Loading [MathJax]/jax/output/HTML-CSS/jax.js

水环境中铂族元素的环境化学行为

侯松, 曾悦, 税伟, 陈秋琰. 水环境中铂族元素的环境化学行为[J]. 环境化学, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102
引用本文: 侯松, 曾悦, 税伟, 陈秋琰. 水环境中铂族元素的环境化学行为[J]. 环境化学, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102
HOU Song, ZENG Yue, SHUI Wei, CHEN Qiuyan. Environmental chemical behaviors of platinum group elements in aquatic environment[J]. Environmental Chemistry, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102
Citation: HOU Song, ZENG Yue, SHUI Wei, CHEN Qiuyan. Environmental chemical behaviors of platinum group elements in aquatic environment[J]. Environmental Chemistry, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102

水环境中铂族元素的环境化学行为

    通讯作者: 曾悦, E-mail: yzeng@fzu.edu.cn
  • 基金项目:

    福建省自然科学基金(2018J01745,2013J01045)资助.

Environmental chemical behaviors of platinum group elements in aquatic environment

    Corresponding author: ZENG Yue, yzeng@fzu.edu.cn
  • Fund Project: Supported by the Natural Science Foundation of Fujian Province (2018J01745, 2013J01045).
  • 摘要: 水环境中,由于人为来源导致铂族元素(PGE)的浓度不断增加.人们普遍认为PGE是惰性的,不会对环境造成危害,但水环境中PGE易发生化学迁移,转化为毒性更大的形态,增加生物可利用性.基于国内外79篇文献,概述了水环境PGE的环境行为,梳理了PGE的来源分布,探讨了PGE入海通量的变化和水生生物的毒性效应,分析了PGE的形态变化及影响因素.针对已有的研究成果和存在不足,对未来PGE的研究方向提出展望.
  • 阻燃剂广泛应用于塑料、橡胶和纤维中,用来降低材料的可燃性[1]。2012年,中国有机磷阻燃剂产量超过17.9×104 t,在有机磷阻燃剂中,磷酸三苯酯(TPhP)是一种高产量产品,由于未与最终用途产品化学键合,故在水中可被检测到[2]。澳大利亚地表水中的TPhP浓度高达150 ng·L−1;在中国松花江,TPhP的浓度也可以达到65 ng·L−1;此外,在河南省的污水处理厂中检测到了TPhP[3-5]。在环境中出现的TPhP会通过饮食摄入和呼吸吸入,进而引起人类健康问题,有研究[6]表明,TPhP对胚胎发育、神经系统和免疫系统具有毒理作用。对于模型生物斑马鱼,当暴露于0.10 mg·L−1 TPhP时,对心脏发育具有巨大的毒性作用;通过对暴露于100 μg·L−1 TPhP的成年斑马鱼的生物蓄积和代谢研究,发现其体内TPhP浓度可高达3.12 μg·g−1[7-8]。因此,开发一种有效的材料以去除水中TPhP势在必行。

    有研究[9]发现,尿素官能团化Fe3O4@LDH (urea-Fe3O4@LDH)对TPhP表现出了良好的去除效果,去除率可达90%以上,吸附容量高达589 mg·g−1,具有高效快速的吸附特性,吸附速率达到49.9 mg·(g·min)−1,且离子强度对吸附影响较小。而不同环境条件影响吸附过程中各物质的相互作用,故考察urea-Fe3O4@LDH去除TPhP受环境条件的影响情况势在必行。

    天然水体中存在着悬浮颗粒物,地下水中悬浮固体的平均浓度约200 mg·L−1,在某些极端情况下,其可能接近500 mg·L−1。在这些悬浮颗粒中,大颗粒相对容易沉降,颗粒携带有机磷污染物形成沉积物,导致污染持续时间长;小颗粒容易在实际运动的水体或实验搅拌的条件下悬浮,从而与污染物更多接触,易影响污染物的去除[10-12]。水体中普遍存在的天然有机物(natural organic matter, NOM)可能改变吸附剂的表面电荷、亲疏水性和极性等性质,影响吸附剂在水体环境中的稳定性和对污染物的去除[13-14]。实际废水中一般有机和无机污染物共存,Br作为一种无机污染物广泛存在,主要来自海水、地表水、工业废水和油田废水等,其存在极大地影响到人类的健康[15]

    实际水体中颗粒物的主要成分是黏土矿物,而富里酸(FA)、腐植酸(HA)和可溶性微生物副产物(SMPs)是NOM的最重要组分。本研究利用高岭土模拟颗粒物,用富里酸、腐植酸和牛血清白蛋白(BSA)模拟水体中存在的有机物,以及Br作为无机污染物,考察了以上环境条件对urea-Fe3O4@LDH吸附TPhP的影响。利用urea-Fe3O4@LDH吸附剂的电荷特性和阴离子交换性,深入了解吸附过程中有机磷污染物的去除机理,为urea-Fe3O4@LDH在实际水体环境中去除有机磷污染物提供参考。

    磷酸三苯酯(纯度>98%)、对甲苯基异氰酸酯和四氢呋喃(THF)购自麦克林生化科技有限公司,Fe3O4和3-氨丙基三乙氧基硅烷(APTES)购自阿拉丁生化科技股份有限公司,Na2CO3购自Sigma-Aldrich,Mg(NO3)2·6H2O、Al(NO3)3·9H2O、FA和HA购自福晨化学试剂厂,BSA购自上海金穗生物科技有限公司。

