氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应

李佳欢, 齐素贞, 吴黎明, 黄少康. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001
引用本文: 李佳欢, 齐素贞, 吴黎明, 黄少康. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001
Li Jiahuan, Qi Suzhen, Wu Liming, Huang Shaokang. Sublethal Effects of Fipronil on Larvae and Young Worker Honey Bees (Apis mellifera ligustica)[J]. Asian journal of ecotoxicology, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001
Citation: Li Jiahuan, Qi Suzhen, Wu Liming, Huang Shaokang. Sublethal Effects of Fipronil on Larvae and Young Worker Honey Bees (Apis mellifera ligustica)[J]. Asian journal of ecotoxicology, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001

氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应

    作者简介: 李佳欢(1996-),女,硕士研究生,研究方向为蜜蜂病理学,E-mail:724280481@qq.com
    通讯作者: 齐素贞, E-mail: suzhen_qi@126.com 黄少康, E-mail: skhuang@fafu.edu.cn
  • 基金项目:

    国家自然科学基金青年科学基金资助项目(21707162)

  • 中图分类号: X171.5

Sublethal Effects of Fipronil on Larvae and Young Worker Honey Bees (Apis mellifera ligustica)

    Corresponding authors: Qi Suzhen, suzhen_qi@126.com ;  Huang Shaokang, skhuang@fafu.edu.cn
  • Fund Project:
  • 摘要: 蜜蜂是重要的授粉昆虫,亦是重要的环境污染指示生物。氟虫腈对蜜蜂剧毒,Pesticide Properties Data Base (PPDB)数据库中登记的其对蜜蜂的急性经口及接触半数致死剂量(LD50)分别为0.00417 μg·蜂-1和0.00597 μg·蜂-1,正因为对非靶标生物的毒性较高,其使用也受到了限制,目前仅用于卫生害虫防治和一些旱田作物的土壤处理等。尽管有关氟虫腈对蜜蜂的危害已有一些报道,但有关其对蜜蜂幼虫和幼龄工蜂的亚致死作用研究仍较为缺乏,鉴于此,本文以意大利蜜蜂(Apis mellifera L.)的工蜂幼虫和新出房工蜂(<24 h)为研究对象,采用人工饲喂重复染毒法,分别测定了10-3、10-2、0.1、1和10 μg·L-1的氟虫腈对工蜂幼虫的21 d慢性毒性和1、5和10 μg·L-1的氟虫腈对新出房工蜂7 d和14 d的慢性毒性。结果表明,与对照相比,10-3~10 μg·L-1范围内的氟虫腈可以使幼虫化蛹率显著降低20.83%~47.91%(P<0.05),羽化率显著降低25.00%~43.72%(P<0.05);对于幼龄工蜂,1 μg·L-1和5 μg·L-1氟虫腈暴露7 d和14 d时蜜蜂死亡率均<10%;10 μg·L-1氟虫腈暴露7 d时,死亡率<20%,当暴露时间延长至14 d时,成蜂死亡率高达(65.0±17.7)%(P<0.0001),显著高于对照组,这说明氟虫腈对蜜蜂具有一定的时间累积毒性(time reinforced toxicity,TRT)。此外,通过对蜜蜂幼虫和工蜂体内抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT))、解毒酶谷胱甘肽转移酶(GST)酶活力及谷胱甘肽(GSH)、脂质过氧化产物丙二醛(MDA)含量的测定结果表明,氟虫腈暴露可显著提高幼虫体内CAT的酶活力和MDA含量(P<0.05),但GST的酶活力显著降低(P<0.01);而成蜂在经过处理后,体内CAT和GST的酶活力、GSH的含量均会显著降低(P<0.05),这说明亚致死剂量的氟虫腈可干扰蜜蜂机体稳态,引发蜜蜂幼虫和成蜂显著的氧化损伤,从而危害蜜蜂健康。氟虫腈具有较强的内吸特性和环境稳定性,作物种子处理或卫生施用依然可能导致其在花粉、土壤和水体中的痕量级残留,本研究中发现氟虫腈对蜜蜂幼虫和成蜂生存及各生理指标的最低可观察效应浓度(LOEC)可低至10-5 μg·L-1和10 μg·L-1,相关结果可以补充低残留浓度下氟虫腈蜜蜂风险评价数据的不足,为未来氟虫腈的安全用药指导提供参考。
  • Aizen M A, Harder L D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination[J]. Current Biology, 2009, 19(11):915-918
    Winfree R, Gross B J, Kremen C. Valuing pollination services to agriculture[J]. Ecological Economics, 2011, 71:80-88
    Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, et al. Functional properties of honey, propolis, and royal jelly[J]. Journal of Food Science, 2008, 73(9):R117-R124
    Oldroyd B P. What's killing American honey bees?[J]. PLoS Biology, 2007, 5(6):e168
    McMenamin A J, Genersch E. Honey bee colony losses and associated viruses[J]. Current Opinion in Insect Science, 2015, 8:121-129
    VanEngelsdorp D, Traynor K S, Andree M, et al. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology[J]. PLoS One, 2017, 12(7):e0179535
    Johnson R M, Ellis M D, Mullin C A, et al. Pesticides and honey bee toxicity-USA[J]. Apidologie, 2010, 41(3):312-331
    荣杰峰, 韦航, 李亦军, 等. 食品中氟虫腈残留量的检测方法研究进展[J]. 广州化工, 2013, 41(8):16-17

