不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性

熊张平, 周世萍, 解思达, 郭佳葳, 李惠娟, 陈修才. 不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性[J]. 生态毒理学报, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001
引用本文: 熊张平, 周世萍, 解思达, 郭佳葳, 李惠娟, 陈修才. 不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性[J]. 生态毒理学报, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001
Xiong Zhangping, Zhou Shiping, Xie Sida, Guo Jiawei, Li Huijuan, Chen Xiucai. Bioaccumulation of Cypermethrin in Earthworm and Its Effects on Earthworm Growth[J]. Asian journal of ecotoxicology, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001
Citation: Xiong Zhangping, Zhou Shiping, Xie Sida, Guo Jiawei, Li Huijuan, Chen Xiucai. Bioaccumulation of Cypermethrin in Earthworm and Its Effects on Earthworm Growth[J]. Asian journal of ecotoxicology, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001

不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性

    作者简介: 熊张平(1995-),男,硕士研究生,研究方向为生态毒理学,E-mail:xzp521821@dingtalk.com
    通讯作者: 周世萍, E-mail: kmzhoushiping@163.com
  • 基金项目:

    国家自然科学基金资助项目(31860155);云南省农业联合面上项目(2017FG001(-040));西南地区林业生物质资源高效利用国家林业和草原局重点实验室开放基金资助项目(2019-KF13)

  • 中图分类号: X171.5

Bioaccumulation of Cypermethrin in Earthworm and Its Effects on Earthworm Growth

    Corresponding author: Zhou Shiping, kmzhoushiping@163.com
  • Fund Project:
  • 摘要: 农药污染严重威胁我国的土壤生态系统安全。选择我国应用较广的氯氰菊酯为代表性农药污染物,采用一次和叠加的污染方式模拟氯氰菊酯进入土壤并逐渐累积的过程,以云南耕地常见的蚯蚓优势种——皮质远盲蚓(Amynthas corticis)为实验生物,研究了氯氰菊酯在土壤中的降解变化,以及蚯蚓对不同污染方式进入土壤的氯氰菊酯吸收蓄积的累积特征和生长毒性响应。结果显示,不同污染方式进入土壤的氯氰菊酯,在土壤中的降解均符合一级动力学特征c=c0e-kt,以一次污染方式进入土壤的氯氰菊酯降解半衰期为27.7~28.9 d;以叠加污染方式进入土壤的氯氰菊酯降解半衰期为25.7~26.6 d。氯氰菊酯浓度为4~6 mg·kg-1,暴露55 d时,蚯蚓对以一次污染方式进入土壤的氯氰菊酯蓄积量为0.34~0.73 mg·kg-1,生物-土壤蓄积因子(FBSA)为0.85~1.05;蚯蚓对以叠加污染方式进入土壤的氯氰菊酯蓄积量为0.86~1.51 mg·kg-1FBSA为1.16~1.42。与一次污染方式比较,以叠加污染方式进入土壤的氯氰菊酯,更有利于蚯蚓对其进行生物富集,从而表现出较强的生长毒性。研究结果可为土壤农药叠加污染累积的生态风险防治提供基础数据和理论依据。
  • 刘航. 2013-2016年辽宁省蔬菜质量安全状况分析[J]. 蔬菜, 2017(10):64-68 Liu H. Analysis of Liaoning Province vegetable quality and safety during 2013

    -2016[J]. Vegetables, 2017(10):64-68(in Chinese)

