从组分和性质角度谈污染地块中石油烃的人体健康风险评估

杨璐, 石佳奇, 陈樯, 龙涛. 从组分和性质角度谈污染地块中石油烃的人体健康风险评估[J]. 生态毒理学报, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001
引用本文: 杨璐, 石佳奇, 陈樯, 龙涛. 从组分和性质角度谈污染地块中石油烃的人体健康风险评估[J]. 生态毒理学报, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001
Yang Lu, Shi Jiaqi, Chen Qiang, Long Tao. Human Health Risk Assessment of Petroleum Hydrocarbons in Contaminated Sites from the Perspective of Components and Properties[J]. Asian journal of ecotoxicology, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001
Citation: Yang Lu, Shi Jiaqi, Chen Qiang, Long Tao. Human Health Risk Assessment of Petroleum Hydrocarbons in Contaminated Sites from the Perspective of Components and Properties[J]. Asian journal of ecotoxicology, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001

从组分和性质角度谈污染地块中石油烃的人体健康风险评估

    作者简介: 杨璐(1990-),女,博士,研究方向为生态毒理学,E-mail:yanglu@nies.org
    通讯作者: 陈樯, E-mail: chenqiang@nies.org
  • 基金项目:

    国家重点研发计划资助项目(2018YFC1801100)

  • 中图分类号: X171.5

Human Health Risk Assessment of Petroleum Hydrocarbons in Contaminated Sites from the Perspective of Components and Properties

    Corresponding author: Chen Qiang, chenqiang@nies.org
  • Fund Project:
  • 摘要: 石油烃的人体健康风险评估是污染地块土壤污染风险评估过程中的最常见的问题之一,其远比单一污染物的评估复杂和困难。但我国缺乏针对性的评估方法,实际操作中存在较多误区。因此,对于石油烃概念、性质的归纳总结以及对其健康风险评估方法的研究和探索,具有重要的意义。本文介绍了石油烃的基本概念,分析了不同馏分性质间的关系,回顾并分析了其分析测试方法及人体健康风险评估方法的适用要求及优缺点,提出了指示剂法与分馏法相结合采用典型样品馏分占比进行总体评估的工作方法,进而针对我国当前面临的问题,提出了后续的研究和发展建议。
  • 哌拉西林(piperacillin,PIP)属于青霉素类抗生素. 受现有污水处理设施去除率低[1]、污水直接排放等因素影响,PIP在环境中已有检出[2-3]. PIP的预测无效应浓度(Predicted No-effect Concentration, PNEC)较低(0.5 μg·L−1),表明其在很低的浓度水平就具有环境风险[4]. 因此,有必要了解PIP在水环境中的迁移转化规律.

    水解是PIP在水环境中的主要代谢途径[5]. PIP的主要特征结构是分子内的β-内酰胺环与哌嗪结构,除此以外还含有—NH2、—COOH和—OH等. β-内酰胺环的水解是青霉素类抗生素在环境中水解的重要途径,即β-内酰胺环结构中的α-氨基和羧酸根基团之间的分子内酰胺化反应,其反应速率受温度、pH、金属离子等影响[5-10].

    本研究测定PIP在不同温度、pH条件下浓度随时间的变化,计算了PIP的水解速率常数、半衰期与活化能. 结合液相色谱质谱分析,推导PIP在不同pH条件下的水解机理.

    仪器:液相色谱(1260 infinity Ⅱ,安捷伦,美国),pH计(PHS-3C,上海越平,中国),恒温培养箱(SPX-250B,上海琅玕实验设备有限公司,中国),液相色谱质谱(Xevo-TQD,Waters,美国).

    材料:邻苯二甲酸氢钾(GR,北京化工厂,中国),2-环己氨基乙磺酸(CHES)(≥99.5%,阿拉丁,中国),4-吗啉乙磺酸(MES)(≥99%,阿拉丁,中国),3-吗啉丙磺酸(MOPS)(≥99.5%,阿拉丁,中国),PIP(99.0%,坛墨质检,中国),盐酸(CMOS,国药集团,中国),氢氧化钠(AR,西陇化工股份有限公司,中国),甲醇(HPLC,阿拉丁,中国).

