基于转录组学和斑马鱼模型研究BP1的神经内分泌毒性

姜鑫, 刘思远, 宋扬, 靳梦, 董小雷. 基于转录组学和斑马鱼模型研究BP1的神经内分泌毒性[J]. 生态毒理学报, 2023, 18(1): 298-307. doi: 10.7524/AJE.1673-5897.20220304002
引用本文: 姜鑫, 刘思远, 宋扬, 靳梦, 董小雷. 基于转录组学和斑马鱼模型研究BP1的神经内分泌毒性[J]. 生态毒理学报, 2023, 18(1): 298-307. doi: 10.7524/AJE.1673-5897.20220304002
Jiang Xin, Liu Siyuan, Song Yang, Jin Meng, Dong Xiaolei. Study of Neuroendocrine Toxicity of 2,4-dihydroxybenzophenone Based on Transcriptomics and Zebrafish Model[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 298-307. doi: 10.7524/AJE.1673-5897.20220304002
Citation: Jiang Xin, Liu Siyuan, Song Yang, Jin Meng, Dong Xiaolei. Study of Neuroendocrine Toxicity of 2,4-dihydroxybenzophenone Based on Transcriptomics and Zebrafish Model[J]. Asian Journal of Ecotoxicology, 2023, 18(1): 298-307. doi: 10.7524/AJE.1673-5897.20220304002

基于转录组学和斑马鱼模型研究BP1的神经内分泌毒性

    作者简介: 姜鑫(1993—),女,硕士研究生,研究方向为生物医药,E-mail:jiangxinzf@163.com
    通讯作者: 靳梦, E-mail: mjin1985@hotmail.com 董小雷, E-mail: dongxiaolei1971@163.com
  • 基金项目:

    济南市“新高校20条”高校院所项目(2021GXRC106,2021GXRC111)

  • 中图分类号: X171.5

Study of Neuroendocrine Toxicity of 2,4-dihydroxybenzophenone Based on Transcriptomics and Zebrafish Model

    Corresponding authors: Jin Meng, mjin1985@hotmail.com ;  Dong Xiaolei, dongxiaolei1971@163.com
  • Fund Project:
  • 摘要: 以斑马鱼为模型,研究2,4-二羟基二苯甲酮(2,4-dihydroxybenzophenone, BP1)环境暴露对生物神经内分泌的影响。利用转录组测序技术比较空白对照组(Ctl组)与BP1处理组(2.4 μg·mL-1 BP1)间基因表达差异,并进行GO和KEGG分析。利用野生型AB斑马鱼进行行为学检测,基于转基因斑马鱼ioz4Tg/+(AB)观察甲状腺发育情况,并通过实时荧光定量PCR检测神经内分泌相关基因表达以验证BP1的神经内分泌毒性。空白对照组与BP1处理组显著差异表达基因数为390个,GO富集分析共获得包括对刺激的反应、行为、信号和神经突触等与神经内分泌相关在内的46个条目。KEGG分析筛选出22条通路,包括信号转导、内分泌系统、信号分子与相互作用等。与空白对照组相比,BP1组运动能力限制下降,甲状腺受损。实时荧光定量PCR结果显示,与空白对照组相比,gfapdio1trαtrβtshr表达降低,gap43dio2tg表达升高。BP1引起斑马鱼神经内分泌毒性。
  • 加载中
  • 王晶, 张子豪, 刘莹峰, 等. 3类高关注紫外线吸收剂的前处理与检测技术研究进展[J]. 分析测试学报, 2016, 35(11): 1505-1512

    Wang J, Zhang Z H, Liu Y F, et al. Research progress on pretreatment and determination technique for three types of ultraviolet absorbents [J]. Journal of Instrumental Analysis, 2016, 35(11): 1505-1512 (in Chinese)

