J]. Environmental Pollution, 2014, 194: 17-23. doi: 10.1016/j.envpol.2014.07.008
    [31] SPARLING D W, LOWE T P, CAMPBELL P G C. Ecotoxicology of aluminum to fish and wildlife: In research issues in aluminum toxicity[M]. Washington, DC: Taylor & Francis, 1997: 47–68.
    [32] 王松鹤, 朱森林, 张义国. 铝致骨软化(铝骨病) [J]. 中国职业医学, 1993(1): 47-49.

    WANG S H, ZHU S L, ZHANG Y G. Osteomalacia caused by aluminum [J]. Chinese Occupational Medicine, 1993(1): 47-49(in Chinese).

    [33] 张楠楠. 碳纳米材料修饰电极研究铝形态化合物对几种生物酶活性的影响[D]. 南京: 南京师范大学, 2012.

    ZHANG N N. Carbon Nanomaterials Modified electrode to study the effect of aluminum compounds on the activity of several biological enzymes[D]. Nanjing: Nanjing Normal University, 2012 (in Chinese).

    [34] WALTON J R. Aluminum disruption of calcium homeostasis and signal transduction resembles change that occurs in aging and alzheimer's disease [J]. Journal of Alzheimers Disease Jad, 2012, 29(2): 255-273. doi: 10.3233/JAD-2011-111712
    [35] ACKLEY D C, YOKEL R A. Aluminum citrate is transported from brain into blood via the monocarylic acid transporter located at the blood-brain barrier [J]. Toxicology, 1997, 120(2): 89-97. doi: 10.1016/S0300-483X(97)03640-8
    [36] FLATEN T P. Aluminium as a risk factor in Alzheimer’s disease, with emphasis on drinking water [J]. Brain Research Bulletin, 1995, 55(2): 187-196.
    [37] 盛明纯. 铝对人体健康影响的研究进展综述 [J]. 安徽预防医学杂志, 2006(1): 46-48.

    SHENG M C. Review on the research progress of the influence of aluminum on human health [J]. Anhui Journal of Preventive Medicine, 2006(1): 46-48(in Chinese).

    [38] 朱建民. 铝中毒骨病发病机理的实验研究 [J]. 中华内科杂志, 1990(8): 485-488.

    ZHU J M. Experimental study on the pathogenesis of aluminum poisoning osteopathy [J]. Chinese Journal of internal medicine, 1990(8): 485-488(in Chinese).

    [39] SILVA V L S, CORDEIRO J M, MATOS M J, et al. Aluminum accumulation and membrane fluidity alteration in synaptosomes isolated from rat brain cortex following aluminum ingestion: effect of cholesterol [J]. Neuroscience Research, 2002, 44: 181-193. doi: 10.1016/S0168-0102(02)00128-1
    [40] 王晓波, 孔繁增. 铝对人体健康研究新进展 [J]. 环境与健康杂志, 1997(4): 42-44.

    WANG X B, KONG F Z. New progress of aluminum on human health [J]. Journal of Environment and Health, 1997(4): 42-44(in Chinese).

    [41] 石慧, 冯承莲, 黄虹, 等. 铝对水生生物的毒性与硬度的相关关系探讨 [J]. 生态毒理学报, 2016, 11(1): 141-152.

    SHI H, FENG C L, HUANG H, et al. Study on the relationship between the toxicity and hardness of aluminum to aquatic organisms [J]. Journal of ecotoxicology, 2016, 11(1): 141-152(in Chinese).

    [42] 李平生, 牟之新, 马兵, 等. 去铁敏治疗铝骨病的临床观察 [J]. 天津医药, 1998(3): 138-141.

    LI P S, MOU Z X, MA B, et al. Clinical observation of desensitization in the treatment of aluminum osteopathy [J]. Tianjin Pharmaceutical, 1998(3): 138-141(in Chinese).

    [43] 石建军. 食品中铝的测定及食源铝污染的初步研究[D]. 重庆: 西南大学, 2010.

    SHI J J. Determination of aluminum in food and preliminary study on aluminum pollution from food sources[D]. Chongqing: Southwest University, 2010 (in Chinese).

    [44] 张立超, 李心慰, 顾庆云, 等. 经饮水亚慢性铝染毒对大鼠血铁及相关蛋白水平的影响 [J]. 环境科学学报, 2010,30(5): 1052-1056.

    ZHANG L C, LI X W, GU Q Y, et al. Effects of subchronic aluminum exposure via drinking water on blood iron and related protein levels in rats [J]. Journal of Environmental Science, 2010,30(5): 1052-1056(in Chinese).

    [45] 张永生. 铝引起贫血 [J]. 国外医学: 输血及血液学分册, 1986(4): 298-299.

    ZHANG Y S. Anemia caused by aluminum [J]. Foreign medicine: blood transfusion and hematology, 1986(4): 298-299(in Chinese).

    [46] 李平生, 马兵. 慢性肾功能衰竭患者铝与骨病的关系 [J]. 肾脏病与透析肾移植杂志, 1994, 3(1): 25-27.

    LI P S, MA B. The relationship between aluminum and bone disease in patients with chronic renal failure [J]. Journal of Kidney Disease and Dialysis Kidney Transplantation, 1994, 3(1): 25-27(in Chinese).

    [47] 张春芬. 铝对雄性大鼠生殖系统的毒性作用 [J]. 国外医学: 卫生学分册, 1996, 23(1): 56.