    利用高效液相色谱HPLC测定溶液中的TPhP浓度,吸收波长为204 nm,流动相为甲醇溶液,体积分数为70%,流速为1.0 mL·min−1。用NOH等开发的方法测量材料的零点电荷(pHPZC)[16-17]。采用傅里叶变换红外分光光度计(FT-IR,Nicolet iS10,赛默飞世尔科技公司,美国)检测材料官能团。采用Zeta电位分析仪(ZS90,马尔文仪器有限公司,英国)测量材料电位。用紫外可见光分光光度计测量有机物在250 nm(E2)、365 nm(E3)、465 nm(E4)和665 nm(E6)处的吸光度。

    将0.35 g的Fe3O4纳米颗粒超声分散在30 mL去离子水中,与15 mL的NaOH (0.76 g)和Na2CO3 (0.64 g)混合均匀,在搅拌下,滴加15 mL的Mg(NO3)2·6H2O (2.32 g)和Al(NO3)3·9H2O (1.13 g)混合溶液(Mg2+:Al3+=3:1),搅拌20 min。然后静置,取出上清液20 mL,并加入等量乙二醇,搅拌10 min,将混合物移入110 ℃反应釜中保持12 h。将得到的固体洗涤至中性,在60 ℃下干燥,研磨得到Fe3O4@LDH粉末。将Fe3O4@LDH分散在100 mL乙醇中,加入APTES (0.1 g),在80 ℃下回流10 h,抽滤、洗涤、干燥后得到NH2-Fe3O4@LDH。将得到的材料分散到THF中,加入对甲苯基异氰酸酯0.03 g,室温下,密闭搅拌24 h,用乙醇和水洗涤,于60 ℃下干燥,得到urea-Fe3O4@LDH。

    取浓度为1.9 mg·L−1的TPhP溶液500 mL,加入10 mg·L−1吸附剂,以200 r·min−1搅拌6 h。配置TPhP和不同浓度的颗粒、FA、HA、BSA的混合溶液,采用0.1 mol·L−1 HCl和NaOH调节溶液pH。Br的初始浓度为10 mg·L−1,此时吸附剂投加量为100 mg·L−1。研究在不同环境条件下urea-Fe3O4@LDH对TPhP去除率的影响,去除率和吸附量根据式(1)和式(2)进行计算。

    η=(C0Ct)C0×100% (1)
    qt=(C0Ct)Vm (2)

    式中:η为去除率;C0为初始溶液中TPhP的浓度,mg·L−1Ct为时间t时TPhP的浓度,mg·L−1t为反应时间,h;V为溶液的总体积,L;qt为时间t内单位质量吸附剂的吸附量,mg·g−1m为吸附剂质量,g。

    图1为不同浓度和粒径的高岭土对urea-Fe3O4@LDH吸附TPhP的影响结果。由图1可知,在相同颗粒粒径的条件下,高岭土浓度对urea-Fe3O4@LDH去除TPhP显示出一定规律性,呈现先轻微提高后降低的变化趋势。当颗粒粒径为200~450 μm时,高岭土浓度为0~100 mg·L−1,随着浓度的增大,urea-Fe3O4@LDH对TPhP的去除率从88%提高到98%;当高岭土浓度>100 mg·L−1时,TPhP去除率略有下降,由98%降低到78%。这是由于高岭土对TPhP有一定的吸附作用(图2)。当高岭土浓度增大至100 mg·L−1时,TPhP去除率增加到37%,随着高岭土浓度提高,高岭土和吸附剂共同作用去除TPhP,因此,导致TPhP的去除率有所提高。随高岭土浓度的继续增加,TPhP的去除率降低,这是因为高岭土减少了吸附剂与TPhP的接触概率。高岭土浓度>500 mg·L−1时,TPhP去除率明显降低。

    图 1  不同浓度和粒径高岭土对urea-Fe3O4@LDH吸附TPhP的影响
    Figure 1.  Effect of kaolin with different concentrations and particle sizes on TPhP adsorption by the urea-Fe3O4@LDH
    图 2  高岭土对TPhP的去除率
    Figure 2.  Adsorption efficiency of TPhP by kaolin

    当在同一高岭土浓度下,高岭土颗粒的粒径对urea-Fe3O4@LDH吸附TPhP有一定的影响。将高岭土颗粒粒径筛分成<30、30~74、74~200和200~450 μm,随着高岭土颗粒粒径的减小,吸附剂对TPhP的去除率有所降低。这是因为TPhP分子体积较大,由于空间效应,大颗粒的高岭土更容易吸附TPhP,故导致TPhP去除率有所升高;随着高岭土颗粒粒径的减小,其对TPhP的吸附减少,另一方面,高岭土减少了urea-Fe3O4@LDH和TPhP的碰撞概率,TPhP的吸附量降低,此时吸附剂和高岭土对TPhP的去除率降低。

