硫酸铜对关键食物链环节毒性作用的微宇宙模拟研究
Microcosmic Simulation Studies of Toxic Effects of Copper Sulfate on Key Food Chain Links
-
摘要: 水体富营养化及重金属污染是全球水生态系统的2个主要问题,但在受重金属及较高浓度氮(N)、磷(P)复合污染的水体中,重金属对水体富营养化进程中不同关键食物链环节的影响至今未明。通过构建复合污染水体中生产者-初级消费者-次级消费者的微宇宙实验体系进行单向多级围隔试验,研究了不同浓度Cu2+在高浓度N、P条件下对水体富营养化进程中系统内“斜生栅藻—隆线溞—斑马鱼”3个关键食物链环节的环境生物效应,分析不同试验阶段体系内藻密度(O484)与叶绿素a(Chl a)、水体CODCr值与浊度、隆线溞与斑马鱼的存活、摄食活动及死亡率等变化规律。结果表明:(1)高浓度N、P条件下,低浓度Cu2+(0.01 mg·L-1)明显促进体系中藻的生长,而对隆线溞和斑马鱼均无明显影响,但围隔内隆线溞对藻的滤食消减使藻的数量始终处于较低水平(试验结束时藻密度为0.041)。(2)高浓度N、P条件下中浓度Cu2+(0.04 mg·L-1)的存在对体系内斑马鱼尚未产生明显急性毒性,但对同体系中的隆线溞显示出较强生物毒性(死亡率达80%),尚未死亡的少量个体显示活动能力及滤食能力显著减弱,在高浓度N、P刺激下水生态系统形成斜生栅藻占绝对优势的重度富营养化现象(试验结束时Chl a达874.7 μg·L-1)。(3)高浓度N、P条件下高浓度Cu2+(0.16 mg·L-1)的存在,导致体系内隆线溞在试验开始后全部死亡,且斜生栅藻也受到一定毒害(O484降为0.035),此时的斑马鱼尚未受明显毒害,且受到一定毒害作用的斜生栅藻在试验第5天时开始适应恢复并逐渐显现出水色浓绿的富营养化特征(试验结束时Chl a为378.04 μg·L-1)。这说明在无毒害物质或少量毒害物质存在条件下,健全的水生生态系统能消纳高浓度N、P带来的胁迫而不易发生富营养化,但在受高浓度N、P复合污染的水体中,毒害物质的输入将是造成体系中敏感性关键性食物链环节(如初级消费者)断裂及生态系统崩溃、继而导致富营养化进程加剧的关键性因素,在水体环境生态治理与污染物环境风险评价中需要引起足够重视。Abstract: Eutrophication and heavy metal pollution are two main problems in the global aquatic ecosystem. However, the effects of heavy metals on different key food chain links in eutrophication process in water polluted by heavy metals and high concentrations of nitrogen (N) and phosphorus (P) remains unclear. A microcosmic experimental system of producer-primary consumer-secondary consumer in a complex polluted water body was conducted to carry out unidirectional multistage enclosure test in this study. The environmental biological effects of different concentrations of Cu2+ on the three key food chain links of "Scenedesmus obliquus-Daphnia carinata-Danio rerio" in the process of water eutrophication were studied under the condition of high concentrations of N and P. The changes of algal density (O484), chlorophyll a, CODCr, turbidity, and survival rate, feeding activity and mortality of Daphnia carinata and Danio rerio in different experimental stages were analyzed. The results showed that:(1) Under high concentrations of N and P, the low concentration of Cu2+ (0.01 mg·L-1) significantly promoted the growth of algae in the system, but had no significant effect on Daphnia carinata and Danio rerio, and the number of algae was always at a low level due to the predation of Daphnia carinata in the enclosure (the density of algae was 0.041 at the end of the experiment). (2) Under high concentrations of N and P, the medium concentration of Cu2+(0.04 mg·L-1) did not cause acute toxicity to Danio rerio in the system, but showed strong biological toxicity to Daphnia carinata in the same system, the activity and feeding capacity of a small number of surviving individuals were significantly reduced. High concentrations of N and P stimulated the formation of severe eutrophication in the aquatic ecosystem dominated by Scenedesmus obliquus (the Chl a was 874.7 μg·L-1 at the end of the experiment). (3) Under high concentration of N and P, the presence of high concentration of Cu2+ (0.16 mg·L-1) led to the death of Daphnia carinata in the system at the beginning of the experiment. At this time, Danio rerio had not been significantly poisoned, and Scenedesmus obliquus had also been poisoned to a certain extent, but it began to adapt and recover on the 5th day of the test and gradually showed the eutrophication characteristics of dark green water color (the Chl a was 378.04 μg·L-1 at the end of the experiment). This indicates that under the condition of non-toxic substances or a small amount of toxic substances, the sound aquatic ecosystem can resist the stress caused by high concentrations of N and P and is not easy to occur eutrophication. However, in the water polluted by high concentrations of N and P, the input of toxic substances will be the key factor to cause the rupture of sensitive key food chain links (such as primary consumers) and the collapse of ecosystem, which will lead to the intensification of eutrophication process. Therefore, sufficient attention should be paid to the ecological management of water environment and the environmental risk assessment of pollutants.