    , 21 Rong J F, Wei H, Li Y J, et al. Progress of methods for determination of fipronil residue in food[J]. Guangzhou Chemical Industry, 2013, 41(8):16-17, 21(in Chinese)

    Chen H P, Gao G W, Yin P, et al. Enantioselectivity and residue analysis of fipronil in tea (Camellia sinensis) by ultra-performance liquid chromatography Orbitrap mass spectrometry[J]. Food Additives & Contaminants:Part A, 2018, 35(10):2000-2010
    中华人民共和国国家卫生和计划生育委员会, 中华人民共和国农业部, 中华人民共和国国家食品药品监督管理总局. 食品安全国家标准食品中农药最大残留限量:GB/T 2763-2016[S]. 北京:中国标准出版社, 2017
    冯义志, 张爱娟, 李文平, 等. 高效液相色谱串联质谱法快速测定氟虫腈及其代谢物在花生和土壤中残留[J]. 现代农药, 2018, 17(6):35-39

    Feng Y Z, Zhang A J, Li W P, et al. Determination of the residual fipronil and its metabolite in peanut and soil by HPLC-MS/MS[J]. Modern Agrochemicals, 2018, 17(6):35-39(in Chinese)

    苑婷婷, 储成群, 权美英, 等. 蔬菜中违禁农药残留状况分析[J]. 山东化工, 2018, 47(14):126-127

    , 129 Yuan T T, Chu C Q, Quan M Y, et al. Analysis on prohibited pesticides residues in vegetables[J]. Shandong Chemical Industry, 2018, 47(14):126-127, 129(in Chinese)

    龚久平, 杨晓霞, 褚能明, 等. 重庆产地蔬菜农药残留调查及健康风险评价[J]. 南方农业, 2018, 12(31):5-10

    Gong J P, Yang X X, Chu N M, et al. Investigation and health risk assessment of vegetable pesticide residues in Chongqing[J]. South China Agriculture, 2018, 12(31):5-10(in Chinese)

    黄小龙, 林娜, 姚婷婷, 等. 华南某市蔬菜基地土壤中氟虫腈残留状况调查分析[J]. 湖南农业科学, 2020(6):89-91 Huang X L, Lin N, Yao T T, et al. Investigation on soil fipronil residue of vegetable production bases of a city in South China[J]. Hunan Agricultural Sciences, 2020

    (6):89-91(in Chinese)

    Gunasekara A S, Truong T, Goh K S, et al. Environmental fate and toxicology of fipronil[J]. Journal of Pesticide Science, 2007, 32(3):189-199
    苍涛, 王新全, 王彦华, 等. 手性氟虫腈对意大利蜜蜂和稻螟赤眼蜂的急性毒性及安全评价[J]. 生态毒理学报, 2012, 7(3):326-330