    由于NOM的化学分子结构和性质不同,其与材料间的吸附和络合的相互作用均有所不同[18],因此,NOM的存在和不同分子质量有机物对urea-Fe3O4@LDH吸附TPhP具有一定的影响。图3为NOM中的FA、HA和BSA对urea-Fe3O4@LDH吸附TPhP的影响结果。如图3(a)所示,在相同pH条件下,当溶液中FA浓度由0 mg·L−1增大到200 mg·L−1时,urea-Fe3O4@LDH对TPhP的去除率降低。urea-Fe3O4@LDH吸附TPhP依靠静电相互作用,吸附剂的等电点为10.5,在pH为4~8时,其表面带有正电荷(pHpzc>pH),而FA中包含羧基、芳环、脂肪族链、和酚基等,这些酸性官能团的解离使FA带负电荷,故其可吸附到urea-Fe3O4@LDH表面,导致吸附剂表面电荷量减少,从而使得TPhP的去除率有所降低。在FA浓度相同的情况下,在pH=6时,urea-Fe3O4@LDH对TPhP的去除率高于pH=4和8时对应的去除率。由图4可知,pH在4~8时,urea-Fe3O4@LDH的Zeta电位为正,吸附剂表面带正电荷,且变化不大,因此,TPhP去除率变化主要是其基团所带电荷随pH变化所导致的。TPhP的磷酸基团中氧原子具有高的电子云密度,使得TPhP发生质子化[19],吸附剂与带正电荷的TPhP相互排斥;随着溶液pH的升高,质子化作用减弱,吸附剂表面与TPhP之间的排斥力减弱,带负电荷的氧和带正电荷的吸附剂表面之间的静电作用增强,故导致TPhP的去除率提高;继续增加溶液pH,TPhP中O=P基团带正电荷,吸附剂与TPhP中的磷酸基团发生排斥作用[20],最终导致TPhP的去除率有所降低。

    图 3  FA、HA和BSA对urea-Fe3O4@LDH吸附TPhP的影响
    Figure 3.  Effect of FA、HA和BSA on TPhP adsorption by the urea-Fe3O4@LDH
    图 4  Urea-Fe3O4@LDH的Zeta电位
    Figure 4.  Zeta potential of the urea-Fe3O4@LDH

    图3(b)是HA对urea-Fe3O4@LDH吸附TPhP的影响结果。当pH=6和8时,随着HA浓度的增大,TPhP去除率亦随之提高。通过π-π相互作用,HA吸附在urea-Fe3O4@LDH材料表面,使吸附剂的疏水性增大,故使得疏水性较强的TPhP更易吸附在材料表面,从而有利于提高TPhP的去除率[21],此外,HA表面的芳环结构与TPhP间的π-π相互作用促进了TPhP吸附在HA上,同样可使TPhP去除率有所升高,此时HA和吸附剂均能够去除TPhP。WANG等[22]利用2种不同树脂在HA的存在下吸附有机磷阻燃剂,去除率随着HA浓度的增加基本保持恒定,其中TPhP去除率随HA浓度的增大而升高。PANG等[23]的研究发现,磁性MOF微球提取有机磷阻燃剂不受到HA的影响。然而,HA可以占据材料吸附位点,从而影响污染物的去除效果[24],因此,在pH=4时,随HA浓度升高,TPhP的去除率降低。此时质子化的TPhP带正电荷,不易吸附在带正电的urea-Fe3O4@LDH表面上,而HA中包含大量酸性位点,容易吸附在吸附材料上,占据了有效的吸附位点,随HA浓度升高,urea-Fe3O4@LDH对TPhP的去除率减少。HA对TPhP的去除率随其浓度升高趋于稳定,远低于urea-Fe3O4@LDH[9],故导致TPhP去除率降低。

    图3(c)为使用BSA模拟SMPs的情况下,其对urea-Fe3O4@LDH吸附TPhP影响结果。在相同pH条件下,随着BSA浓度的增大,urea-Fe3O4@LDH对TPhP的去除率降低。这是由于BSA中含有大量氨基酸残基,可占据urea-Fe3O4@LDH表面的吸附位点;BSA带有负电荷时(pKa=4.7),容易被吸附在带正电的吸附剂表面,并且其浓度远高于TPhP,占据urea-Fe3O4@LDH的活性位点越多,TPhP的去除率越低。此外,BSA还有一定絮凝的作用,其能够促使吸附剂的沉淀,因而BSA对TPhP的去除率影响较大。TPhP的去除率在pH为6的条件下高于pH=4和8的情况下,此结果与FA、HA对TPhP去除率的影响结果一致。当溶液的pH=6和8时,BSA带负电荷,能吸附到材料表面,占据urea-Fe3O4@LDH吸附位点,导致TPhP去除率快速下降;当溶液的pH=4时,BSA表面带正电荷,占据吸附剂活性位点较少,从而使得TPhP去除率下降相对较慢。

    不同有机物的表面化学性质对去除率的影响不同,为研究其对吸附剂和有机磷污染物的作用,使用紫外线吸收率E2/E3E4/E6作为有机物芳香性和极性的指标[25]。如表1所示,NOM的芳香性和极性对比为FA>HA>BSA,FA和HA表面含有更多的苯环等芳香基团和羧基、羟基等极性基团,因此,其能够通过π-π相互作用和静电相互作用吸附到urea-Fe3O4@LDH上。在有机物浓度低于50 mg·L−1时,FA、HA能够吸附到材料表面,进而通过苯环、羧基等官能团来吸附TPhP,使得TPhP去除率较为稳定,甚至略有增大,而组成BSA的氨基酸能占据部分吸附位点,但其对TPhP吸附能力弱,造成TPhP去除率略微降低。当溶液中有机物浓度较高时,urea-Fe3O4@LDH表面吸附更多有机物,吸附剂与TPhP接触率降低,尿素官能团对TPhP吸附能力减少,TPhP去除率降低。