    正交反应体系:温度为15 ℃、25 ℃、35 ℃,pH为3、5、5.6(无缓冲盐)、7、9,每一种实验条件的反应体系平行配置3组. 反应体系均在避光条件下培养,实验所用器具均预先使用高压灭菌处理.在反应开始后的4周内,按一定时间间隔取样测定。

    液相色谱:色谱柱(Poroshell EC-C18,4 μm ×4.6 mm × 150 mm),柱温30 ℃,于220 nm处使用VWD检测器进行测定. 进样量为10 μL,流动相A和流动相B分别为0.025 mol·L−1 NaH2PO4(45%)和甲醇(55%),流速1.0 mL·min−1 .

    液相色谱质谱:色谱柱Waters ACQUITY UPLC BEH C18(2.1 mm × 50 mm × 7 μm);流动相A和流动相B分别为0.1%甲酸-水溶液和0.1%甲酸-甲醇溶液,流速为0.20 mL·min−1;色谱柱温度为40 ℃;样品进样量为10 μL. 采用全扫描模式检测对质荷比(m/z)为50—600的范围检测,离子源温度为150 ℃;毛细管电压为3.2 V;碰撞气和脱溶剂气流量分别为50 L·h−1和550 L·h−1,去溶剂温度为550 ℃. 流动相为在0—2 min(A 95%,B 5%),2—7 min(A由95%下降至5%, B由5%上升至95%), 7—8 min(A 5%,B 95%), 8—10 min (A由5%上升至95%, B由95%下降至5%).

    PIP在不同温度下的一级动力学水解速率、半衰期及活化能见表1. 在pH一定的条件下,PIP水解速率均随温度的上升而加快. 这与前人的总结的规律相同,即随着温度升高,抗生素更容易水解[6, 11]. 在不同pH条件下,PIP半衰期受温度影响变化趋势相近. 计算PIP的平均水解速率变化因子[6],在pH = 3、5、5.6、7、9时,每增加10 ℃,PIP的平均水解速率因子分别增加0.498、0.499、0.499、0.496、0.494 h−1. PIP的平均水解速率变化因子不受pH影响,在不同pH条件下,每增加10 ℃,PIP的平均水解速率变化因子为0.497 h−1.

    表 1  温度对PIP在不同pH条件下水解速率、半衰期及活化能的影响
    Table 1.  Effect of temperature on the degradation rate, half-life, and activation energy of PIP under different pH conditions
    pH水解速率常数/h−1|半衰期/h活化能/(kJ·mol−1
    15 ℃25 ℃35 ℃
    30.0029|240.80.0029|236.40.0095|72.645.3
    50.0014|503.80.0016|439.20.0019|364.812.0
    70.0018|384.80.0108|64.30.0044|155.931.2
    90.0269|25.80.1159|6.00.1515|4.662.9
    5.6(无缓冲盐)0.0013|536.60.0013|544.50.0032|217.634.1
     | Show Table
    DownLoad: CSV

    pH对PIP的水解速率影响见表1. PIP的水解速率受pH影响较大,当pH = 9时的水解速率最快,pH = 3时次之,pH = 7较慢,在pH = 5和无缓冲盐的体系中更慢. 当pH不同时,PIP水解反应的活化能差异较大,表明PIP的水解应存在不同的反应路径. 当反应超过500 h后,PIP在非碱性条件下的吸收峰面积不再继续降低,因此本文中关于PIP的动力学计算仅使用了500 h前的数据.

    研究表明,碱性条件有利于青霉素类抗生素的水解[12],青霉素类抗生素在碱性条件下,多以阴离子状态存在,以阿莫西林(Amoxicillin,AMX)为例,当pH大于9.63时,AMX以AMX2-的形式存在[13]. 青霉素类抗生素处于离子状态时,更容易发生水解反应[6]. 除此以外,Zhang等研究发现,羰基对青霉素类抗生素的水解过程有催化作用[8]. 头孢拉定属于青霉素类抗生素,分子结构内具有β-内酰胺环. 头孢拉定分子内β-内酰胺环C8-N5的开环反应存在两种方式. 一是H2O中的H与—OH同时进攻C8与N5;二是—OH先进攻C8,随后H转移至羰基的O上,再转移至N5上. 经计算,第二种开环反应的吉布斯自由能低于第一种开环反应,第二种开环反应更容易发生[8]. 随溶液pH的上升,溶液中游离的—OH增加,有利于第二种开环反应的正向移动,进而加速β-内酰胺环结构的水解.