    ZHANG C F. Toxic effects of aluminum on the reproductive system of male rats [J]. Foreign Medicine: Hygiene, 1996, 23(1): 56(in Chinese).

    [48] 张本忠, 吴德生. 硫酸铝对小鼠胚胎组织谷胱甘肽活性和卵黄囊细胞膜流动性的影响 [J]. 环境与健康杂志, 2002, 19(5): 374-376. doi: 10.3969/j.issn.1001-5914.2002.05.007

    ZHANG B Z, WU D S. Effects of aluminum sulfate on glutathione activity and membrane fluidity of yolk sac cells in mouse embryonic tissues [J]. Journal of Environment and Health, 2002, 19(5): 374-376(in Chinese). doi: 10.3969/j.issn.1001-5914.2002.05.007

    [49] 崔蕴霞, 肖锦. 铝盐絮凝剂及其环境效应 [J]. 工业水处理, 1998(3): 8-11,47.

    CUI Y X, XIAO J. Aluminum flocculant and its environmental effect [J]. Industrial Water Treatment, 1998(3): 8-11,47(in Chinese).

    [50] 杨忠莲, 高宝玉. 水体中残余铝的含量、组分、危害及控制研究进展 [J]. 精细化工, 2013, 30(4): 412-419.

    YANG Z L, GAO B Y. Research progress in the content, composition, harm and control of residual aluminum in water [J]. Fine chemicals, 2013, 30(4): 412-419(in Chinese).

    [51] 张楠楠, 汤勇铮, 马菲, 等. 电化学研究铝及其纳米Al13对谷胱甘肽还原酶活性的影响 [J]. 分析化学, 2012, 40(4): 584-588.

    ZHANG N N, TANG Y Z, MA F, et al. Electrochemical studies on effects of glutathione reductase activity by Al3+ and nano-Al13 [J]. Chinese Journal of Analytical Chemistry, 2012, 40(4): 584-588(in Chinese).

    [52] 汤鸿霄. 环境纳米污染物与微界面水质过程 [J]. 环境科学学报, 2003,23(2): 146-155. doi: 10.3321/j.issn:0253-2468.2003.02.002

    TANG H X. Environmental nano pollutants and micro interface water quality process [J]. Journal of Environmental Science, 2003,23(2): 146-155(in Chinese). doi: 10.3321/j.issn:0253-2468.2003.02.002

    [53] 汤鸿霄. 无机高分子絮凝理论与絮凝剂[M]. 北京: 中国建筑工业出版社, 2006.

    TANG H X. Inorganic polymer flocculation theory and flocculant[M]. Beijing: China Construction Industry Press, 2006 (in Chinese).

    [54] 郝鲁宁. 铝的生物毒性 [J]. 环境保护, 1988(1): 27-28.

    HAO L N. Biological toxicity of aluminum [J]. Environmental protection, 1988(1): 27-28(in Chinese).

    [55] DROBYSHEV E J, SOLOVYEV N D, GOROKHOVSKIY B M, et al. Accumulation patterns of sub-chronic aluminum toxicity model after gastrointestinal administration in rats [J]. Biological Trace Element Research, 2018, 185: 384-394. doi: 10.1007/s12011-018-1247-8
    [56] HAVENS K E. Aluminum binding to ion exchange sites in acid-sensitive versus acid-tolerant cladocerans [J]. Environmental Pollution, 1990, 64(2): 133-141. doi: 10.1016/0269-7491(90)90110-X
    [57] PARENT L, CAMPBELL P G C. Aluminum bioavailability to the green alga chlorella pyrenoidosa in acidified synthetic soft water [J]. Environmental Toxicology & Chemistry, 2010, 13: 587-598.
    [58] WANG D, WANG S, HUANG C, et al. Hydrolyzed Al(III) clusters: Speciation stability of nano-Al13 [J]. Journal of Environment Science, 2011, 23(5): 705-710. doi: 10.1016/S1001-0742(10)60464-0
    [59] FURRER G. New aspects on the chemistry of aluminum in soils [J]. Aquatic Sciences, 1993, 55(4): 281-290. doi: 10.1007/BF00877273
    [60] HU C Z, LIU H J, QU J H, et al. Coagulation behavior of aluminum salts in eutrophic water: significance of Al13 species and pH control [J]. Environmental Science & Technology, 2006, 40(1): 325-331.
    [61] FURRER G, TRUSCH B, MULLER C. The formation of polynuclear Al13 under simulated natural conditions [J]. Geochimica Et Cosmochimica Acta, 1992, 56(10): 3831-3838. doi: 10.1016/0016-7037(92)90174-H
    [62] RAO G V, RAO K J. Evidence for a hydroxy‐aluminium polymer (Al13) in synaptosomes [J]. FEBS letters, 1992, 311(1): 49-50. doi: 10.1016/0014-5793(92)81364-R
    [63] BERTHON G. Aluminum speciation in relation to aluminum bioavailability, metabolism and toxicity [J]. Coordination Chemistry Reviews, 2002, 228(2): 319-341. doi: 10.1016/S0010-8545(02)00021-8
    [64] CAI M Z, WANG F M, LI R F, et al. Response and tolerance of root border cells to aluminum toxicity in soybean seedlings [J]. Journal of Inorganic Biochemistry, 2011, 105(7): 966-971. doi: 10.1016/j.jinorgbio.2011.04.004
    [65] YANG X, CAI L, PENG Y, et al. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity [J]. Sensors, 2011, 11(12): 5740-5753.
    [66] WANG X, LI K, YANG X D, et al. Complexation of Al(III) with reduced glutathione in acidic aqueous solutions [J]. Journal of Inorganic Biochemistry, 2009, 103(5): 657-665. doi: 10.1016/j.jinorgbio.2008.11.007
    [67] CAI L, XIE Y, LI L, et al. Electrochemical and spectral study on the effects of Al(III) and nano-Al13 species on glutamate dehydrogenase activity [J]. Colloids & Surfaces B Biointerfaces, 2010, 81(1): 123-129.
    [68] COLEMAN J G, JOHNSON D R, STANLEY J K, et al. Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida [J]. Environmental Toxicology & Chemistry, 2010, 29: 1575-1580.
    [69] 彭自然, 何文辉. 疏浚余水中悬浮物和铝絮凝剂对鱼类的影响 [J]. 农技服务, 2010(7): 93-94,139.