    表 1  有机物的性质
    Table 1.  Property of organic matters
    有机物分子质量/kDaE2/E3E4/E6
    FA<0.34.4215.8
    HA 0.353.457.3
    HA0.8~1.43.366.9
    HA203.236.6
    BSA661.101.2
     | Show Table
    DownLoad: CSV

    通常,FA的分子质量较小,小于0.3 kDa;HA的分子质量一般为几百到几万,以HA分子质量为3.5、0.8~1.4和20 kDa为例;BSA分子质量约为66 kDa,不同分子质量的有机物在urea-Fe3O4@LDH孔道内扩散和吸附效果有所不同。图5为有机物分子质量对urea-Fe3O4@LDH吸附TPhP的影响结果。有机物浓度为0~40 mg·L−1时,有机物分子质量对urea-Fe3O4@LDH吸附TPhP的去除率影响不大,这是由于吸附主要依靠官能团而不是吸附剂的孔道。其中,不同分子质量HA对urea-Fe3O4@LDH吸附TPhP的效率有一定影响。当HA浓度为0~40 mg·L−1时,urea-Fe3O4@LDH对TPhP去除率略有降低,当HA浓度继续增加时,对TPhP的去除率增加。HA可占据urea-Fe3O4@LDH材料表面吸附位点和填充孔隙,抑制了污染物的去除,TPhP去除率降低;同时HA能够吸附有机磷化合物,污染物疏水性越强,与HA之间的吸附系数越大,结合能力随之越强,TPhP去除率上升,因此TPhP去除率变化。

    图 5  不同分子质量有机物对urea-Fe3O4@LDH吸附TPhP的影响
    Figure 5.  Effect of organic matters with different molecular weights on TPhP adsorption by the urea-Fe3O4@LDH

    图6为在无机离子Br存在的条件下,urea-Fe3O4@LDH对TPhP去除率的影响结果。结果表明,urea-Fe3O4@LDH对TPhP的去除率和速率并没有明显的影响,而且对Br的去除率达到53%,因此,urea-Fe3O4@LDH可以同时吸附TPhP和无机阴离子Br图7为urea-Fe3O4@LDH吸附TPhP前后的FT-IR图谱。由图7可知,吸附TPhP后,材料表面出现其特征峰,在1 544 cm−1处的N—H峰有所减弱,在1 116 cm−1处的C—O峰附近出现N—O振动峰,这表明urea-Fe3O4@LDH和TPhP之间存在静电作用,在1 519 cm−1处的苯基在吸附后发生了变化,这是由于芳环间存在π-π相互作用。此外,在1 370 cm−1处的CO23峰未变,表明TPhP没有进入LDH层间。加入Br的浓度远高于TPhP,这表明TPhP和Br在urea-Fe3O4@LDH表面没有发生竞争吸附,Br可能通过离子交换进入层间,这是Br吸附速率较慢的原因。urea-Fe3O4@LDH吸附Br符合伪一级动力学方程(R2=0.995),Br在吸附剂表面为单层吸附(图8)。通过动力学参数计算可知,Br的最大吸附量为55 mg·g−1,吸附速率为11.9 mg·(g·h)−1

    图 6  urea-Fe3O4@LDH对TPhP和Br-的去除率
    Figure 6.  Adsorption efficiency of TPhP and Br- by the urea-Fe3O4@LDH
    图 7  urea-Fe3O4@LDH吸附前后的FT-IR图谱
    Figure 7.  FT-IR spectra of the urea-Fe3O4@LDH before and after adsorption
    图 8  urea-Fe3O4@LDH对Br-的吸附动力学
    Figure 8.  Adsorption kinetics of Br- by the urea-Fe3O4@LDH

    1)利用高岭土作为模拟颗粒物,当高岭土浓度为0~100 mg·g−1时,随着其浓度的升高,吸附剂对TPhP的去除率随之增加;当高岭土浓度>100 mg·g−1时,TPhP去除率略有下降;在同一浓度下,随着高岭土颗粒粒径的减小,TPhP去除率随之降低;高岭土对TPhP具有吸附作用,去除率最大能达到40%,且当颗粒大小为74~200 μm时,其对TPhP的吸附效果最好。

    2)用FA、HA和BSA模拟水体中存在的有机物,在相同pH条件下,随着溶液中有机物浓度的增大,TPhP的去除率有所降低;在pH=6时,TPhP的去除率高于pH=4或8时对应的去除率;分子质量对TPhP去除率的影响不大。

    3) urea-Fe3O4@LDH对TPhP的去除效率和速率没有受到Br存在的影响,且能够同时吸附Br,效率达到53%左右,吸附量达到55 mg·g−1;吸附剂去除Br符合伪一级动力学方程,故为单层吸附。

    4) urea-Fe3O4@LDH吸附主要依靠尿素官能团与TPhP间的静电作用和π-π作用;在一定浓度范围内,urea-Fe3O4@LDH去除TPhP受水体中颗粒物、有机物和无机阴离子影响较小,是一种去除废水中有机磷污染物尤其是TPhP的良好吸附剂。