    利用液相色谱质谱对15 ℃不同pH条件下反应40 d后的PIP的水解产物进行检测. 如图1 a所示,PIP (m/z = 518)的保留时间(retention time,RT)为6.0 min(图1 a). pH = 9时(图1 b),PIP完全水解(在6.0 min处无色谱峰). PIP的主要水解产物为P1(m/z = 536)(RT = 5.7 min)、P4(m/z = 100)(RT = 2.0 min)、P6(m/z = 554)(RT = 5.2 min). P1为PIP的β-内酰胺环开环反应的直接水解产物[14].

    图 1  哌拉西林水解产物的总离子流(TIC)图(a) PIP;(b) pH=9;(c) pH=7;(d) pH=5.6;(e) pH=5;(f) pH=3
    Figure 1.  TIC on hydrolysis products from Piperacillin

    pH=3时,PIP完全水解,主要水解产物为P2(m/z = 143)(RT = 5.2 min)、P3(m/z = 492)(RT = 5.7 min)(图1 f). P3是P1失去一个羧基后的水解产物,该反应在pH = 3时更容易发生[14]. P2是PIP的常见杂质与水解产物[14-15],也是商业合成PIP的原料之一[16]. 对比PIP在pH = 3和pH = 9时的水解产物. 在pH = 9时,未检出P2,因此推测P4为P2在碱性条件下的水解产物. 由于哌嗪结构在碱性条件下不稳定,推测P6为P1中哌嗪结构在碱性条件下水解的产物.

    pH = 7、5.6、5时(图1 c,d,e),PIP不完全水解,PIP的剩余浓度分别为5.98、3.63、5.69 μg·L−1. PIP的主要水解产物为P3、P5(m/z = 359)(RT = 6.0 min). 在pH = 7时,P1检出,在pH = 5时,P2(m/z = 143)(RT = 5.2 min)检出. P5存在于PIP的杂质谱中,是PIP在中性条件下常见的水解产物[15]. 与pH=3和pH=9时不同,在pH = 7、5.6、5时PIP未完全水解. 原因可能是P1在中性和弱酸性条件下较为稳定,容易与PIP形成稳定的二聚体[15],二聚体的存在会抑制PIP的水解. 当pH = 9时,PIP快速水解,不易与P1形成P7(m/z = 1035)(图2). 研究表明,弱酸条件下更利于P7的生成[15],这与我们测定的PIP剩余浓度的差异具有相同的规律. P7的存在使得在中性和弱酸条件下,PIP在500 h后达到PIP、P1与P7之间的化学平衡,进而抑制了PIP的水解. PIP可能的水解机理见图2.

    图 2  哌拉西林水解反应机理
    Figure 2.  Hydrolysis mechanism of Piperacillin

    (1)温度每增加10 ℃,PIP的平均水解速率因子增加0.497 h−1.

    (2)pH通过影响PIP在反应体系中的存在形式,进而影响其水解的反应途径. 碱性条件下PIP水解更快.

    (3)碱性条件下,PIP分子内的哌嗪结构不稳定,会进一步水解,m/z = 143的产物进一步水解为m/z = 100的水解产物,m/z = 536的产物进一步水解为m/z = 554的水解产物.

    (4)PIP与其水解产物(m/z = 536)形成的二聚体在弱酸性和中性条件下会抑制PIP的水解.

  • 刘丹青. 我国污染场地土壤石油烃环境质量标准体系的现状与趋势[J]. 中国环境监测, 2020, 36(1):138-146

    Liu D Q. Current situation and trend of petroleum hydrocarbon related standard system in contaminated site soils of China[J]. Environmental Monitoring in China, 2020, 36(1):138-146(in Chinese)