    Isabel Cadena-Aizaga M, Montesdeoca-Esponda S, Torres-Padrón M E, et al. Organic UV filters in marine environments: An update of analytical methodologies, occurrence and distribution [J]. Trends in Environmental Analytical Chemistry, 2020, 25(C): e00079
    Zhang H, Li J X, An Y L, et al. Concentrations of bisphenols, benzophenone-type ultraviolet filters, triclosan, and triclocarban in the paired urine and blood samples from young adults: Partitioning between urine and blood [J]. Chemosphere, 2022, 288(Pt 2): 132563
    DiNardo J C, Downs C A. Dermatological and environmental toxicological impact of the sunscreen ingredient oxybenzone/benzophenone-3 [J]. Journal of Cosmetic Dermatology, 2018, 17(1): 15-19
    Kim S, Choi K. Occurrences, toxicities, and ecological risks of benzophenone-3, a common component of organic sunscreen products: A mini-review [J]. Environment International, 2014, 70: 143-157
    Kerdivel G, Le Guevel R, Habauzit D, et al. Estrogenic potency of benzophenone UV filters in breast cancer cells: Proliferative and transcriptional activity substantiated by docking analysis [J]. PLoS One, 2013, 8(4): e60567
    Broniowska, Bystrowska B, Starek-S'wiechowicz B, et al. Benzophenone-2 concentration and its effect on oxidative stress and apoptosis markers in rat brain [J]. Neurotoxicity Research, 2019, 36(1): 39-48
    Engler-Chiurazzi E B, Brown C M, Povroznik J M, et al. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury [J]. Progress in Neurobiology, 2017, 157: 188-211
    Wnuk A, Rzemieniec J, Lasoń W, et al. Benzophenone-3 impairs autophagy, alters epigenetic status, and disrupts retinoid X receptor signaling in apoptotic neuronal cells [J]. Molecular Neurobiology, 2018, 55(6): 5059-5074
    Fong H C, Ho J C, Cheung A H, et al. Developmental toxicity of the common UV filter, benophenone-2, in zebrafish embryos [J]. Chemosphere, 2016, 164: 413-420
    Meng Q, Yeung K, Kwok M L, et al. Toxic effects and transcriptome analyses of zebrafish (Danio rerio) larvae exposed to benzophenones [J]. Environmental Pollution, 2020, 265(Pt A): 114857
    王光辉, 徐浩, 黄嘉玲, 等. 多羟基二苯甲酮类化合物合成方法的研究进展[J]. 生物质化学工程, 2009, 43(1): 36-40

    Wang G H, Xu H, Huang J L, et al. Research progress on synthetic methods of polyhydroxybenzophenones [J]. Biomass Chemical Engineering, 2009, 43(1): 36-40 (in Chinese)

    Tsui M M, Leung H W, Wai T C, et al. Occurrence, distribution and ecological risk assessment of multiple classes of UV filters in surface waters from different countries [J]. Water Research, 2014, 67: 55-65
    Blüthgen N, Zucchi S, Fent K. Effects of the UV filter benzophenone-3 (oxybenzone) at low concentrations in zebrafish (Danio rerio) [J]. Toxicology and Applied Pharmacology, 2012, 263(2): 184-194
    Mao F J, He Y L, Gin K Y. Evaluating the joint toxicity of two benzophenone-type UV filters on the green alga Chlamydomonas reinhardtii with response surface methodology [J]. Toxics, 2018, 6(1): 8
    王一超, 孙艺, 崔蓉, 等. 2,4-二羟基二苯甲酮对可卡因致小鼠脑神经递质变化的影响[J]. 中国药物依赖性杂志, 2016, 25(5): 427-433

    Wang Y C, Sun Y, Cui R, et al. The effects of 2,4-dihydroxybenzophenone on the contents of neurotransmitters induced by cocaine administration in mouse brain [J]. Chinese Journal of Drug Dependence, 2016, 25(5): 427-433 (in Chinese)

