小球藻(Chlorella vulgaris)耐受短期模拟酸雨及紫外辐射的光合生理特性研究
Study on Photosynthetic Physiological Characters of Chlorella vulgaris under Stress of Short-term Simulated Acid Rain and UV Radiation
-
摘要: 为了解新安江流域优势藻类对短期模拟酸雨及紫外辐射的光合生理响应,选取流域分离的一株绿藻门小球藻(Chlorella vulgaris)为对象,通过模拟酸雨引起的水体pH值降低(5.65和4.50),研究了短期(24 h)酸胁迫下该种在低光(60 μmol·m-2·s-1)与高光(150 μmol·m-2·s-1)培养时生长及光合活性的响应,并探讨了上述条件下该种对短期紫外辐射(UVR)的敏感性。结果表明,相较于对照组(pH值7.10),仅较低的pH值(4.50)显著抑制了小球藻生长并改变了其细胞形态(高光下细胞粒径显著降低)。高光培养而非低pH胁迫显著降低藻体光合色素含量(叶绿素a、叶绿素b);光保护色素(类胡萝卜素、三苯甲咪唑类氨基酸(MAAs)整体上未受光强或pH值影响。高光培养的藻体有效光化学效率(Yield)在低pH值下显著降低,而低光处理下各pH值处理间无显著差别。低光下培养的藻,经阳光模拟器下辐射处理后(可见光(P):87.5 W·m-2、紫外线A(UVA):33.5 W·m-2、紫外线B(UVB):1.91 W·m-2),Yield在低pH值(5.65、4.50)下整体低于高光处理组,且UVR对Yield、最大相对电子传递速率(rETRmax)、光能利用效率(α)的抑制率在低pH值、低光下更为显著。研究结果表明,藻细胞经历的光环境(高、低光强)可显著影响其对水体酸化与UVR耦合效应响应。Abstract: To learn the photosynthetic physiological response of dominant algae in Xin’anjiang River basin to short-term simulated acid rain (pH 5.65 and 4.50) and ultraviolet radiation (UVR), a strain of Chlorella vulgaris isolated from the river basin was selected as the object. The response of growth and photosynthetic activity of this species to short-term (24 h) acid stress were studied under low light (60 μmol·m-2·s-1) and high light (150 μmol·m-2·s-1), and the sensitivity of photosystem Ⅱ to short-term ultraviolet radiation (UVR) treatment under the above conditions was discussed. The results showed that only the low pH value (4.50) significantly inhibited the growth and changed the cell morphology (the cell size decreased significantly under high light) of C. vulgaris in comparison with the control group (pH 7.10). High light culture instead of low pH stress significantly reduced the photosynthetic pigment content (Chl a, Chl b) of C. vulgaris. The photoprotective pigments of carotenoids and mycosporine-like amino acids (MAAs) were generally not affected by light intensity or pH value. The effective quantum yield (Yield) cultured in high light decreased significantly at low pH value, but there was no significant difference among different pH values under low light treatment. The algae cultured in low light, after being irradiated by solar simulator with high photosynthetically active radiation (photosynthetically active radiation, P: 87.5 W·m-2) and UVR (ultraviolet A, UVA: 33.5 W·m-2, ultraviolet B, UVB: 1.91 W·m-2), Yield were lower than that of high light treatment group at low pH (5.65, 4.50), and the inhibition rate of UVR on Yield, maximum relative electron transfer rate (rETRmax) and light using efficiency (α) was more significant at low pH and low light. The results showed that the light environment (high and low light intensity) experienced by algae cells can significantly affect the coupling effect of water acidification and UVR.