    Cang T, Wang X Q, Wang Y H, et al. Acute toxicities and safety evaluation of chiral fipronil to Apis mellifera L. and Trichogramma japonicum Ashmead[J]. Asian Journal of Ecotoxicology, 2012, 7(3):326-330(in Chinese)

    Holder P J, Jones A, Tyler C R, et al. Fipronil pesticide as a suspect in historical mass mortalities of honey bees[J]. PNAS, 2018, 115(51):13033-13038
    Zaluski R, Kadri S M, Alonso D P, et al. Fipronil promotes motor and behavioral changes in honey bees (Apis mellifera) and affects the development of colonies exposed to sublethal doses[J]. Environmental Toxicology and Chemistry, 2015, 34(5):1062-1069
    Kairo G, Biron D G, Ben Abdelkader F, et al. Nosema ceranae, fipronil and their combination compromise honey bee reproduction via changes in male physiology[J]. Scientific Reports, 2017, 7:8556
    Zaluski R, Justulin L A, Orsi R D O. Field-relevant doses of the systemic insecticide fipronil and fungicide pyraclostrobin impair mandibular and hypopharyngeal glands in nurse honeybees (Apis mellifera)[J]. Scientific Reports, 2017, 7:15217
    Paris L, Peghaire E, Moné A, et al. Honeybee gut microbiota dysbiosis in pesticide/parasite co-exposures is mainly induced by Nosema ceranae[J]. Journal of Invertebrate Pathology, 2020, 172:107348
    Organization for Economic Co-operation and Development (OECD). Test No. 237:Honey bee (Apis mellifera) larval toxicity test, single exposure[R]. Paris:OECD, 2013
    中华人民共和国农业部. 化学农药意大利蜜蜂幼虫毒性试验准则:NY/T 3085-2017[S]. 北京:中华人民共和国农业部, 2002 Ministry of Agriculture of the People's Republic of China. Chemical pesticide-Guideline on honeybee (Apis mellifera L.) larval toxicity test[S]. Beijing:Ministry of Agriculture of the People's Republic of China, 2002(in Chinese)
    牛新月. 氟氯苯氰菊酯对意大利蜜蜂(Apis mellifera Ligustica L.)的毒性作用研究[D]. 新乡:河南科技学院, 2019:21-24 Niu X Y. Toxic effects of flumethrin on Apis mellifera Ligustica L. (Hymenoptera:Apidae)[D]. Xinxiang:Henan Institute of Science and Technology, 2019:21

    -24(in Chinese)

    Zhu W Y, Schmehl D R, Mullin C A, et al. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae[J]. PLoS One, 2014, 9(1):e77547
    Crailsheim K, Brodschneider R, Aupinel P, et al. Standard methods for artificial rearing of Apis mellifera larvae[J]. Journal of Apicultural Research, 2013, 52(1):1-16
    Kairo G, Poquet Y, Haji H, et al. Assessment of the toxic effect of pesticides on honey bee drone fertility using laboratory and semifield approaches:A case study of fipronil[J]. Environmental Toxicology and Chemistry, 2017, 36(9):2345-2351
    Simon-Delso N, Amaral-Rogers V, Belzunces L P, et al. Systemic insecticides (neonicotinoids and fipronil):Trends, uses, mode of action and metabolites[J]. Environmental Science and Pollution Research, 2015, 22(1):5-34
    Jacob C R O, Soares H M, Nocelli R C F, et al. Impact of fipronil on the mushroom bodies of the stingless bee Scaptotrigona postica[J]. Pest Management Science, 2015, 71(1):114-122
    El Hassani A K, Dacher M, Gauthier M, et al. Effects of sublethal doses of fipronil on the behavior of the honeybee (Apis mellifera)[J]. Pharmacology Biochemistry and Behavior, 2005, 82(1):30-39
    Kairo G, Provost B, Tchamitchian S, et al. Drone exposure to the systemic insecticide fipronil indirectly impairs queen reproductive potential[J]. Scientific Reports, 2016, 6:31904
    Silva Cruz A, Silva-Zacarin E C M, Bueno O C, et al. Morphological alterations induced by boric acid and fipronil in the midgut of worker honeybee (Apis mellifera L.) larvae[J]. Cell Biology and Toxicology, 2010, 26(2):165-176
    Schlenk D, Huggett D B, Allgood J, et al. Toxicity of fipronil and its degradation products to Procambarus sp.:Field and laboratory studies[J]. Archives of Environmental Contamination and Toxicology, 2001, 41(3):325-332
    Gan J, Bondarenko S, Oki L, et al. Occurrence of fipronil and its biologically active derivatives in urban residential runoff[J]. Environmental Science & Technology, 2012, 46(3):1489-1495
    Castilhos D, Dombroski J L D, Bergamo G C, et al. Neonicotinoids and fipronil concentrations in honeybees associated with pesticide use in Brazilian agricultural areas[J]. Apidologie, 2019, 50(5):657-668
    牛新月, 齐素贞, 吴黎明, 等. 乙虫腈悬浮剂对新出房意大利蜜蜂的毒性研究[J]. 生态毒理学报, 2019, 14(3):203-213