  • [1] FIRMANSYAH M L, KUBOTA F, YOSHIDA W, et al. Application of a novel phosphonium-based ionic liquid to the separation of platinum group metals from automobile catalyst leach liquor[J]. Industrial & Engineering Chemistry Research, 2019, 58(9):3845-3852.
    [2] SUN L, WANG, B, WANG Y D. A Schottky-junction-based platinum nanoclusters@silicon carbide nanosheet as long-term stable hydrogen sensors[J]. Applied Surface Science, 2019, 473:641-648.
    [3] PUJA P, KUMAR P. A perspective on biogenic synthesis of platinum nanoparticles and their biomedical applications[J]. Spectrochimica Acta Part A-molecular and Biomolecular Spectroscopy, 2019, 211:94-99.
    [4] RINKOVEC J, PEHNEC G, GODEC R, et al. Spatial and temporal distribution of platinum, palladium and rhodium in Zagreb air[J]. Science of the Total Environment, 2018, 636:456-463.
    [5] LIU Y Y, FU B, SHEN Y X, et al. Seasonal properties on PM1 and PGEs (Rh, Pd, and Pt) in PM1[J]. Atmospheric Pollution Research, 2018, 9:1032-1037.
    [6] LIU Y Y, WANG Z C, ZHANG L, et al. Spatial and temporal distribution of platinum group elements (PGEs) in roadside soils from Shanghai and Urumqi, China[J]. Journal of Soils & Sediments, 2015, 15(9):1947-1959.
    [7] LEE H Y, CHON H T, SAGER M, et al. Platinum pollution in road dusts, roadside soils, and tree barks in Seoul, Korea[J]. Environmental Geochemistry & Health, 2012, 34(1):5-12.
    [8] KOMENDOVA R, JEZEK S. The distribution of platinum in the environment in large cities:A model study from Brno, Czech Republic[J]. International Journal of Environmental Science and Technology, 2019, 16(7):3109-3116.
    [9] 王娟,朱若华,施燕支.北京市区公路旁尘土中铂族元素的化学形态[J]. 环境化学,2007,26(4):528-530.

    WANG J, ZHU R H, SHI Y Z. Speciation of platinum group elements in dust near highway in Beijing[J]. Environmental Chemistry, 2007, 26(4):528-530(in Chinese).

    [10] SOYOLERDENE T O, HUH Y, HONG S, et al. A 50-year record of platinum, iridium, and rhodium in Antarctic snow:Volcanic and anthropogenic sources[J]. Environmental Science & Technology, 2011, 45(14):5929-5935.
    [11] ESSUMANG D K. Bioaccumulation of platinum group metals in dolphins, Stenella sp. caught off Ghana[J]. Journal of the Limnological Society of Southern Africa, 2008, 33(3):255-259.
    [12] TURNER A, PEDROSO S S, BROWN M T. Influence of salinity and humic substances on the uptake of trace metals by the marine macroalga, Ulva lactuca:experimental observations and modelling using WHAM. Mar Chem[J]. Marine Chemistry, 2008, 110(3):176-184.
    [13] DUBIELLAJACKOWSKA A, KUDAK B, POLKOWSKA Z, et al. Environmental fate of traffic-derived platinum group metals[J].Critical Reviews in Analytical Chemistry, 2009, 39:251-271.
    [14] SEN IS, PEUCKER-EHRENBRINK B. Anthropogenic disturbance of element cycles at the Earth's surface[J]. Environmental Science & Technology, 2012, 46:8601-8609.
    [15] PAN S H, ZHANG G, SUN Y L, et al. Accumulating characteristics of platinum group elements (PGE) in urban environments, China[J]. Science of the Total Environment, 2009, 407(14):4248-4252.
    [16] ESSUMANG D K, DODOO D K, ADOKOH C K, et al. Bioaccumulation of platinum group metals on some fish species (and) in the Pra estuary of Ghana[J]. Toxicological & Environmental Chemistry Reviews, 2008, 90(3):625-638.
    [17] MULHOLLAND R, TURNER A. Accumulation of platinum group elements by the marine gastropod Littorina littorea[J]. Environmental Pollution, 2011, 159(4):977-982.
    [18] ABDEL-TAWWABA M, RAZEKB N A, ABDEL-RAHMANB A M. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.)[J]. Fish and Shellfish Immunology, 2019, 88:254-258.
    [19] AUGUSTEA M, BALBIA T, MONTAGNAA M, et al. In vivo immunomodulatory and antioxidant properties of nanoceria (nCeO2) in the marine mussel Mytilus galloprovincialis[J]. Comparative Biochemistry and Physiology, Part C, 2019, 219:96-102.
    [20] 王金坑.入海污染物总量控制技术与方法[M]. 北京:海洋出版社,2013. WANG J K. Control technology and method of total amount of pollutants entering the sea[M]. Beijing:China Ocean Press, 2013(in Chinese).
    [21] 兰青,陈英.城市环境铂族金属分布特性及生态健康风险研究进展[J]. 生态环境学报,2013,22(5):894-900.

    LAN Q, CHEN Y. Research progress on the distribution characteristics and ecological health risk of platinum-group metal[J]. Ecology and Environmental Sciences, 2013, 22(5):894-900(in Chinese).