    PENG Z R, HE W H. Effect of suspended solids and aluminum flocculant in dredged water on fish [J]. Agricultural technology service, 2010(7): 93-94,139(in Chinese).

    [70] BOTTERO J Y, AXELOS M, TCHOUBAR D, et al. Mechanism of formation of aluminum trihydroxide from keggin Al13 polymers [J]. Journal of Colloid & Interface Science, 1987, 117(1): 47-57.
    [71] TANG H X, XIAO F, WANG D S. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review [J]. Advances in Colloid and Interface Science, 2015, 226: 78-85. doi: 10.1016/j.cis.2015.09.002
    [72] 冯精兰, 牛军峰. 长江武汉段不同粒径沉积物中多环芳烃(PAHs)分布特征 [J]. 环境科学, 2007, 28(7): 1573-1577. doi: 10.3321/j.issn:0250-3301.2007.07.029

    FENG J L, NIU J F. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in sediments of different sizes in Wuhan section of the Yangtze River [J]. Environmental Science, 2007, 28(7): 1573-1577(in Chinese). doi: 10.3321/j.issn:0250-3301.2007.07.029

    [73] 付玉龙. 铝盐对环境及人体的毒害作用 [J]. 电大理工, 2000, 4: 21-22.

    FU Y L. Toxic effect of aluminum salt on environment and human body [J]. RTVU Technology, 2000, 4: 21-22(in Chinese).

    [74] 王文东, 杨宏伟, 祝万鹏, 等. 凝胶层析-荧光分光光度法联用分析饮用水中铝的形态 [J]. 环境化学, 2007,26(1): 79-81. doi: 10.3321/j.issn:0254-6108.2007.01.020

    WANG W D, YANG H W, ZHU W P, et al. Gel chromatography fluorescence spectrometry combined analysis of aluminum form in drinking water [J]. Environmental Chemistry, 2007,26(1): 79-81(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.01.020

    [75] 王志红, 崔福义. 水厂残余铝的影响因素试验研究 [J]. 水处理技术, 2004(2): 110-112. doi: 10.3969/j.issn.1000-3770.2004.02.014

    Wang Z G, Cui F Y. Experimental study on influencing factors of residual aluminum in waterworks [J]. Water Treatment Technology, 2004(2): 110-112(in Chinese). doi: 10.3969/j.issn.1000-3770.2004.02.014

    [76] DRISCOLL C T, GEOCHEMISTRY W D. The chemistry of aluminum in the environment [J]. Environmental Geochemistry & Health, 1990, 12(1/2): 28-49.
    [77] YANG Z L, GAO B Y, YUE Q Y, et al. Effect of pH on the coagulation performance of Al-based coagulants and residual aluminum speciation during the treatment of humic acid–kaolin synthetic water [J]. Journal of Hazardous Materials, 2010, 178(1-3): 596-603. doi: 10.1016/j.jhazmat.2010.01.127
    [78] DRISCOLL C T, NEWTON R M. Chemical characteristics of Adirondack lakes [J]. Environmental Science and Technology, 1985, 19(11): 1018-1024. doi: 10.1021/es00141a604
    [79] DRISCOLL C T, SCHECHER W D. Aluminum in the environment [J]. Metal Ions in Biological Systems, 1988, 24: 59-122.
    [80] SARPOLA A. The Hydrolysis of Aluminium: A Mass Spectrometric Study[M]. Finland: University of Oulu Oulu, 2007.
    [81] BAES C, MESMER R. The Hydrolysis of Cations Wiley[M]. New York: Wiley, 1976.
    [82] NORDSTROM D K, MAY H M. Aqueous equilibrium data for mononuclear aluminum species [J]. The Environmental Chemistry of Aluminum, 1996, 2: 39-80.
    [83] GOLDBERG S, DAVIS J A, HEM J D. The surface chemistry of aluminum oxides and hydroxides[M]. The United States: The Environmental Chemistry of Aluminum, 1996: 271-331.
    [84] GOLDSHMID T, RUBIN A J. Determination of soluble species and precipitates of aluminum phosphate [J]. Separation Science and Technology, 1988, 23(14/15): 2269-2291. doi: 10.1080/01496398808058453
    [85] 孙琴, 倪吾钟, 杨肖娥. 有机酸在植物解铝毒中的作用及生理机制 [J]. 植物学报, 2002, 19(4): 496-503. doi: 10.3969/j.issn.1674-3466.2002.04.018

    SUN Q, NI W Z, YANG X E. The role and physiological mechanism of organic acids in plant detoxification of aluminum [J]. Acta Botanica Sinica, 2002, 19(4): 496-503(in Chinese). doi: 10.3969/j.issn.1674-3466.2002.04.018

    [86] 徐仁扣. 有机酸对酸性土壤中铝的溶出和铝离子形态分布的影响 [J]. 土壤, 1998,30(4): 214-217.