    Niu X Y, Qi S Z, Wu L M, et al. Toxicity studies of ethiprole suspension concentrate to newly emerged honey bees (Apis mellifera L.)[J]. Asian Journal of Ecotoxicology, 2019, 14(3):203-213(in Chinese)

    Wang X, Martínez M A, Wu Q H, et al. Fipronil insecticide toxicology:Oxidative stress and metabolism[J]. Critical Reviews in Toxicology, 2016, 46(10):876-899
    Chakrabarti P, Carlson E A, Lucas H M, et al. Field rates of SivantoTM (flupyradifurone) and Transform(sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.)[J]. PLoS One, 2020, 15(5):e0233033
    Mulvey J, Cresswell J E. Time-dependent effects on bumble bees of dietary exposures to farmland insecticides (imidacloprid, thiamethoxam and fipronil)[J]. Pest Management Science, 2020, 76(8):2846-2853
    Simon-Delso N, San Martin G, Bruneau E, et al. Time-to-death approach to reveal chronic and cumulative toxicity of a fungicide for honeybees not revealed with the standard ten-day test[J]. Scientific Reports, 2018, 8:7241
    Qi S Z, Zhu L Z, Wang D H, et al. Flumethrin at honey-relevant levels induces physiological stresses to honey bee larvae (Apis mellifera L.) in vitro[J]. Ecotoxicology and Environmental Safety, 2020, 190:110101
    Berenbaum M R, Johnson R M. Xenobiotic detoxification pathways in honey bees[J]. Current Opinion in Insect Science, 2015, 10:51-58
    Yao J X, Zhu Y C, Adamczyk J, et al. Influences of acephate and mixtures with other commonly used pesticides on honey bee (Apis mellifera) survival and detoxification enzyme activities[J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2018, 209:9-17
    Nielsen S A, Brødsgaard C J, Hansen H. Effects on detoxification enzymes in different life stages of honey bees (Apis mellifera L., Hymenoptera:Apidae) treated with a synthetic pyrethroid (flumethrin)[J]. Alternatives to Laboratory Animals, 2000, 28(3):437-443
    Smirle M J. The influence of colony population and brood rearing intensity on the activity of detoxifying enzymes in worker honey bees[J]. Physiological Entomology, 2008, 18(4):420-424
    Gong Y H, Diao Q Y. Current knowledge of detoxification mechanisms of xenobiotic in honey bees[J]. Ecotoxicology, 2017, 26(1):1-12
    Menezes C, Leitemperger J, Murussi C, et al. Effect of diphenyl diselenide diet supplementation on oxidative stress biomarkers in two species of freshwater fish exposed to the insecticide fipronil[J]. Fish Physiology and Biochemistry, 2016, 42(5):1357-1368
    Roat T C, Santos-Pinto J R A, Santos L D, et al. Modification of the brain proteome of Africanized honeybees (Apis mellifera) exposed to a sub-lethal doses of the insecticide fipronil[J]. Ecotoxicology, 2014, 23(9):1659-1670
    Carvalho S M, Belzunces L P, Carvalho G A, et al. Enzymatic biomarkers as tools to assess environmental quality:A case study of exposure of the honeybee Apis mellifera to insecticides[J]. Environmental Toxicology and Chemistry, 2013, 32(9):2117-2124
    靳三省, 孟丽峰, 刁青云. 吡虫啉对意大利蜜蜂乙酰胆碱酯酶的亚致死效应[J]. 应用昆虫学报, 2015, 52(2):315-323