    Thia E, Chou P H, Chen P J. In vitro and in vivo screening for environmentally friendly benzophenone-type UV filters with beneficial tyrosinase inhibition activity [J]. Water Research, 2020, 185: 116208
    Jin M, Dang J, Paudel Y N, et al. The possible hormetic effects of fluorene-9-bisphenol on regulating hypothalamic-pituitary-thyroid axis in zebrafish [J]. The Science of the Total Environment, 2021, 776: 145963
    Li W, Zha J M, Li Z L, et al. Effects of exposure to acetochlor on the expression of thyroid hormone related genes in larval and adult rare minnow (Gobiocypris rarus) [J]. Aquatic Toxicology, 2009, 94(2): 87-93
    Nandinsuren T, Shi W, Zhang A L, et al. Natural products as sources of new fungicides (Ⅱ): Antiphytopathogenic activity of 2,4-dihydroxyphenyl ethanone derivatives [J]. Natural Product Research, 2016, 30(10): 1166-1169
    Zhan T J, Cui S X, Liu X J, et al. Enhanced disrupting effect of benzophenone-1 chlorination byproducts to the androgen receptor: Cell-based assays and Gaussian accelerated molecular dynamics simulations [J]. Chemical Research in Toxicology, 2021, 34(4): 1140-1149
    卢婍, 周义军, 田英. 有机紫外线吸收剂二苯甲酮-3的环境污染及其内分泌干扰作用研究进展[J]. 上海交通大学学报(医学版), 2019, 39(11): 1320-1324 Lu Q, Zhou Y J, Tian Y. Research progress in environmental pollution and endocrine disruption of the UV filter benzophenone-3 [J]. Journal of Shanghai Jiao Tong University (Medical Science), 2019, 39(11): 1320-1324 (in Chinese)
    Tao J Y, Bai C L, Chen Y H, et al. Environmental relevant concentrations of benzophenone-3 induced developmental neurotoxicity in zebrafish [J]. The Science of the Total Environment, 2020, 721: 137686
    Dos Santos Almeida S, Silva Oliveira V, Ribeiro Dantas M, et al. Environmentally relevant concentrations of benzophenone-3 induce differential histopathological responses in gills and liver of freshwater fish [J]. Environmental Science and Pollution Research International, 2021, 28(33): 44890-44901
    Broniowska, S'lusarczyk J, Starek-S'wiechowicz B, et al. The effect of dermal benzophenone-2 administration on immune system activity, hypothalamic-pituitary-thyroid axis activity and hematological parameters in male Wistar rats [J]. Toxicology, 2018, 402-403: 1-8
    Müller-Fielitz H, Schwaninger M. The role of tanycytes in the hypothalamus-pituitary-thyroid axis and the possibilities for their genetic manipulation [J]. Experimental and Clinical Endocrinology & Diabetes, 2020, 128(6-7): 388-394
    Lee J, Kim S, Park Y J, et al. Thyroid hormone-disrupting potentials of major benzophenones in two cell lines (GH3 and FRTL-5) and embryo-larval zebrafish [J]. Environmental Science & Technology, 2018, 52(15): 8858-8865
    Sullivan S M. GFAP variants in health and disease: Stars of the brain and gut [J]. Journal of Neurochemistry, 2014, 130(6): 729-732
    Liu L L, Zhu H, Yan Y C, et al. Toxicity evaluation and biomarker selection with validated reference gene in embryonic zebrafish exposed to mitoxantrone [J]. International Journal of Molecular Sciences, 2018, 19(11): 3516
    Zhu X Y, Wu Y Y, Xia B, et al. Fenobucarb-induced developmental neurotoxicity and mechanisms in zebrafish [J]. Neurotoxicology, 2020, 79: 11-19
    Benowitz L I, Routtenberg A. GAP-43: An intrinsic determinant of neuronal development and plasticity [J]. Trends in Neurosciences, 1997, 20(2): 84-91
    付蕊, 徐桂芝, 朱海军, 等. 经颅磁刺激对学习记忆及大脑神经突触可塑性影响的研究进展[J]. 生物医学工程学杂志, 2021, 38(4): 783-789

    Fu R, Xu G Z, Zhu H J, et al. Research progress on the effect of transcranial magnetic stimulation on learning, memory and plasticity of brain synaptic [J]. Journal of Biomedical Engineering, 2021, 38(4): 783-789 (in Chinese)