-
Wang J Z, Jiang X, Zheng B H, et al. Effect of algal bloom on phosphorus exchange at the sediment-water interface in Meiliang Bay of Taihu Lake, China[J]. Environmental Earth Sciences, 2016, 75(1):57 Saha N, Rahman M S, Ahmed M B, et al. Industrial metal pollution in water and probabilistic assessment of human health risk[J]. Journal of Environmental Management, 2017, 185:70-78 Zheng X L, Liu G X, Yang W, et al. Dominant contribution of a lake's internal pollution to eutrophication during rapid urbanization[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 107(5):904-910 Wang F, Dong W Y, Zhao Z L, et al. Heavy metal pollution in urban river sediment of different urban functional areas and its influence on microbial community structure[J]. Science of the Total Environment, 2021, 778:146383 杨颖, 孙文, 刘吉宝, 等. 北运河流域沙河水库沉积物重金属分布及生态风险评估[J]. 环境科学学报, 2021, 41(1):217-227 Yang Y, Sun W, Liu J B, et al. Distribution and ecological risk assessment of heavy metals in sediments of Shahe Reservoir in Northern Canal Basin[J]. Acta Scientiae Circumstantiae, 2021, 41(1):217-227(in Chinese)
Alexander T J, Vonlanthen P, Seehausen O. Does eutrophication-driven evolution change aquatic ecosystems?[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2017, 372(1712):20160041 Wang H, García Molinos J, Heino J, et al. Eutrophication causes invertebrate biodiversity loss and decreases cross-taxon congruence across anthropogenically-disturbed lakes[J]. Environment International, 2021, 153:106494 Le Moal M, Gascuel-Odoux C, Ménesguen A, et al. Eutrophication:A new wine in an old bottle?[J]. Science of the Total Environment, 2019, 651:1-11 Zhang Y, Luo P P, Zhao S F, et al. Control and remediation methods for eutrophic lakes in the past 30 years[J]. Water Science and Technology:A Journal of the International Association on Water Pollution Research, 2020, 81(6):1099-1113 VandKhanghah M M, Hedayati A, Nazeri S, et al. Biomagnification of copper along the aquatic food chain (Artemia franciscana, Danio rerio, and Astronotus ocellatus)[J]. Biological Trace Element Research, 2022, 200(4):1854-1860 王振, 金小伟, 王子健. 铜对水生生物的毒性:类群特异性敏感度分析[J]. 生态毒理学报, 2014, 9(4):640-646 Wang Z, Jin X W, Wang Z J. Taxon-specific sensitivity differences of copper to aquatic organisms[J]. Asian Journal of Ecotoxicology, 2014, 9(4):640-646(in Chinese)
Donnachie R L, Johnson A C, Moeckel C, et al. Using risk-ranking of metals to identify which poses the greatest threat to freshwater organisms in the UK[J]. Environmental Pollution, 2014, 194:17-23 Hu C Y, Shui B N, Yang X L, et al. Trophic transfer of heavy metals through aquatic food web in a seagrass ecosystem of Swan Lagoon, China[J]. Science of the Total Environment, 2021, 762:143139 Gao Y F, Wang R Y, Li Y Y, et al. Trophic transfer of heavy metals in the marine food web based on tissue residuals[J]. Science of the Total Environment, 2021, 772:145064 Fu Z Y, Wu F C, Chen L L, et al. Copper and zinc, but not other priority toxic metals, pose risks to native aquatic species in a large urban lake in Eastern China[J]. Environmental Pollution, 2016, 219:1069-1076 李强, 刘云庆, 陈望香, 等. 新疆地表水体质量金属生态风险评估[J]. 中国环境科学, 2018, 38(5):1913-1922 Li Q, Liu Y Q, Chen W X, et al. Ecological risk assessment of heavy metals in water of Xinjiang Area[J]. China Environmental Science, 2018, 38(5):1913-1922(in Chinese)
张旭, 付卫强, 冯承莲, 等. 我国淡水中铜的水质基准及生态风险评估研究[J]. 环境工程, 2016, 34(5):156-160 Zhang X, Fu W Q, Feng C L, et al. Water quality criteria and ecological risk assessment of copper in Chinese freshwaters[J]. Environmental Engineering, 2016, 34(5):156-160(in Chinese)