-
Key words:
- simulated acid rain /
- UV radiation /
- Chlorella vulgaris /
- photosynthetic physiology
-
-
Kwiatkowski R E, Roff J C. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario Lakes[J]. Canadian Journal of Botany, 1976, 54(22):2546-2561 Leavitt P R, Findlay D L, Hall R I, et al. Algal responses to dissolved organic carbon loss and pH decline during whole-lake acidification:Evidence from paleolimnology[J]. Limnology and Oceanography, 1999, 44(3part2):757-773 Ohta H, Kobayashi Y, Moriyama A, et al. Acid Stress Responsive Genes, slr0967 and sll0939, are Directly Involved in Low-pH Tolerance of Cyanobacterium synechocystis sp. PCC6803[M]//Advanced Topics in Science and Technology in China. Berlin, Heidelberg:Springer Berlin Heidelberg, 2013:659-662 Lessmann D, Fyson A, Nixdorf B. Phytoplankton of the extremely acidic mining lakes of Lusatia (Germany) with pH ≤ 3[J]. Hydrobiologia, 2000, 433:123-128 Raut R, Sharma S, Bajracharya R M. Biotic response to acidification of lakes-A review[J]. Kathmandu University Journal of Science, Engineering and Technology, 2012, 8(1):171-184 李伟, 杨雨玲, 董丽丽, 等. 短期酸化对新安江流域屯溪段水体浮游植物群落结构及多样性的影响[J]. 生态毒理学报, 2016, 11(6):313-322 Li W, Yang Y L, Dong L L, et al. Short-term impact of acidification on the community structure and diversity of aquatic phytoplankton in Xin'anjiang River Basin (Tunxi section)[J]. Asian Journal of Ecotoxicology, 2016, 11(6):313-322(in Chinese)
李伟, 杨雨玲, 黄松, 等. 产毒与不产毒铜绿微囊藻对模拟酸雨及紫外辐射的生理响应[J]. 生态学报, 2015, 35(23):7615-7624 Li W, Yang Y L, Huang S, et al. Physiological responses of toxigenic and non-toxigenic strains of Microcystis aeruginosa to simulated acid rain and UV radiation[J]. Acta Ecologica Sinica, 2015, 35(23):7615-7624(in Chinese)
胡长玉, 方建新, 李伟, 等. 新安江(安徽段)及其支流丰水期浮游植物功能群[J]. 生态学杂志, 2019, 38(4):1013-1021 Hu C Y, Fang J X, Li W, et al. Phytoplankton functional groups of Xin'anjiang River Basin (Anhui section) and its tributaries in flood season[J]. Chinese Journal of Ecology, 2019, 38(4):1013-1021(in Chinese)
张国庆, 杨雨玲, 唐爱国, 等. 新安江流域(屯溪段)浮游植物群落结构及其与环境因子的关系[J]. 生态学杂志, 2020, 39(2):527-540 Zhang G Q, Yang Y L, Tang A G, et al. Phytoplankton community structure and its relationship with environmental factors in Xin'anjiang River Basin (Tunxi section)[J]. Chinese Journal of Ecology, 2020, 39(2):527-540(in Chinese)
Li W, Yang Y L, Li Z Z, et al. Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes[J]. Journal of Applied Phycology, 2017, 29(1):133-142 Harrison J W, Smith R E H. Effects of ultraviolet radiation on the productivity and composition of freshwater phytoplankton communities[J]. Photochemical & Photobiological Sciences, 2009, 8(9):1218-1232 Litchman E, Neale P J. UV effects on photosynthesis, growth and acclimation of an estuarine diatom and cryptomonad[J]. Marine Ecology Progress Series, 2005, 300:53-62 van de Poll W H, Janknegt P J, Van Leeuwe M A, et al. Excessive irradiance and antioxidant responses of an Antarctic marine diatom exposed to iron limitation and to dynamic irradiance[J]. Journal of Photochemistry and Photobiology B:Biology, 2009, 94(1):32-37 Buma A G J, Boelen P, Jeffrey W H. UVR-induced DNA Damage in Aquatic Organisms[M]//UV Effects in Aquatic Organisms and Ecosystems. Cambridge:Royal Society of Chemistry, 2007:291-328 Wellburn A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144(3):307-313 Dunlap W C, Rae G A, Helbling E W, et al. Ultraviolet-absorbing compounds in natural assemblages of Antarctic phytoplankton[J]. Antarctic Journal of the United States, 1995, 30:323-326 Jassby A D, Platt T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton[J]. Limnology and Oceanography, 1976, 21(4):540-547 中国科学院中国孢子植物志委员会. 