    [22] 李培苗,高学鲁.环境中人为来源的铂族元素及其迁移转化研究进展[J]. 应用生态学报,2012,23(12):514-525.

    LI P M,GAO X L. Migration and transformation of anthropogenic platinum group elements in environment:Areview[J]. Chinese Journal of Applied Ecology, 2012, 23(12):514-525(in Chinese).

    [23] SPADA N, BOZLAKER A, CHELLAM S. Multi-elemental characterization of tunnel and road dusts in Houston, Texas using dynamic reaction cell-quadrupole-inductively coupled plasma-mass spectrometry:Evidence for the release of platinum group and anthropogenic metals from motor vehicles[J]. Analytica Chimica Acta, 2012, 735(14):1-8.
    [24] 高博,陆瑾,周怀东,等.北京市高校内道路尘土中铂族元素(PGEs)污染特征[J]. 环境化学,2011,30(6):1204-1205.

    GAO B, LU J, ZHOU H D. Pollution characteristics of platinum group elements (PGEs) in road dust of universities in Beijing[J]. Environmental Chemistry, 2011,30(6):1204-1205(in Chinese).

    [25] LINDE S J L, FRANKEN A, PLESSIS J L D. Urinary excretion of platinum from South African precious metals refinery workers[J]. Occupational & Environmental Medicine, 2018, 75(6):422-436.
    [26] DUBIELLAJACKOWSKA A, POLKOWSKA, NAMIENŃIK J. Platinum group elements in the environment:Emissions and exposure[J]. Reviews of Environmental Contamination and Toxicology, 2008, 199:111-135.
    [27] NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17:372-386.
    [28] KAREL F, MORTIER S T F. C., JANIS B, et al. Modelling and sensitivity analysis of urinary platinum excretion in anticancer chemotherapy for the recovery of platinum[J]. Sustainable Chemistry and Pharmacy, 2016, 4:46-56.
    [29] LENZ K, HANN S, KOELLENSPERGER G, et al. Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption activated sludge[J]. Science of the Total Environment, 2005, 345:141-152.
    [30] MASHIO A S, OBATA H, TAZOE H, et al. Dissolved platinum in rainwater, river water and seawater around Tokyo Bay and Otsuchi Bay in Japan[J]. Estuarine Coastal & Shelf Science, 2016, 180:160-167.
    [31] LIU Y Y, TIAN F F, LIU C, et al. Platinum group elements in the precipitation of the dry region of Xinjiang and factors affecting their deposition to land:The case of Changii City, China[J]. Atmospheric Pollution Research, 2015, 6(2):178-183.
    [32] COBELO-GARCÍA A, LÓPEZ-SÁNCHEZ D E, ALMÉCIJA C, et al. Behavior of platinum during estuarine mixing (Pontevedra Ria, NW Iberian Peninsula)[J]. Marine Chemistry, 2013, 150(2):11-18.
    [33] COBELO-GARCÍA A, LÓPEZ-SÁNCHEZ D E, SCHÄFER J, et al. Behavior and fluxes of Pt in the macrotidal Gironde Estuary (SW France)[J]. Marine Chemistry, 2014, 167:93-101.
    [34] COBELO-GARCÍA A, NEIRA P, MIL-HOMENS M, et al. Evaluation of the contamination of platinum in estuarine and coastal sediments (Tagus Estuary and Prodelta, Portugal)[J]. Marine Pollution Bulletin, 2011, 62(3):646-650.
    [35] OBATA H, YOSHIDA T, OGAWA H. Determination of picomolar levels of platinum in estuarine waters:A comparison of cathodic stripping voltammetry and isotope dilution-inductively coupled plasma mass spectrometry[J]. Analytica Chimica Acta, 2006, 580(1):32-38.
    [36] PRATT C, LOTTERMOSER B G. Mobilisation of traffic-derived trace metals from road corridors into coastal stream and estuarine sediments, Cairns, northern Australia[J]. Environmental Geology (Berlin), 2007, 52(3):437-448.
    [37] PRICHARD H M, JACKSON M T, SAMPSON J. Dispersal and accumulation of Pt, Pd and Rh derived from a roundabout in Sheffield (UK):From stream to tidal estuary[J]. Science of the Total Environment, 2008, 401(1):90-99.
    [38] GHAFURIA Y, YUNESIAN M, NABIZADEH R, et al. Environmental risk assessment of platinum cytotoxic drugs:A focus on toxicity characterization of hospital effluents[J]. International Journal of Environmental Science and Technology, 2018, 15(9):1983-1990.
    [39] VYAS N, TURNER A, SEWELL G. Platinum-based anticancer drugs in waste waters of a major UK hospital and predicted concentrations in recipient surface waters[J]. Science of the Total Environment, 2014, 493:324-329.
    [40] ZHAO M C, WADA N, SHINOZAKI H, et al. Monitoring of the palladium concentration in river water and sediment at an acidic hot spring spa area in gunma prefecture[J]. Analytical Sciences, 2018, 34(12):1357-1364.
    [41] LÓPEZ-SÁNCHEZA D E, COBELO-GARCÍA A, RIJKENBERG M J A, et al. Newin sights on the dissolved platinum behavior in the Atlantic Ocean[J]. Chemical Geology, 2019, 511:204-211.