    Jin S X, Meng L F, Diao Q Y. Effect of sublethal doses of imidacloprid on acetylcholinesterase activity in Apis mellifera[J]. Chinese Journal of Applied Entomology, 2015, 52(2):315-323(in Chinese)

    Li Z G, Li M, He J F, et al. Differential physiological effects of neonicotinoid insecticides on honey bees:A comparison between Apis mellifera and Apis cerana[J]. Pesticide Biochemistry and Physiology, 2017, 140:1-8
    Zhu Y C, Yao J X, Adamczyk J, et al. Synergistic toxicity and physiological impact of imidacloprid alone and binary mixtures with seven representative pesticides on honey bee (Apis mellifera)[J]. PLoS One, 2017, 12(5):e0176837
    Guo D H, Luo J P, Zhou Y N, et al. ACE:An efficient and sensitive tool to detect insecticide resistance-associated mutations in insect acetylcholinesterase from RNA-Seq data[J]. BMC Bioinformatics, 2017, 18(1):330
    Zhang Y X, Wang X, Yang B J, et al. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens[J]. Journal of Neurochemistry, 2015, 135(4):686-694
    孟祥坤, 缪丽君, 董帆, 等. 无脊椎动物乙酰胆碱酯酶研究进展[J]. 环境昆虫学报, 2019, 41(3):508-519

    Meng X K, Miao L J, Dong F, et al. Advances in the research on invertebrate acetylcholinesterase[J]. Journal of Environmental Entomology, 2019, 41(3):508-519(in Chinese)

    Kim Y H, Kim J H, Kim K, et al. Expression of acetylcholinesterase 1 is associated with brood rearing status in the honey bee, Apis mellifera[J]. Scientific Reports, 2017, 7:39864
    Shapira M, Thompson C K, Soreq H, et al. Changes in neuronal acetylcholinesterase gene expression and division of labor in honey bee colonies[J]. Journal of Molecular Neuroscience, 2001, 17(1):1-12
    黄梅花. QuEChERS结合液相色谱串联质谱法同时测定鸡蛋中氟虫腈与氯霉素等7种农兽药残留[J]. 食品安全质量检测学报, 2020, 11(6):1821-1826

    Huang M H. Simultaneous determination of fipronil, chloramphenicol and other 7 kinds of pesticide and veterinary drug residues in eggs by liquid chromatography tandem mass spectrometry with QuEChERS[J]. Journal of Food Safety & Quality, 2020, 11(6):1821-1826(in Chinese)

  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.3 %DOWNLOAD: 4.3 %HTML全文: 81.8 %HTML全文: 81.8 %摘要: 13.9 %摘要: 13.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.9 %其他: 95.9 %XX: 2.6 %XX: 2.6 %上海: 0.1 %上海: 0.1 %内网IP: 0.1 %内网IP: 0.1 %北京: 0.4 %北京: 0.4 %唐山: 0.1 %唐山: 0.1 %天津: 0.1 %天津: 0.1 %无锡: 0.1 %无锡: 0.1 %泰安: 0.1 %泰安: 0.1 %济南: 0.1 %济南: 0.1 %深圳: 0.2 %深圳: 0.2 %福州: 0.2 %福州: 0.2 %荆州: 0.1 %荆州: 0.1 %长治: 0.1 %长治: 0.1 %其他XX上海内网IP北京唐山天津无锡泰安济南深圳福州荆州长治Highcharts.com
计量
  • 文章访问数:  3184
  • HTML全文浏览数:  3184
  • PDF下载数:  87
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-22
李佳欢, 齐素贞, 吴黎明, 黄少康. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001
引用本文: 李佳欢, 齐素贞, 吴黎明, 黄少康. 氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应[J]. 生态毒理学报, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001
Li Jiahuan, Qi Suzhen, Wu Liming, Huang Shaokang. Sublethal Effects of Fipronil on Larvae and Young Worker Honey Bees (Apis mellifera ligustica)[J]. Asian journal of ecotoxicology, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001
Citation: Li Jiahuan, Qi Suzhen, Wu Liming, Huang Shaokang. Sublethal Effects of Fipronil on Larvae and Young Worker Honey Bees (Apis mellifera ligustica)[J]. Asian journal of ecotoxicology, 2021, 16(5): 314-325. doi: 10.7524/AJE.1673-5897.20200922001