    黄雪洋. 污染场地地下水中石油烃的生物强化降解及风险管控研究[D]. 北京:中国地质大学(北京), 2020:1-2 Huang X Y. Research on biodegradation and risk control of petroleum hydrocarbon in groundwater at a contaminated site[D]. Beijing:China University of Geosciences, 2020:1-2(in Chinese)
    中华人民共和国生态环境部. 建设用地土壤污染风险评估技术导则:HJ 25.3-2019[S]. 北京:中国环境出版集团, 2020 Ministry of Ecology and Environment of the People's Republic of China. Technical guidelines for risk assessment of soil contamination of land for construction:HJ 25.3-2019

    [S]. Beijing:China Environmental Science Press, 2020(in Chinese)

    中华人民共和国生态环境部. 土壤环境质量建设用地土壤污染风险管控标准:GB36600-2018[S]. 北京:中国环境出版集团, 2019 Ministry of Ecology and Environment of the People's Republic of China. Soil environmental quality risk control standard for soil contamination of development land:GB36600-2018[S]. Beijing:China Environmental Science Press, 2019

    (in Chinese)

    中华人民共和国生态环境部. 工业企业场地环境调查评估与修复工作指南(试行)[S]. 北京:中华人民共和国生态环境部, 2014
    中华人民共和国生态环境部. 建设用地土壤环境调查评估技术指南[S]. 北京:中华人民共和国生态环境部, 2017
    上海市生态环境局. 沪环土[2020] 62号上海市建设用地土壤污染状况调查、风险评估、风险管控与修复方案编制、风险管控与修复效果评估工作的补充规定(试行)[S]. 上海:上海市生态环境局, 2020
    陈捷. 石油烃组分在土壤和地下水环境中的分布规律与迁移特征研究[D]. 广州:华南理工大学, 2018:3-5 Chen J. Distribution and migration characteristics of petroleum hydrocarbon components in soil and groundwater environment[D]. Guangzhou:South China University of Technology, 2018:3

    -5(in Chinese)

    Adeniji A O, Okoh O O, Okoh A I. Analytical methods for the determination of the distribution of total petroleum hydrocarbons in the water and sediment of aquatic systems:A review[J]. Journal of Chemistry, 2017, 2017:1-13
    Weisman W, Vorhees D. Human Health Risk-Based Evaluation of Petroleum Contaminated Site:Implementation of the Working Group Approach[M]. Amherst:Amherst Scientific Publishers, 1998:27-28
    Potter T L, Simmons K E. Total petroleum hydrocarbon criteria working group series:Volume 2:Composition of petroleum mixtures[R]. Amherst:Total Petroleum Hydrocarbon Criteria Working Group Series, 1998
    Rojo F. Degradation of alkanes by bacteria[J]. Environmental Microbiology, 2009, 11(10):2477-2490
    吴慧君, 宋权威, 郑瑾, 等. 微生物降解石油烃的功能基因研究进展[J]. 微生物学通报, 2020, 47(10):3355-3368

    Wu H J, Song Q W, Zheng J, et al. Function genes in microorganisms capable of degrading petroleum hydrocarbon[J]. Microbiology China, 2020, 47(10):3355-3368(in Chinese)

    Varjani S J. Microbial degradation of petroleum hydrocarbons[J]. Bioresource Technology, 2017, 223:277-286
    Edwards D A, Andriot M D, Amoruso M A, et al. Total Petroleum Hydrocarbon Criteria Working Group Series:Volume 4:Development of fraction specific reference doses (RfDs) and reference concentration (RfCs) for total petroleum hydrocarbons (TPH)[R]. Amherst:Total Petroleum Hydrocarbon Criteria Working Group Series, 1997
    中华人民共和国国家卫生健康委员会. 生活饮用水卫生标准:GB 5749-2006[S]. 北京:中国标准出版社, 2007 National Health Commission of the People's Republic of China. Standards for drinking water quality:GB 5749-2006[S]. Beijing:Standards Press of China, 2007

    (in Chinese)

    万云洋, 朱迎佳, 费佳佳, 等. 环境中的多环芳烃结构及其危害[J]. 油气田环境保护, 2017, 27(6):23-26

    ,56 Wan Y Y, Zhu Y J, Fei J J, et al. The structure of polycyclic aromatic hydrocarbons and its danger in the environment[J]. Environmental Protection of Oil & Gas Fields, 2017, 27(6):23-26,56(in Chinese)