    [42] SUZUKI A, OBATA H, OKUBO A, et al. Precise determination of dissolved platinum in seawater of the Japan Sea, Sea of Okhotsk and western North Pacific Ocean[J]. Marine Chemistry, 2014, 166:114-121.
    [43] WEDEPOHL K H. The composition of the continental-crust[J]. Geochimica Et Cosmochimica Acta, 1995, 59:1217-1232.
    [44] SOYOL-ERDENE T O, HUH Y. Dissolved platinum in major rivers of East Asia:Implications for the oceanic budget[J]. Geochemistry Geophysics Geosystems, 2012, 13(6):1-3.
    [45] BENCS L, RAVINDRA K, GRIEKEN R V. Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters[J]. Spectrochim Acta Part B, 2003, 58:1723-1755.
    [46] DIEHL D B, GAGNON Z E. Interactions between essential nutrients with platinum group metals in submerged aquatic and emergent plants[J]. Water Air Soil Pollution, 2007, 184:255-267.
    [47] VANNINI C, DOMINGO G, MARSONI M, et al. Physiological and molecular effects associated with palladium treatment in Pseudokirchneriella subcapitata[J]. Aquatic Toxicology, 2011, 102:104-113.
    [48] SØRENSEN S N, ENGELBREKT C, LUTZHOFT H C, et al. A multimethod approach for investigating algal toxicity of platinum nanoparticles[J]. Environmental Science & Technology, 2016, 50:10635-10643.
    [49] MONTEIRO C M, CASTRO P M L, MALCATA F X. Metal uptake by microalgae:Underlying mechanisms and practical applications[J]. Biotechnology Progress, 2012, 28(2):299-311.
    [50] ZEREINI F, WISEMAN C L S. Platinum metals in the environment[M]. Berlin:Springer -Verlag Berlin Heidelberg, 2015.
    [51] ZIMMERMANN S, ALT F, MESSERSCHMIDT J, et al. Biological availability of traffic-related platinum-group elements (palladium, platinum, and rhodium) and other metals to the zebra mussel (Dreissena polymorpha) in water containing road dust[J]. Environmental Toxicology and Chemistry, 2002, 21:2713-2718.
    [52] SURES B, THIELEN F, BASKA F, et al. The intestinal parasite Pomphorhynchus laevis as a sensitive accumulation indicator for the platinum group metals Pt, Pd, and Rh[J]. Environmental Research, 2005, 98:83-88.
    [53] MOLDOVAN M, RAUCH S, GOMEZ M, et al. Bioaccumulation of palladium, platinum and rhodium from urban particulates and sediments by the freshwater isopod Asellus aquaticus[J]. Water Research, 2001, 35:4175-4183.
    [54] ESSUMANG D K, ADOKOH C K, BOAMPONSEM L. Levels of platinum group metals in selected species (Sarotherodon melanotheron, Chonophorus lateristriga, Macrobrachium vollenhovenii and Crassostrea tulipa) in some estuaries and lagoons along the coast of Ghana[J]. Scientific World Journal, 2010, 10(1):1971-1987.
    [55] ZIMMERMANN S, MESSERSCHMIDT J, VON B A, et al. Uptake and bioaccumulation of platinum group metals (Pd, Pt, Rh) from automobile catalytic converter materials by the zebra mussel (Dreissena polymorpha)[J]. Environmental Research, 2005, 98(2):203-209.
    [56] SURES B, ZIMMERMANN S. Impact of humic substances on the aqueous solubility, uptake and bioaccumulation of platinum, palladium and rhodium in exposure studies with Dreissena polymorpha[J]. Environmental Pollution, 2007, 146:444-451.
    [57] LI L, HOU Y, YU J, et al. Synergism of ursolic acid and cisplatin promotes apoptosis and enhances growth inhibition of cervical cancer cells via suppressing NF-κB p65.[J]. Oncotarget, 2017, 8(57):97416-97427.
    [58] RAVINDRA K, BENCS L, GRIEKEN R V. Platinum group elements in the environment and their health risk[J]. Science of the Total Environment, 2004, 318:1-43.
    [59] ASHARANI P V, LIANWU Y, GONG Z, et al. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos[J]. Nanotoxicology, 2011, 5(1):43-54.
    [60] CEDERVALL T, LYNCH I, LINDMAN S, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles[J]. Proceedings of the National Academy of Sciences, 2007, 104(7):2050-2055.
    [61] ASHARANI P V, MUN G L K, HANDE M P, et al. Cytotoxicity and genotoxicity of silver nanoparticles in human cells[J]. Acs Nano, 2009, 3(2):279-290.
    [62] DOHNALOVÁ L, DOHNAL V. Nanoparticles and their toxicity[J]. Chemicke Listy, 2015, 109:444-450.
    [63] HLAVKOVA D, BEKLOVA M, KOPEL P, et al. Evaluation of platinum nanoparticles ecotoxicity using representatives of distinct trophic levels of aquatic biocenosis[J]. Neuro Endocrinology Letters, 2019, 39(6):465-472.
    [64] LIU K, GAO X L, LI L. Determination of ultra-trace Pt, Pd and Rh in seawater using an off-line pre-concentration method and inductively coupled plasma mass spectrometry[J]. Chemosphere, 2018:212:429-437.
    [65] 刘凯,高学鲁,李力.海水中痕量铂族元素的赋存形态及螯合树脂富集研究进展[J]. 应用生态学报,2017,28(10):3424-3432.