    XU R K. The effect of organic acids on the dissolution of aluminum and the distribution of aluminum ions in acid soil [J]. Soil, 1998,30(4): 214-217(in Chinese).

    [87] 秦瑞君, 陈福兴. 低分子有机酸离子对降低土壤铝毒的作用 [J]. 中国土壤与肥料, 1996(5): 13-15.

    QIN R J, CHEN F X. Effect of low molecular organic acid ions on reducing soil aluminum toxicity [J]. Chinese Soil and Fertilizer, 1996(5): 13-15(in Chinese).

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-050Highcharts.com
图( 1) 表( 3)
计量
  • 文章访问数:  4110
  • HTML全文浏览数:  4110
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-01-13
  • 刊出日期:  2021-05-27
吴悦菡, 田晨浩, 冯成洪. 单体铝与纳米铝团簇絮凝剂的残余毒性效应[J]. 环境化学, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302
引用本文: 吴悦菡, 田晨浩, 冯成洪. 单体铝与纳米铝团簇絮凝剂的残余毒性效应[J]. 环境化学, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302
WU Yuehan, TIAN Chenhao, FENG Chenghong. Residual toxicity effects of monomeric aluminum and polymeric nanometer aluminum cluster[J]. Environmental Chemistry, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302
Citation: WU Yuehan, TIAN Chenhao, FENG Chenghong. Residual toxicity effects of monomeric aluminum and polymeric nanometer aluminum cluster[J]. Environmental Chemistry, 2021, 40(5): 1535-1545. doi: 10.7524/j.issn.0254-6108.2020011302

单体铝与纳米铝团簇絮凝剂的残余毒性效应

    通讯作者: E-mail:fengchenghong@bnu.edu.cn
  • 1. 北京师范大学环境学院 水环境模拟国家重点实验室,北京,100875
  • 2. 北京师范大学环境学院 水沙科学教育部重点实验室,北京,100875
基金项目:
国家自然科学基金(21677017)资助

摘要: 铝盐絮凝剂是国内外最常用的水处理和水环境修复药剂,一直以来对其残余毒性研究主要是从传统单体铝角度进行探索。残余铝的生物毒性与其赋存形态具有相关性。目前针对铝总量毒性的研究较多,但从形态角度对不同形态羟基铝尤其是纳米Al13团簇毒性效应的研究相对缺乏,且已有研究结果存在争议。单体铝在一定条件下可转化为纳米铝团簇,进一步增大残余铝的毒性效应复杂性。为此,本研究在调查铝残留途径和来源的基础上,深入探讨了不同形态羟基铝(无机单体离子态Alm、纳米多核团簇态Al13)毒性效应的研究进展,分析残余铝的毒性效应特征和影响因素,为优化铝盐絮凝剂投加、残余铝控制标准修订和确保水生态环境安全提供参考。

English Abstract

  • 近百年来,工业水平高速发展,水源污染形势日益严峻,人类社会对饮用水质量的要求日趋严格。在饮用水净化处理过程中,以增加铝盐混凝剂投加量为主要手段的强化混凝技术已成为高效去除水体污染物的主要方式,但与之带来的出厂水中铝残余量显著增加的现象难以避免。此外,近年来大量开展的黑臭水体治理等水环境修复工作,也涉及铝盐混凝剂净化天然水体、处理剩余污泥等方面的应用,增加了水环境中铝残留的环境健康风险[1-2]

    残余铝作为此过程中不可避免的次生污染物,具有强烈的化学活泼性和生物有效性[3]。在人体中积累可导致语言表达能力丧失、记忆能力退化、骨质疏松软化、肝肾功能失调,诱发血液疾病、心血管疾病、阿尔茨海默病、肾衰竭及尿毒症等[4]。研究表明,铝的生物毒性不仅取决于铝的残留浓度,更与其赋存形态密切相关[5]。相关研究大多从剂量-效应角度评价残留铝的毒性特征,鲜有研究探讨不同形态羟基铝团簇的毒性效应。近二十年来,随着低浓度羟基铝团簇形态识别技术的日益成熟[6],铝离子向纳米聚合形态转化的过程逐渐清晰[7]。然而,受低浓度铝形态鉴定、解析技术瓶颈限制,以及受纳米铝团簇赋存形态和转化机制复杂性的影响,纳米羟基铝团簇的致毒过程和机理是否类似于传统单体铝(如Alm)、低聚体铝絮凝剂,纳米残余铝团簇毒性效应特征与其团簇形态的响应关系等依然不清[8]

    本文以残余铝团簇为主要对象,在归纳铝残留途径的基础上,对目前关于铝无机单体态(Alm)和纳米多核形态(Al13)的毒性效应研究进行综述,分析不同残余形态铝的毒性效应特征和影响因素,以期为优化控制混凝工艺中铝的投加和残留控制,确保水生态环境安全提供参考。