    陆凤翔, 杨玉. 临床实用药物手册[M]. 2版. 南京:江苏科学技术出版社, 2002:292
    古文革, 杜丹, 王桂菊. 油田采出水中含油量和外排水中石油类、石油烃的差异分析[J]. 油气田地面工程, 2018, 37(3):89-92

    Gu W G, Du D, Wang G J. Differential analysis between oil content in oilfield produced water and petroleum and petroleum hydrocarbons in effluent[J]. Oil-Gas Field Surface Engineering, 2018, 37(3):89-92(in Chinese)

    杨慧娟. 土壤中石油烃分段测定方法及根际促生菌强化植物修复研究[D]. 南京:南京师范大学, 2013:3-5
    United States Environmental Protection Agency (US EPA). SW-846 Test Method 8015C:Nonhalogenated Organics by Gas Chromatography[S]. Washington DC:US EPA, 2007
    United States Environmental Protection Agency (US EPA). SW-846 Test Method 8260D:Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)[S]. Washington DC:US EPA, 2018
    United States Environmental Protection Agency (US EPA). SW-846 Test Method 8270E:Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS)[S]. Washington DC:US EPA, 2018
    Texas Commission on Environmental Quality (TCEQ). Total Petroleum Hydrocarbons TNRCC Method 1005[S]. Austin:TCEQ, 2001
    Texas Commission on Environmental Quality (TCEQ). Draft TNRCC Method 1006[S]. Austin:TCEQ, 2000
    Washington State Department of Ecology. Analytical Methods for Petroleum Hydrocarbons. Publication No. ECY 97-602:137.[S]. Lacey:Washington State Department of Ecology, 1997
    Massachusetts Department of Environmental Protection (MassDEP). Method for the Determination of Extractable Petroleum Hydrocarbons (EPH)[S]. Boston:MassDEP, 2004
    Massachusetts Department of Environmental Protection (MassDEP). Method for the Determination of Volatile Petroleum Hydrocarbons (VPH) by Gas Chromatography/Mass Spectrometry[S]. Boston:MassDEP, 2004
    Massachusetts Department of Environmental Protection (MassDEP). Method for the Determination of Volatile Petroleum Hydrocarbons (VPH) by Gas Chromatography/Photoionization Detector/Flame Ionization Detector[S]. Boston:MassDEP, 2004
    United States Environmental Protection Agency (US EPA). SW-846 Test Method 3630C:Silica Gel Cleanup[S]. Washington DC:US EPA, 2018
    中华人民共和国生态环境部. 土壤和沉积物石油烃(C6-C9)的测定吹扫捕集/气相色谱法:HJ 1020-2019[S]. 北京:中国环境出版集团, 2020 Ministry of Ecology and Environment of the People's Republic of China. Soil and sediment-Determination of petroleum hydrocarbons(C6-C9)-Purge and trap/gas chromatography:HJ 1020

    -2019[S]. Beijing:China Environmental Science Press, 2020(in Chinese)

    中华人民共和国生态环境部. 土壤和沉积物石油烃(C10-C40)的测定气相色谱法:HJ 1021-2019[S]. 北京:中国环境出版集团, 2020 Ministry of Ecology and Environment of the People's Republic of China. Soil and sediment-Determination of petroleum hydrocarbons (C10-C40)-Gas chromatography:HJ 1021

    -2019[S]. Beijing:China Environmental Science Press, 2020(in Chinese)

    李桂香, 高岩, 张青. 环境样品中石油烃的分类/分段检测技术[J]. 实验室研究与探索, 2016, 35(4):30-33

    Li G X, Gao Y, Zhang Q. Testing technology of total petroleum hydrocarbon speciation/fractions in the environmental samples[J]. Research and Exploration in Laboratory, 2016, 35(4):30-33(in Chinese)