    朱莹泉, 刘国良. TSH受体基因与先天性甲状腺功能低下症[J]. 实用糖尿病杂志, 2019, 15(5): 10-11

    , 8

    Garcia de Lomana M, Weber A G, Birk B, et al. In silico models to predict the perturbation of molecular initiating events related to thyroid hormone homeostasis [J]. Chemical Research in Toxicology, 2021, 34(2): 396-411
    Sun D, Zhou L T, Wang S Y, et al. Effect of di-(2-ethylhexyl) phthalate on the hypothalamus-pituitary-thyroid axis in adolescent rat [J]. Endocrine Journal, 2022, 69(2): 217-224
    Targovnik H M, Esperante S A, Rivolta C M. Genetics and phenomics of hypothyroidism and goiter due to thyroglobulin mutations [J]. Molecular and Cellular Endocrinology, 2010, 322(1-2): 44-55
    van der Spek A H, Fliers E, Boelen A. The classic pathways of thyroid hormone metabolism [J]. Molecular and Cellular Endocrinology, 2017, 458: 29-38
    Zhang D H, Zhou E X, Yang Z L. Waterborne exposure to BPS causes thyroid endocrine disruption in zebrafish larvae [J]. PLoS One, 2017, 12(5): e0176927
    Yang X J, Xie J J, Wu T X, et al. Hepatic and muscle expression of thyroid hormone receptors in association with body and muscle growth in large yellow croaker, Pseudosciaena crocea (Richardson) [J]. General and Comparative Endocrinology, 2007, 151(2): 163-171
    张育辉, 梁凯, 王宏元. 基于甲状腺激素受体的环境内分泌干扰物研究进展[J]. 陕西师范大学学报(自然科学版), 2016, 44(2): 71-78 Zhang Y H, Liang K, Wang H Y. Review on estimate of environmental endocrine disrupting chemicals based on thyroid hormone receptor [J]. Journal of Shaanxi Normal University (Natural Science Edition), 2016, 44(2): 71-78 (in Chinese)
    闫梦薇, 白易, 王德军, 等. 多溴二苯醚对甲状腺激素的影响及其机制研究进展[J]. 环境与职业医学, 2019, 36(10): 979-987

    Yan M W, Bai Y, Wang D J, et al. A review on disruption of thyroid hormones caused by polybrominated diphenyl ethers and associated mechanism [J]. Journal of Environmental and Occupational Medicine, 2019, 36(10): 979-987 (in Chinese)

  • 加载中
计量
  • 文章访问数:  1268
  • HTML全文浏览数:  1268
  • PDF下载数:  32
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-03-04

基于转录组学和斑马鱼模型研究BP1的神经内分泌毒性

    通讯作者: 靳梦, E-mail: mjin1985@hotmail.com ;  董小雷, E-mail: dongxiaolei1971@163.com
    作者简介: 姜鑫(1993—),女,硕士研究生,研究方向为生物医药,E-mail:jiangxinzf@163.com
  • 1. 齐鲁工业大学(山东省科学院)生物研究所, 山东省科学院药物筛选技术重点实验室, 济南 250103;
  • 2. 齐鲁工业大学(山东省科学院)生物工程学院, 济南 250300;
  • 3. 齐鲁工业大学(山东省科学院)山东省分子工程重点实验室, 化学与化工学院, 济南 250353
基金项目:

济南市“新高校20条”高校院所项目(2021GXRC106,2021GXRC111)

摘要: 以斑马鱼为模型,研究2,4-二羟基二苯甲酮(2,4-dihydroxybenzophenone, BP1)环境暴露对生物神经内分泌的影响。利用转录组测序技术比较空白对照组(Ctl组)与BP1处理组(2.4 μg·mL-1 BP1)间基因表达差异,并进行GO和KEGG分析。利用野生型AB斑马鱼进行行为学检测,基于转基因斑马鱼ioz4Tg/+(AB)观察甲状腺发育情况,并通过实时荧光定量PCR检测神经内分泌相关基因表达以验证BP1的神经内分泌毒性。空白对照组与BP1处理组显著差异表达基因数为390个,GO富集分析共获得包括对刺激的反应、行为、信号和神经突触等与神经内分泌相关在内的46个条目。KEGG分析筛选出22条通路,包括信号转导、内分泌系统、信号分子与相互作用等。与空白对照组相比,BP1组运动能力限制下降,甲状腺受损。实时荧光定量PCR结果显示,与空白对照组相比,gfapdio1trαtrβtshr表达降低,gap43dio2tg表达升高。BP1引起斑马鱼神经内分泌毒性。

English Abstract

参考文献 (41)

目录

/

返回文章
返回