  • 正常人体含铝量是50—100 mg。每天摄入铝量平均为35 mg,大部分随粪便排出体外,但仍有1%—2%的铝经肠道吸收进入人体并难再从体内排出,被吸收蓄积于肺、骨骼、肝、脑、睾丸等内脏中[9-11]。许多国家、地区和卫生组织都对饮用水中残留铝的含量制定了限制标准[12-14]表1)。2006年我国颁布实施了新的《生活饮用水卫生标准》(GB 5749-2006),要求饮用水中的残留铝含量不大于0.20 mg·L−1[15],然而大量调查表明,我国部分地区生活饮用水铝含量依然超标严重[16-19]

  • 人体内的铝主要来源于饮用水和食物。早在1989年,世界卫生组织便已将铝确定为“食品污染源之一”而加以控制。探明残余铝的来源是控制残余铝、明确其毒性的重要前提。长期以来,人体中过量的铝来源归因于炊具、食物及药品,而对于饮用水这一重要的铝来源缺乏关注。

    水源水中铝的来源主要集中在以下3个方面:

    (1)酸性降水溶出。在天然水体条件下,水中溶解态铝浓度通常少于0.1 mg·L−1。受全球气候变化影响,部分地区酸性降水增多,土壤、矿物、岩石中的铝不断释放[20]

    (2)人类活动排放。受人类活动影响,采矿、冶炼、化工、制药等行业含铝废水大量排放,致使水环境中的铝残余量明显增加。

    (3)天然水环境修复及应急事件中的铝残留。我国80%以上的城市河道受污染,其中大部分已演变为黑臭河道,成为我国当下亟待解决的水环境问题[21]。采用强化混凝方法处理水环境突发事件及城市河道黑臭水体问题,所投加混凝剂的剂量大、浓度高(500−800 mg·L−1),致使大量铝盐残留在水体中[22].

    在水处理环节,残余铝主要来源于铝盐絮凝剂的投加尤其是粗放投加。全球范围内约80%的水处理工艺使用聚合氯化铝(PACl)和硫酸铝 [Al2(SO4)3] 等铝盐混凝剂[4,23],其中聚合氯化铝因其优良的絮凝性能作为主流药剂被国内外广泛使用[24-25]。受水源水质不稳定、环境因素季节性波动等影响,混凝剂的非精准投加或过量投加直接导致出厂水中铝浓度超标。研究表明,水源水中的铝和投加混凝剂引入的铝在经混凝、沉淀、过滤、消毒等工艺后仍有约11%残留于出厂水中[16]。已有研究表明,全国40座城市中有5%的城市自来水中铝浓度超标,东北地区超标城市高达76.9%[17]。此外,大量富含铝的水处理污泥直接排入地表水体,也将加大地表水铝残余浓度。地表水的年均铝浓度及羟基铝、单体铝的浓度显著高于地下水[26]

    在输配水环节,给水管网中铝的转化溶出也是残余铝的重要来源[27]。给水和排水管道的主要材料(水泥、混凝土和陶土)中含有一定量的铝,在低pH、低碱度、低钙含量时溶出严重[28-29]。此外,管网中长期沉积铝在水动力、离子强度、水源切换引发pH变化等影响下,也会发生铝形态转化释放。

  • 2014年,英国水文与生态中心评估了金属对水生生物的潜在危害程度,提出铝位居第二,仅次于铜[30],且鱼类比水生无脊椎动物对铝的毒性更为敏感[31]。当铝浓度达到3.7 μmol·L−1(100 μg·L−1)以上时,水生生态系统的生物多样性出现下降,并导致生物的活体神经组织发生病变[23]。然而,以往研究主要侧重于土壤中铝对植物的毒害作用。目前认为,铝离子的有害作用主要来自其对植物根生长细胞分裂的抑制作用。铝胁迫下的植物根毛、次生根减少,影响根系对水分和营养物质的吸收,同时降低光合作用。除此之外,植物细胞内离子态的铝可以鳌合有机酸、脱氧核糖核酸、三磷酸腺普等重要生物分子,干扰植物正常代谢活动[32]

    (1)铝的神经毒性

    对于许多参与糖酵解和基础代谢的酶,铝通过抑制其活性进而引发神经系统疾病[33]。在活体组织中,铝通过对磷酸肌醇和胞内钙离子的干涉而影响细胞的基础功能,对次级信使系统发生抑制作用进而干扰神经系统,可使因年龄增长而导致的新陈代谢变化提前发生[34]。脑组织中铝含量虽相对较低,但可影响大脑中基础三羧酸循环代谢中相关酶的活性,引起透析性脑病或透析性痴呆,现称阿尔茨海默征[35]。临床实验证明,铝可明显降低脑组织中神经原纤维缠结附近乙酰胆碱脂酶的活性[36-37]。挪威、瑞典、英国、加拿大、瑞士和法国的13个关于阿尔茨海默症研究结果发现,饮水中铝含量与阿尔茨海默症的发病存在显著相关性[38]。患者大脑内有30%新皮层区的铝浓度大于4 μg·g−1(干重),脑部神经元细胞核内的铝比正常人高4−30倍[39]。X射线光谱分析发现,阿尔茨海默病患者脑内海马神经纤维的变性病灶中有铝的沉淀。长期口服氢氧化铝凝胶等铝制剂的病人,可引起血铝浓度增高,进而引起智力障碍。大鼠中枢神经病理形态学研究发现,铝可引起大脑顶叶、小脑及与学习记忆密切相关的海马神经元细胞数目减少[39]。除此之外,铝也可以直接或与运铁蛋白及其受体结合使血脑屏障通透性增加[40]