    中华人民共和国生态环境部. 关于征求《土壤石油类的测定红外光度法》等七项国家环境保护标准意见的函. (2018-09-12). http://www.mee.gov.cn/gkml/sthjbgw/stbgth/201809/t20180921_626427.htm.
    中华人民共和国生态环境部. 关于征求《水质石油类的测定紫外分光光度法(征求意见稿)》等三项国家环境保护标准意见的函. (2018-05-30). http://www.mee.gov.cn/gkml/sthjbgw/stbgth/201806/t20180601_442260.htm.
    谢楠, 徐佼姣. 水质中石油类(红外分光光度法)与石油烃(GC_MS和GC_FID)的检测结果比较[J]. 资源节约与环保, 2015(3):93-94
    李晶晶, 白光明, 于瀛鑫. GC-MS法与红外分光光度法测定水中石油类烃含量的方法比对[J]. 黑龙江科技信息, 2017(4):156-157
    McMillen S J. Risk-Based Decision-Making for Assessing Petroleum Impacts at Exploration and Production Sites[M]. Washington DC:Department of Energy, 2001
    Zemo D A. White paper:Analytical methods for total petroleum hydrocarbons (TPH)[R]. Washington DC:American Petroleum Institute (API), 2016
    Interstate Technology and Regulatory Council (ITRC). TPH risk evaluation at petroleum-contaminated sites[R]. Washington DC:ITRC, 2018
    にほん環境省. 環境庁告示第46号, 土壌の汚染に係る環境基準[S]. とうきよう:にほん環境省, 1991 Ministry of the Environment of Japan. Environment Agency Notification No. 46, Environmental Standard for Soil Contamination[S]. Tokyo:Ministry of the Environment of Japan, 1991(in Japanese)
    Bundesregierung. BGBl. I S. 1554, Federal Soil Protection and Contaminated Sites Ordinance(BBodSchV)[S]. Berlin:The Federal Republic of Germany, 1999
    Yao Y J, Verginelli I, Suuberg E M. A two-dimensional analytical model of petroleum vapor intrusion[J]. Water Resources Research, 2016, 52(2):1528-1539
    Yao Y J, Shen R, Pennell K G, et al. A review of vapor intrusion models[J]. Environmental Science & Technology, 2013, 47(6):2457-2470
    Ma J, Lahvis M. Rationale for soil-gas sampling to improve vapor intrusion risk assessment in China[J]. Groundwater Monitoring & Remediation, 2020, 40:12-13
    Beckley L, McHugh T. A conceptual model for vapor intrusion from groundwater through sewer lines[J]. Science of the Total Environment, 2020, 698:134283
    Yao Y J, Xiao Y T, Luo J, et al. High-frequency fluctuations of indoor pressure:A potential driving force for vapor intrusion in urban areas[J]. Science of the Total Environment, 2020, 710:136309
    Idowu O, Kim Anh Tran T, Baker P, et al. Bioavailability of polycyclic aromatic compounds[J]. Science of the Total Environment, 2020, 736:139574
    Liu X L, Ji R, Shi Y, et al. Release of polycyclic aromatic hydrocarbons from biochar fine particles in simulated lung fluids:Implications for bioavailability and risks of airborne aromatics[J]. Science of the Total Environment, 2019, 655:1159-1168
    Gao P, da Silva E B, Townsend T, et al. Emerging PAHs in urban soils:Concentrations, bioaccessibility, and spatial distribution[J]. Science of the Total Environment, 2019, 670:800-805
    Ministry of Infrastructure and Water Management of the Netherlands. Soil Remediation Circular 2013[S]. Bilthoven:Ministry of Infrastructure and Water Management of the Netherlands, 2013
    United States Environmental Protection Agency (US EPA). Regional Screening Levels (RSLs) Risk Assessment.. https://www.epa.gov/risk/regional-screening-levels-rsls.
    National Institute for Public Health and the Environment (RIVM). A proposal for revised intervention values for petroleum hydrocarbons (mineral oil) on base of fractions of petroleum hydrocarbons. RIVM report 711701015[R]. Bilthoven:RIVM, 1999
    中国台湾地区环境保护局. 土壤污染管制标准[S]. 台北:中国台湾地区环境保护局, 2011
    曹云者, 施烈焰, 李丽和, 等. 石油烃污染场地环境风险评价与风险管理[J]. 生态毒理学报, 2007, 2(3):265-272

    Cao Y Z, Shi L Y, Li L H, et al. Petroleum hydrocarbons-contaminated sites and related risk-based management strategy[J]. Asian Journal of Ecotoxicology, 2007, 2(3):265-272(in Chinese)