中国淡水藻志(第八卷):绿藻门:绿球藻目(上)[M]. 北京:科学出版社, 2004:30-31 Du E Z, Dong D, Zeng X, et al. Direct effect of acid rain on leaf chlorophyll content of terrestrial plants in China[J]. Science of the Total Environment, 2017, 605-606:764-769 Liu Z Q, Yang J Y, Zhang J E, et al. A bibliometric analysis of research on acid rain[J]. Sustainability, 2019, 11(11):3077 Ledger M E, Hildrew A G. The ecology of acidification and recovery:Changes in herbivore-algal food web linkages across a stream pH gradient[J]. Environmental Pollution, 2005, 137(1):103-118 Gao S. A decline in macro-algae species resulting in the overwhelming prevalence of Corallina species is caused by low-pH seawater induced by short-term acid rain[J]. Journal of Experimental Marine Biology and Ecology, 2016, 475:144-153 Ledger M E, Hildrew A G. Growth of an acid-tolerant stonefly on epilithic biofilms from streams of contrasting pH[J]. Freshwater Biology, 2001, 46(11):1457-1470 Vinebrooke R D, Dixit S S, Graham M D, et al. Whole-lake algal responses to a century of acidic industrial deposition on the Canadian Shield[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(3):483-493 Stumm W, Morgan J J. Aquatic Chemistry:Chemical Equilibria and Rates in Natural Waters[M]. John Wiley & Sons, 2012:138-140 Reinfelder J R. Carbon concentrating mechanisms in eukaryotic marine phytoplankton[J]. Annual Review of Marine Science, 2011, 3:291-315 Li W, Wang T F, Campbell D A, et al. Ocean acidification interacts with variable light to decrease growth but increase particulate organic nitrogen production in a diatom[J]. Marine Environmental Research, 2020, 160:104965 Larkum A W D. Light-harvesting Systems in Algae[M]//Larkum A W D, Douglas S E, Raven J A. Photosynthesis in Algae. Dordrecht:Springer Netherlands, 2003:277-304 Gao K S, Campbell D A. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH:A review[J]. Functional Plant Biology, 2014, 41(5):449-459 Gao K S, Xu J T, Gao G, et al. Rising CO2 and increased light exposure synergistically reduce marine primary productivity[J]. Nature Climate Change, 2012, 2(7):519-523 Liu N N, Yuan Y J, Yi J D, et al. The effects of modified acid rain on Anabaena flos-aquae under different light levels[J]. Fundamental and Applied Limnology, 2022, 195(4):297-304 Wu H Y, Abasova L, Cheregi O, et al. D1 protein turnover is involved in protection of photosystem Ⅱ against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis[J]. Journal of Photochemistry and Photobiology B, Biology, 2011, 104(1-2):320-325 Nina Bouchard J, Campbell D A, Roy S. Effects of UV-b radiation on the d1 protein repair cycle of natural phytoplankton communities from three latitudes (Canada, Brazil, and Argentina)[J]. Journal of Phycology, 2005, 41(2):273-286 Wu H Y, Roy S, Alami M, et al. Photosystem Ⅱ photoinactivation, repair, and protection in marine centric diatoms[J]. Plant Physiology, 2012, 160(1):464-476 Hãder D P, Williamson C E, Wãngberg S, et al. Effects of UV radiation on aquatic ecosystems and interactions with other environmental factors[J]. Photochemical & Photobiological Sciences, 2015, 14(1):108-126 -

计量
- 文章访问数: 2323
- HTML全文浏览数: 2323
- PDF下载数: 75
- 施引文献: 0