    (2)铝性骨病。

    铝与骨骼疾病尤其是骨质疏松间的关系不可低估。生物体内富集的铝会竞争性地抑制钙的吸收并导致相关功能酶失活[41]。与部分重金属一样,过量摄入铝会造成铝在骨骼类骨质中大量沉积并置换出钙,引发铝骨病,临床表现为广泛的骨及关节疼痛、骨质疏松软化、骨骼系统发育不良。研究证明,小肠可吸收病人含铝磷盐结合剂药物中的铝,服用该药的患者滑膜腔内铝含量较不服用的患者高2−10倍,并可引发肋骨、股骨颈、脊椎和股骨干附近的近端肌无力和复发性骨折,还可诱发骨骼变形[32, 42]。进入骨中的铝可降低甲状旁腺激素浓度,并结合胶原蛋白沉积于骨基质中,抑制成骨细胞和破骨细胞的增殖和功能,形成骨内结晶[37, 43]

    (3)血液和心血管疾病

    铝含量增加将影响生成红细胞,并干扰血红素合成相关的酶,导致可逆性巨幼红细胞性贫血。研究表明,铝可抑制大鼠的骨髓造血功能,致大鼠贫血,使红细胞膜的流动性下降并影响红细胞膜蛋白百分含量和分子量[44]。临床实验证实,透析脑病综合征患者的透析水及血浆中铝含量显著高于无透析性脑病综合征患者,有全身不适、呕吐、体重减轻、肌肉疼痛等迹象[45]

    (4)肝脏疾病、肾功能失调、肾衰竭及尿毒症

    具有骨重塑低下、甲状旁腺素低下的病人,包括甲状旁腺切除患者、肾移植排异使用皮质激素治疗患者、糖尿病患者、二羟胆骨化醇治疗患者和双侧肾切除的患者,对铝毒性作用的更加敏感[46]。终末期肾病患者铝的排泄受阻,铝在体内的蓄积作用增强,使其体内铝含量较正常人高20倍[46]

    (5)生殖毒害

    铝对生殖系统和胚胎发育也有一定毒害作用[47-48]。当铝含量与体重之比大于1.5 mg·kg−1时,磷化合物的代谢将被破坏,可能导致体内硫酸盐过量流失。连续摄入剂量达17—50 mg·kg−1体重时,铝对性腺有毒害作用[32,49-50]。铝盐溶液对大鼠胚胎生长发育和器官形态存在影响,导致胚胎畸形[11]

    铝的致毒机理大多与置换反应有关,即通过置换作用取代生物体内原有必需金属或酶活性中心如Fe3+、Ca2+、Mg2+、-SH的位置,这与铝金属元素的性质密切相关[8, 51]。如在类骨质中置换出钙而导致骨生成抑制,在卵母细胞中置换镁离子从而使小鼠生殖细胞及骨髓细胞染色体畸变率提高等。

    整体而言,铝属于非急毒、非极毒物质,但其危害是潜在的、长期的、不可逆转的,是不可忽视的。

  • 大量研究表明,残余铝毒性特征与其残留形态密不可分。国内外很多学者如汤鸿霄、毕树平、Bertsch、孙忠、Casey、Johansson 等开展了大量研究,提出和验证了铝团簇形态、结构特征及转化模式[52]。整体而言,水中残余铝形态复杂多样,以双水解模式(图1)相互转化,并以单体Alm及多聚体态Al13等主要形态存在。

    (1)无机单体铝形态 (Alm)。

    铝在水溶液中很活泼,以Al3+、A1(OH)2+、A1(OH)2+等多种离子态存在,水解过程十分复杂。以往研究普遍认为,游离态的铝离子Al3+是人体、动物或植物体中毒性最高的形态[54]表2给出了无机单体铝离子生物毒性研究现状。单体态残余铝对人脑中脂质过氧化反应的促进作用是铝作为慢性蓄积性神经毒素发挥毒性作用的重要机制[18]。AlCl3染毒大鼠12周后发现随染铝剂量的增加,大鼠学习记忆能力下降,脑组织中丙二醛(MDA)含量显著升高,超氧化物歧化酶(SOD)活力下降,谷胱甘肽(GSH)含量和谷胱甘肽过氧化物酶(GPX)活力先上升后降低[55]。水中离子态铝含量高于0.2—0.5 mg·L−1可使鲑鱼致死。将三氯化铝溶液注入猫的脑海马或脑室内,一周之后,出现明显的脑功能障碍,即记忆力减退、行为障碍,并且海马及脑皮质出现神经原缠结[44, 54]。暴露于亚急性(每日摄入三氯化铝1 g,10 d)和慢性(每日摄入三氯化铝0.03 g,4个月)饮食摄入强度下,老鼠神经突触中铝富集率分别为45%和59%。此外,亲水区域的流动和突触前膜的CH/PL(胆固醇/磷脂)摩尔比的下降伴随着无机铝离子的积累而出现[39]

    (2)多聚体铝团簇形态。

    聚合氯化铝(PACl)是在传统硫酸铝盐混凝剂基础上发展起来的新型高效絮凝剂。PACl中最佳凝聚絮凝形态—纳米Keggin Al137+(即Al12AlO4(OH)247+)较单体铝Alm具有更好的除浊、除腐殖酸、脱色效果和更强的电中和能力而被广泛使用。Al13及聚集体投入水中后,可在一定时间内具有稳定性而保持其原有形态[58]。此外,其他各形态残余铝可随水体pH、微界面共存等理化条件变化尤其是在黏土微界面促发下发生形态转变,转化为较为稳定的Al13[7,59-60]图1,双水解模式)。有研究报道,具有适度酸性的河流和湖泊以及某些酸性物质流过的地下水域可形成All3[61],且已被证明在人的脑突触中存在[62]