氟虫腈对意大利蜜蜂工蜂幼虫及幼龄工蜂的亚致死效应

    通讯作者: 齐素贞, E-mail: suzhen_qi@126.com ;  黄少康, E-mail: skhuang@fafu.edu.cn
    作者简介: 李佳欢(1996-),女,硕士研究生,研究方向为蜜蜂病理学,E-mail:724280481@qq.com
  • 1. 福建农林大学动物科学学院(蜂学学院), 福州 350000;
  • 2. 中国农业科学院蜜蜂研究所, 北京 100093
基金项目:

国家自然科学基金青年科学基金资助项目(21707162)

摘要: 蜜蜂是重要的授粉昆虫,亦是重要的环境污染指示生物。氟虫腈对蜜蜂剧毒,Pesticide Properties Data Base (PPDB)数据库中登记的其对蜜蜂的急性经口及接触半数致死剂量(LD50)分别为0.00417 μg·蜂-1和0.00597 μg·蜂-1,正因为对非靶标生物的毒性较高,其使用也受到了限制,目前仅用于卫生害虫防治和一些旱田作物的土壤处理等。尽管有关氟虫腈对蜜蜂的危害已有一些报道,但有关其对蜜蜂幼虫和幼龄工蜂的亚致死作用研究仍较为缺乏,鉴于此,本文以意大利蜜蜂(Apis mellifera L.)的工蜂幼虫和新出房工蜂(<24 h)为研究对象,采用人工饲喂重复染毒法,分别测定了10-3、10-2、0.1、1和10 μg·L-1的氟虫腈对工蜂幼虫的21 d慢性毒性和1、5和10 μg·L-1的氟虫腈对新出房工蜂7 d和14 d的慢性毒性。结果表明,与对照相比,10-3~10 μg·L-1范围内的氟虫腈可以使幼虫化蛹率显著降低20.83%~47.91%(P<0.05),羽化率显著降低25.00%~43.72%(P<0.05);对于幼龄工蜂,1 μg·L-1和5 μg·L-1氟虫腈暴露7 d和14 d时蜜蜂死亡率均<10%;10 μg·L-1氟虫腈暴露7 d时,死亡率<20%,当暴露时间延长至14 d时,成蜂死亡率高达(65.0±17.7)%(P<0.0001),显著高于对照组,这说明氟虫腈对蜜蜂具有一定的时间累积毒性(time reinforced toxicity,TRT)。此外,通过对蜜蜂幼虫和工蜂体内抗氧化酶(超氧化物歧化酶(SOD)、过氧化氢酶(CAT))、解毒酶谷胱甘肽转移酶(GST)酶活力及谷胱甘肽(GSH)、脂质过氧化产物丙二醛(MDA)含量的测定结果表明,氟虫腈暴露可显著提高幼虫体内CAT的酶活力和MDA含量(P<0.05),但GST的酶活力显著降低(P<0.01);而成蜂在经过处理后,体内CAT和GST的酶活力、GSH的含量均会显著降低(P<0.05),这说明亚致死剂量的氟虫腈可干扰蜜蜂机体稳态,引发蜜蜂幼虫和成蜂显著的氧化损伤,从而危害蜜蜂健康。氟虫腈具有较强的内吸特性和环境稳定性,作物种子处理或卫生施用依然可能导致其在花粉、土壤和水体中的痕量级残留,本研究中发现氟虫腈对蜜蜂幼虫和成蜂生存及各生理指标的最低可观察效应浓度(LOEC)可低至10-5 μg·L-1和10 μg·L-1,相关结果可以补充低残留浓度下氟虫腈蜜蜂风险评价数据的不足,为未来氟虫腈的安全用药指导提供参考。

English Abstract

参考文献 (58)

返回顶部

目录

/

返回文章
返回