国家环境保护总局. 水质物质对蚤类(大型蚤)急性毒性测定方法:GB/T 13266-1991[S]. 北京:中国标准出版社, 1991 吴永贵, 熊焱, 林初夏, 等. 不同氮形态对重金属Cu Zn Cd生物毒性效应的影响[J]. 农业环境科学学报, 2006, 25(6):1560-1565 Wu Y G, Xiong Y, Lin C X, et al. The joint-biotoxicity effect of different forms of nitrogen on heavy metals in water by the phototacti behavior of Daphnia[J]. Journal of Agro-Environment Science, 2006, 25(6):1560-1565(in Chinese)
吴永贵, 袁玲, 黄建国. Cr6+的隆线溞趋光指数与LC50急性毒性的比较[J]. 环境科学学报, 2004, 24(5):905-909 Wu Y G, Yuan L, Huang J G. Comparison of phototaxis index with acute toxicity test (LC50) using Daphnia carinata[J]. Acta Scientiae Circumstantiae, 2004, 24(5):905-909(in Chinese)
王良韬, 吴永贵, 廖芬, 等. Cu2+对水生食物链关键环节生物的毒性效应[J]. 贵州农业科学, 2011, 39(5):226-230 , 234 Wang L T, Wu Y G, Liao F, et al. Study on biotoxicity of Cu2+ to organisms of key link in aquatic ecosystems food chain[J]. Guizhou Agricultural Sciences, 2011, 39(5):226-230, 234(in Chinese)
汪红军, 李嗣新, 周连凤, 等. 5种重金属暴露对斑马鱼呼吸运动的影响[J]. 农业环境科学学报, 2010, 29(9):1675-1680 Wang H J, Li S X, Zhou L F, et al. The effect of exposure to five kinds of heavy metals on respiratory movement of Zebra fish (Brachydanio rerio)[J]. Journal of Agro-Environment Science, 2010, 29(9):1675-1680(in Chinese)
唐红梅. 微回流比色法测定CODCr的试剂配方及测定方法[J]. 化工技术与开发, 2005, 34(5):30-31 Tang H M. Determination of CODCr by micro-reflux colormetry with self-made agent[J]. Guangxi & Development of Chemical Industry, 2005, 34(5):30-31(in Chinese)
国家技术监督局, 国家环境保护局. 水质浊度的测定:GB 13200-1991[S]. 北京:中国标准出版社, 1992 张丽彬, 王启山, 徐新惠, 等. 乙醇法测定浮游植物叶绿素a含量的讨论[J]. 中国环境监测, 2008, 24(6):9-10 Zhang L B, Wang Q S, Xu X H, et al. Discussion on measurement of chlorophyll-a in phytoplankton with ethanol[J]. Environmental Monitoring in China, 2008, 24(6):9-10(in Chinese)
陈宇炜, 陈开宁, 胡耀辉. 浮游植物叶绿素a测定的"热乙醇法"及其测定误差的探讨[J]. 湖泊科学, 2006, 18(5):550-552 Chen Y W, Chen K N, Hu Y H. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method[J]. Journal of Lake Sciences, 2006, 18(5):550-552(in Chinese)
刘璐, 闫浩, 夏文彤, 等. 镉对铜绿微囊藻和斜生栅藻的毒性效应[J]. 中国环境科学, 2014, 34(2):478-484 Liu L, Yan H, Xia W T, et al. Toxic effect of cadmium on Microcysis aeruginosa and Scenedesmus obliquus[J]. China Environmental Science, 2014, 34(2):478-484(in Chinese)
Shang Y X, Yu X F, Romero-González M E. Screening of algae material as a filter for heavy metals in drinking water[J]. Algal Research, 2015, 12:258-261 Kendig E L, Le H H, Belcher S M. Defining hormesis:Evaluation of a complex concentration response phenomenon[J]. International Journal of Toxicology, 2010, 29(3):235-246 王丽平, 郑丙辉, 孟伟. 重金属Cu对两种海洋微藻的毒性效应[J]. 海洋环境科学, 2007, 26(1):6-9 Wang L P, Zheng B H, Meng W. Toxicity effects of heavy metal copper on two marine microalgae[J]. Marine Environmental Science, 2007, 26(1):6-9(in Chinese)
王图锦, 周富春, 潘瑾, 等. 大型溞与富营养化水体中藻类的相互作用研究[J]. 环境污染与防治, 2019, 41(7):767-771 Wang T J, Zhou F C, Pan J, et al. Study on the interaction between Daphnia magna and algae in eutrophic water[J]. Environmental Pollution & Control, 2019, 41(7):767-771(in Chinese)
刘煌, 曹琳, 许国静, 等. 大型溞强化生物操纵修复富营养化水体研究[J]. 环境科学与技术, 2020, 43(2):156-161 Liu H, Cao L, Xu G J, et al. Study on the remediation of eutrophic water by enhanced biomanipulation of Daphnia magna[J]. Environmental Science & Technology, 2020, 43(2):156-161(in Chinese)
王茜, 郭鹄飞, 王兰. 镉对大型溞摄食能力和相关生理指标的影响[J]. 水生生物学报, 2018, 42(3):616-621 Wang Q, Guo H F, Wang L. Effect of cadmium on the feeding capacity and physiological status of Daphnia magna[J]. Acta Hydrobiologica Sinica, 2018, 42(3):616-621(in Chinese)
段晨雪, 张宝玉, 伍松翠, 等. 重金属镉对斜生栅藻光合作用的影响[J]. 海洋与湖沼, 2015, 46(2):351-356 Duan C X, Zhang B Y, Wu S C, et al. Effect of cadmium on photosynthesis of Scenedesmus obliquus[J]. Oceanologia et Limnologia Sinica, 2015, 46(2):351-356(in Chinese)
计量
- 文章访问数: 1803
- HTML全文浏览数: 1803
- PDF下载数: 42
- 施引文献: 0