    迄今为止,基于Alm和Al13毒性效应之争尚无定论。传统观念中流行的、垄断性观点是单体铝毒性高于多聚体态铝,铝的有机配合物低毒或基本无毒[63],也有研究认为有机配体会促进铝在血液中的吸收[39]。近年来,越来越多研究表明多聚体态Al13对生物和人体毒性风险远高于Alm。非单体铝的生物毒性研究现状如表3所示。与Alm单体相比,Al13对海藻类植物的毒性更大[57]。Al13对大豆根尖的毒性比Alm高10倍[64]。有研究者探讨了nano−Al13及Alm对于苹果酸脱氢酶活性、谷氨酸脱氢酶活性、谷胱甘肽还原酶活性、还原型谷胱甘肽和血红蛋白的影响。结果表明,纳米Al13较低电荷单体铝表现出更强的毒性效应,并提出这可能与团簇铝比表面积较大有关[51,65-67]

    此外,多聚体铝团簇同时具备纳米颗粒效应。目前,针对纳米级铝化合物的研究主要关注纳米氧化铝(Al2O3)。纳米氧化铝对各生物主要脏器均有损害作用,肝、肾、脾为主要损伤器官,炎性细胞的浸润可能是其损伤机制之一[68]。作为高效混凝形态,溶解态纳米铝团簇尤其是Keggin结构的Al13成为关注焦点和研究热点。Al13粒度被鉴定为约2 nm,相互之间会结合成线性及枝状的Al13聚集体,其大小为几十或几百纳米[70]。Al13具有纳米尺度、高电荷(+7)、表面多羟基多活性位点、结构稳定等特征,在工业、生物医药制品方面均有应用,也可用作分子筛、电子元件、离子交换剂等。nano−Al13在水中具有较强的吸附、絮凝、络合、沉淀等物理化学性能,其结构和功能区更为规范和集中,微界面特性也更加突出,其生物可利用性及生物毒性机制极大可能不同于常规纳米颗粒物和单体铝离子,从总量角度衡量nano−Al13的毒性效应可能会掩盖其实际的毒性风险。

    单体铝和纳米铝团簇毒性的相关争议依然存在,难于达成统一认识。尽管铝的化学行为和生物毒性直接取决于其存在形态已经被广泛认可,但受其形态转化机制复杂且缺少团簇形态分析技术瓶颈的限制,铝团簇生物毒性效应机制研究一直处于严重滞后阶段。从铝团簇形态学角度对其生物毒性效应的研究依然较少,具体毒性机制仍不清晰[1,71]。此外,有研究发现在纳米颗粒物共存且无“微区强碱”前提下也可生成nano−Al13[7]。因此,不仅单体铝而且其微界面促发新生成的nano-Al13以及其它聚合铝都可能是传统单体铝毒性效应的主要贡献组分。

  • 羟基铝团簇可以和多种无机离子(OH、F、SO42-、PO33-、HCO3等)或有机配体结合,其存在形态复杂多样,主要取决于溶液pH值、复合配体浓度、温度等典型环境理化因素。羟基铝团簇还易与大分子化合物,如蛋白质、DNA、磷脂等形成较为复杂的化合物[64]。共存的有机、无机离子与羟基铝团簇形态结合,势必也将影响铝团簇毒性效应。鉴于目前铝团簇毒性的影响因素研究相对较少,本文仅基于现有研究进展,从水源水质组分、pH值和有机酸角度,结合铝团簇形态的转化阐述不同因素对残余铝毒性的影响。

    (1)水源水质对残余铝毒性的影响

    水源水的温度、浊度、色度、硬度、有机质含量、无机离子差异和河流水文状况将直接影响铝的含量与形态分布,进而对其毒性大小产生影响[72]。水中铝浓度的增加,会导致水体中有机物的凝聚作用增加,使有机物减少,致水生动物因营养匮乏而死亡;同时,还将导致水体中的可溶性磷沉淀,降低磷的再矿化率,对水生动物的生命带来极大的威胁[73]。原水浊度和TOC、DOC浓度增加可提高残留铝中胶体态铝和溶解态羟基铝含量[74-75]。水体悬浮颗粒物含量与颗粒结合态铝含量存在明显的相关关系。水体氟化物含量对弱酸性水源水的残余铝有显著影响,其对羟基铝团簇的形态分布影响占据主导地位。酸性、弱酸性条件下铝氟化物成为主导形态,但该条件对溶解态铝向颗粒态铝的转化并无显著抑制作用[76]

    (2)pH对残余铝毒性的影响

    羟基铝团簇毒性效应除与浓度有关外,还和团簇形态密切相关,而形态赋存和转化受水体pH值影响较大。pH对于水中残余铝含量的影响主要体现在絮凝形态和絮凝机制两方面[15, 77],不同pH下铝团簇形态分布不同[78-79]。在[Al3+] <10−4 mol·L−1水相溶液中,铝的水解优势形态为单体羟基络合离子[80]。当pH值从3−6向7−8以及大于8演变时,铝水解优势形态也从Al3+、Al(OH)2+、Al(OH)2+向Al(OH)3凝胶态、铝酸阴离子Al(OH)4转化[81-82]。在单体铝的浓度较高([Al3+]>10−3 mol·L−1)或在向含铝溶液中加碱时,溶液中水解生成的单体羟基态铝络合离子会发生聚合反应,生成二聚体、低聚体及高聚体等羟基聚合形态。其中,纳米Al13形态更加稳定,电荷稳定性更好,受pH影响较小。