    Ministry for the Environment of New Zealand. Guidelines for assessing and managing petroleum hydrocarbon contaminated sites in New Zealand. ME 1074.[S]. Wellington, New Zealand:Ministry for the Environment of New Zealand, 1997
    Environment Agency. Principles for evaluating the human health risks for petroleum hydrocarbons in soils:A consultation paper[J]. R&D Technical Report, 2003:1
    Environment Agency of United Kingdom. Review of comments on:Environment Agency public consultation paper-Principles for evaluating the human health risks from petroleum hydrocarbons in soils. Science Report P5-080/TR2[R]. Bristol:Environment Agency of United Kingdom, 2004
    Twerdok L E. Development of toxicity criteria for petroleum hydrocarbon fractions in the Petroleum Hydrocarbon Criteria Working Group approach for risk-based management of total petroleum hydrocarbons in soil[J]. Drug and Chemical Toxicology, 1999, 22(1):275-291
  • 期刊类型引用(2)

    1. 杨开放,李双双,周旭平,魏静. 加速溶剂萃取-气相色谱法测定土壤中12种氯苯类化合物. 化学分析计量. 2024(11): 40-45 . 百度学术
    2. 胡文凌,杨晓霞,江胜良,商弘颖,沈耀宗,陈燕,苏营营. 超声辅助-分散液液微萃取-气相色谱质谱法测定土壤和沉积物中有机氯农药和氯苯类化合物. 化学分析计量. 2024(12): 7-16 . 百度学术

    其他类型引用(0)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.9 %DOWNLOAD: 6.9 %HTML全文: 91.9 %HTML全文: 91.9 %摘要: 1.3 %摘要: 1.3 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.2 %其他: 99.2 %北京: 0.3 %北京: 0.3 %南京: 0.1 %南京: 0.1 %杭州: 0.1 %杭州: 0.1 %泉州: 0.1 %泉州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %其他北京南京杭州泉州洛阳Highcharts.com
计量
  • 文章访问数:  4361
  • HTML全文浏览数:  4361
  • PDF下载数:  142
  • 施引文献:  2
出版历程
  • 收稿日期:  2020-12-19
杨璐, 石佳奇, 陈樯, 龙涛. 从组分和性质角度谈污染地块中石油烃的人体健康风险评估[J]. 生态毒理学报, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001
引用本文: 杨璐, 石佳奇, 陈樯, 龙涛. 从组分和性质角度谈污染地块中石油烃的人体健康风险评估[J]. 生态毒理学报, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001
Yang Lu, Shi Jiaqi, Chen Qiang, Long Tao. Human Health Risk Assessment of Petroleum Hydrocarbons in Contaminated Sites from the Perspective of Components and Properties[J]. Asian journal of ecotoxicology, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001
Citation: Yang Lu, Shi Jiaqi, Chen Qiang, Long Tao. Human Health Risk Assessment of Petroleum Hydrocarbons in Contaminated Sites from the Perspective of Components and Properties[J]. Asian journal of ecotoxicology, 2021, 16(1): 56-65. doi: 10.7524/AJE.1673-5897.20201219001

从组分和性质角度谈污染地块中石油烃的人体健康风险评估

    通讯作者: 陈樯, E-mail: chenqiang@nies.org
    作者简介: 杨璐(1990-),女,博士,研究方向为生态毒理学,E-mail:yanglu@nies.org
  • 1. 生态环境部南京环境科学研究所, 南京 210042;
  • 2. 国家环境保护土壤环境管理与污染控制重点实验室, 南京 210042
基金项目:

国家重点研发计划资助项目(2018YFC1801100)

摘要: 石油烃的人体健康风险评估是污染地块土壤污染风险评估过程中的最常见的问题之一,其远比单一污染物的评估复杂和困难。但我国缺乏针对性的评估方法,实际操作中存在较多误区。因此,对于石油烃概念、性质的归纳总结以及对其健康风险评估方法的研究和探索,具有重要的意义。本文介绍了石油烃的基本概念,分析了不同馏分性质间的关系,回顾并分析了其分析测试方法及人体健康风险评估方法的适用要求及优缺点,提出了指示剂法与分馏法相结合采用典型样品馏分占比进行总体评估的工作方法,进而针对我国当前面临的问题,提出了后续的研究和发展建议。

English Abstract

参考文献 (59)

返回顶部

目录

/

返回文章
返回