    LIU K, GAO X L, LI L. Advances in trace platinum group elements speciation and preconcentration of chelate resins in seawater[J]. Chinese Journal of Applied Ecology, 2017, 28(10):3424-3432(in Chinese).

    [66] TURNER A. Particle-water interactions of platinum group elements under estuarine conditions[J]. Marine Chemistry, 2007, 103(1/2):103-111.
    [67] COBELO-GARCÍA A, TURNER A, MILLWARD G E. Fractionation and reactivity of platinum group elements during estuarine mixing[J]. Environmental Science & Technology, 2008, 42(4):1096-1101.
    [68] COSDEN J M, BYRNE R H. Comparative geochemistries of Pd II, and Pt II:Formation of mixed hydroxychloro and chlorocarbonato-complexes in seawater[J]. Geochimica Et Cosmochimica Acta, 2003, 67(7):1331-1338.
    [69] COLOMBO C, OATES C J, MONHEMIUS A J, et al. Complexation of platinum, palladium and rhodium with inorganic ligands in the environment[J]. Geochemistry:Exploration, Environment, Analysis, 2008, 8:1-11.
    [70] SHAMS L, TURNER A, MILLWARD G E, et al. Extra- and intra-cellular accumulation of platinum group elements by the marine microalga, Chlorella stigmatophora[J]. Water Research, 2014, 50(1):432-440.
    [71] TURNER A, XU J. Influence of ionic surfactants on the flocculation and sorption of palladium and mercury in the aquatic environment[J]. Water Research, 2008, 42(1):318-326.
    [72] TURNER A, CRUSSELL M, MILLWARD G E, et al. Adsorption kinetics of platinum group elements in river water[J]. Environmental Science & Technology, 2006, 40(5):1524-1531.
    [73] 张莉,史玲珑.洱海悬浮颗粒物时空分布特征及其环境学意义[J]. 环境科学研究,2019,32(5):787-794.

    ZHANG L, SHI L L. Spatial and temporal distribution of suspended particulate matter in lake erhai and its environmental significance[J]. Researsh of Environmental Sciences, 2019, 32(5):787-794(in Chinese).

    [74] REITH F, ZAMMIT C M, SHAR S S, et al. Biological role in the transformation of platinum-group mineral grains[J]. Nature Geoscience, 2016, 9(4):294-298.
    [75] TURNER A, MILLWARD G E. Suspended particles:Their role in estuarine biogeochemical cycles[J]. Estuarine Coastal and Shelf Science, 2002, 55(6):857-883.
    [76] TURNER A, WU K T. Removal of platinum group elements in an estuarine turbidity maximum[J]. Marine Chemistry, 2007, 107:295-307.
    [77] KRAEMER S M. Iron oxide dissolution and solubility in the presence of siderophores[J]. Aquatic Sciences, 2004, 66:3-18.
    [78] DAHLHEIMER S R, NEAL C R, FEIN J B. Potential mobilization of platinum-group elements by siderophores in surface environments[J]. Environmental Science&Technology, 2007, 41:870-875.
    [79] LUSTIG S, ZANG S, MICHALKE B, SCHRAMEL P, et al. Transformation behaviour of different platinum compounds in a clay-like humic soil:Speciation investigations[J]. Science of the Total Environment, 1996, 188:195-204.
  • 加载中
计量
  • 文章访问数:  4239
  • HTML全文浏览数:  4239
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-05-31
侯松, 曾悦, 税伟, 陈秋琰. 水环境中铂族元素的环境化学行为[J]. 环境化学, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102
引用本文: 侯松, 曾悦, 税伟, 陈秋琰. 水环境中铂族元素的环境化学行为[J]. 环境化学, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102
HOU Song, ZENG Yue, SHUI Wei, CHEN Qiuyan. Environmental chemical behaviors of platinum group elements in aquatic environment[J]. Environmental Chemistry, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102
Citation: HOU Song, ZENG Yue, SHUI Wei, CHEN Qiuyan. Environmental chemical behaviors of platinum group elements in aquatic environment[J]. Environmental Chemistry, 2020, (8): 2055-2064. doi: 10.7524/j.issn.0254-6108.2019053102

水环境中铂族元素的环境化学行为

    通讯作者: 曾悦, E-mail: yzeng@fzu.edu.cn
  • 1. 福州大学环境与资源学院, 福州, 350116;
  • 2. 福州大学空间数据挖掘与信息共享教育部重点实验室, 福州, 350116;
  • 3. 福建省水土流失遥感监测评估与灾害防治重点实验室, 福州, 350116
基金项目:

福建省自然科学基金(2018J01745,2013J01045)资助.

摘要: 水环境中,由于人为来源导致铂族元素(PGE)的浓度不断增加.人们普遍认为PGE是惰性的,不会对环境造成危害,但水环境中PGE易发生化学迁移,转化为毒性更大的形态,增加生物可利用性.基于国内外79篇文献,概述了水环境PGE的环境行为,梳理了PGE的来源分布,探讨了PGE入海通量的变化和水生生物的毒性效应,分析了PGE的形态变化及影响因素.针对已有的研究成果和存在不足,对未来PGE的研究方向提出展望.

English Abstract

参考文献 (79)

返回顶部

目录

/

返回文章
返回