    不同pH条件下水溶液中主导的铝团聚形态不同,其毒性效应亦不同。当pH值约为5.0时,铝以氢氧化铝Al(OH)3的形态沉积在鱼鳃内,阻止氧气进入血液中,并使鱼体内的含盐浓度失调,导致鱼类死亡[73]。在pH=8−9的弱碱性条件下,水中的铝酸根离子浓度高于0.5 mg·L−1时也可使鲑鱼致死;沉淀的氢氧化铝Al(OH)3不会使鲑鱼急性中毒而死,但能引起鲑鱼的慢性中毒,且在未污染的水体中其解毒的过程比较缓慢[11,69]。该观点主要从单体铝形态转化过程角度,从Al(OH)3生成及对鳃的毒性影响角度论述铝的毒性,长期以来一直主导铝毒性效应的认知,同时也并未考虑铝团簇形态尤其是纳米铝团簇毒性机制的差异性。已有研究表明,不同pH及不同浓度的Al3+及nano-Al13对脱氢酶活性的影响存在较大差异[67]。在磷酸盐存在的情况下,pH值在7−10范围内时,无定形态氢氧化铝颗粒可通过共沉淀的方式将磷原子包裹在自身结构之中或吸附磷酸盐基团在表面[83-84];随pH下降,铝和磷酸盐作用生成晶体态铝磷酸盐,并在输水过程中造成残余铝的二次释放,进而引发残余铝毒性。

    (3)有机酸对残余铝毒性的影响

    有机酸(如柠檬酸、草酸、甲酸等)能与金属形成稳定的复合体,将离子态的金属转变成低毒或无毒的螯合态形式,从而减轻过量金属的毒害效应[85]。有机酸与铝离子形成稳定的化合物,降低铝离子生理活性,从而降低细胞内铝离子的毒害效应。如铝可与柠檬酸形成1∶1的复合体, 与草酸形成1∶3的复合体[86]。几种常见低分子有机酸离子削弱铝毒的能力大小顺序为:草酸>乙酸>柠檬酸/硅酸>酒石酸>水杨酸>邻苯二甲酸[85]。有机酸的化学结构也会影响其对铝的络合能力。水杨酸(邻羟基苯甲酸)能与铝形成稳定的六元环鳌合物,而邻苯二甲酸与铝形成不稳定的七元鳌合物,水杨酸对铝的络合能力比邻苯二甲酸大。柠檬酸与铝也能形成稳定的五元环和六元环鳌合物,因此柠檬酸与铝有很强的络合能力[86]。一些多齿或多配位点的有机配体如EDTA、柠檬酸、聚合酚类与铝形成稳定的鳌合物,能抵抗Al3+水解作用的影响[87]。铝和磷酸盐共同作用可生成铝磷酸盐沉淀,直接影响饮用水的剩余浊度和残余铝含量。

    然而,上述研究大多基于传统重金属观念,探讨单体铝与有机酸的络合过程。对于纳米铝团簇而言,其比表面积大、表面能高,位于表面的原子占相当大比例,能有效吸附和配位溶液中重要的生物有机分子。有机酸离子可以与高活性的羟基铝络合成为低活性的有机络合态铝,进而降低铝毒性。同时,有机酸离子在与羟基铝络合过程中还可以释放出OH,使得pH值升高,进一步降低离子态铝的活性,削弱铝毒。研究发现Alm和nano−Al13对谷胱甘肽还原酶(GR)活性有较强抑制作用,加入柠檬酸、草酸以后,抑制作用均显著减轻,其与铝和配体的配位、酶构象的改变有关[51]。有机酸作为残余铝解毒剂应用具有较高的潜在价值。

  • 现有研究主要从残余铝总量角度探讨单体铝或纳米铝团簇的毒性机制,而从高荷电、纳米粒度、铝团簇结构等角度解析单体铝和纳米多聚体铝团簇形态毒性机制差异性的研究尚少。在溶解性铝团簇生物毒性效应过程与机制研究上有待深入系统揭示内在机理和突破方向,主要可以归纳为以下4点:

    (1)高正电荷(+7)、高活性位点、纳米Al13团簇在生物体内组织、内脏等负电性器官中迁移途径与机理是否类似于常规负电性纳米污染物以及溶解性单体铝。

    (2)单体铝水解形态在黏土等微界面促发下可转化生成nano-Al13这一新认知,是否能解释以往研究中单体铝与多聚体铝毒性效应认知的矛盾。传统观念中单体铝的毒性效应是否也取决于nano-Al13

    (3)铝团簇不同于其他纳米颗粒物,除具有纳米粒度特征外,还具有极强的凝聚絮凝效能,成为水体有机有毒污染物的重要载体和聚集体,其复合毒性研究依然较少。在毒性机制上,铝团簇纳米聚合体是否存在协同效应还是拮抗效应依然需要深入探讨。

    (4)对于已进入水环境中的铝,如何实现高毒性铝团簇形态向毒害作用更低的形态转化,实现解毒效果,也是今后铝毒性效应研究方向之一。

参考文献 (87)

返回顶部

目录

/

返回文章
返回