    Sun J F, Liu P, Li C Y, et al. Probabilistic acute dietary exposure assessment of the Chinese population to cypermethrin residues[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2011, 28(7):869-876
    Yuan Y W, Chen C, Zheng C M, et al. Residue of chlorpyrifos and cypermethrin in vegetables and probabilistic exposure assessment for consumers in Zhejiang Province, China[J]. Food Control, 2014, 36(1):63-68
    Jyot G, Mandal K, Battu R S, et al. Estimation of chlorpyriphos and cypermethrin residues in chilli (Capsicum annuum L.) by gas-liquid chromatography[J]. Environmental Monitoring and Assessment, 2013, 185(7):5703-5714
    Garoiaz H, Berrabah M, Elidrissi A, et al. Analysis of cypermethrin residues and its main degradation products in soil and formulation samples by gas chromatography-electron impact-mass spectrometry in the selective ion monitoring mode[J]. International Journal of Environmental Analytical Chemistry, 2012, 92(12):1378-1388
    Hornsby A G, Herner A E, Don Wauchope R. Pesticide Properties in the Environment[M]. New York:Springer New York, 1996:25-32
    Chen S H, Luo J J, Hu M Y, et al. Microbial detoxification of bifenthrin by a novel yeast and its potential for contaminated soils treatment[J]. PLoS One, 2012, 7(2):e30862
    van Coller-Myburgh C, van Rensburg L, Maboeta M. Utilizing earthworm and microbial assays to assess the ecotoxicity of chromium mine wastes[J]. Applied Soil Ecology, 2014, 83:258-265
    Nusair S D, Abu Zarour Y S, Altarifi A A. Effects of dibenzo-p-dioxins/dibenzofurans on acetylcholinesterase activity and histopathology of the body wall of earthworm Eisenia andrei:A potential biomarker for ecotoxicity monitoring[J]. Water, Air, & Soil Pollution, 2017, 228(7):1-11
    Pelosi C, Barot S, Capowiez Y. Pesticides and earthworms. A review[J]. Agronomy for Sustainable Development, 2014, 34(1):199-228
    Alves P R L, Cardoso E J B N,Martines A M, et al. Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions[J]. Chemosphere, 2013, 90(11):2674-2682
    Bednarska A J, Choczyński M, Laskowski R, et al. Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida[J]. Environmental Pollution, 2017, 220(Pt A):567-576
    Alshawish S A, Mohamed A I, Nair G A. Prolonged toxicity of sub-lethal dosages of chemical pesticides on the body mass and cocoons of Aporrectodea caliginosa (Savigny 1826) (Oligochaeta:Lumbricidae) inhabiting Benghazi, Libya[J]. Proceedings of the National Academy of Sciences, India. Section B, 2004, 74:123-133
    Zhou S P, Duan C Q, Wang X H, et al. Assessing cypermethrin-contaminated soil with three different earthworm test methods[J]. Journal of Environmental Sciences, 2008, 20(11):1381-1385
    Saxena P N, Gupta S K, Murthy R C. Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida-A possible mechanism[J]. Ecotoxicology and Environmental Safety, 2014, 100:218-225
    Qi Y C, Chen W. Comparison of earthworm bioaccumulation between readily desorbable and desorption-resistant naphthalene:Implications for biouptake routes[J]. Environmental Science & Technology, 2010, 44(1):323-328
    李惠娟, 刘守庆, 杨发忠, 等. 两种环境激素类农药及其混合剂在土壤中的降解研究[J]. 土壤通报, 2019, 50(4):946-951

    Li H J, Liu S Q, Yang F Z, et al. Research about bout degradation characteristics of the individual and mixed treatments of two environ-hormone pesticides in the soil[J]. Chinese Journal of Soil Science, 2019, 50(4):946-951(in Chinese)

    秦曙, 乔雄梧, 朱九生, 等. 实验室条件下氯氰菊酯在土壤中的降解[J]. 农药学学报, 2000, 2(3):68-73

    Qin S, Qiao X W, Zhu J S, et al. Degradation of cypermethrin in soils under laboratory conditions[J]. Chinese Journal of Pesticide Science, 2000, 2(3):68-73(in Chinese)

    Luepromchai E, Singer A C, Yang C H, et al. Interactions of earthworms with indigenous and bioaugmented PCB-degrading bacteria[J]. FEMS Microbiology Ecology, 2002, 41(3):191-197
    Singer A C, Jury W, Luepromchai E, et al. Contribution of earthworms to PCB bioremediation[J]. Soil Biology and Biochemistry, 2001, 33(6):765-776
    Wolters V. Invertebrate control of soil organic matter stability[J]. Biology and Fertility of Soils, 2000, 31(1):1-19
    Johnsen K, Jacobsen C S, Torsvik V, et al. Pesticide effects on bacterial diversity in agricultural soils-A review[J]. Biology and Fertility of Soils, 2001, 33(6):443-453
    李晓军, 李培军, 蔺昕, 等. 土壤中有机污染物的老化概念探讨[J]. 应用生态学报, 2007, 18(8):1891-1896

    Li X J, Li P J, Lin X, et al. About the conception of "aging" for organic contaminants in soil[J]. Chinese Journal of Applied Ecology, 2007, 18(8):1891-1896(in Chinese)

    Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants[J]. Environmental Science & Technology, 2000, 34(20):4259-4265
    Yang X L, Wang F, Gu C G, et al. Tenax TA extraction to assess the bioavailability of DDTs in cotton field soils[J]. Journal of Hazardous Materials, 2010, 179(1-3):676-683
    Semple K T, Doick K J, Jones K C, et al. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. Environmental Science & Technology, 2004, 38(12):228A-231A
    Semple K T, Doick K J, Jones K C, et al. Defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated[J]. Environmental Science & Technology, 2004, 38(12):228A-231A
    Gevao B, Semple K T, Jones K C. Pesticide residues in soils[J]. Environmental Pollution, 2000, 108:3-14.
    李志明. 氯氰菊酯优势降解菌的筛选及降解特性研究[D]. 沈阳:东北大学, 2008:37-43
    智勇, 单正军, 卜元卿, 等. 壬基酚异构体在威廉腔环蚓(Metaphire guillelmi)体内的蓄积特征及对其生长的影响[J]. 生态与农村环境学报, 2015, 31(6):935-941

    Zhi Y, Shan Z J, Bu Y Q, et al. Bioaccumulation of nonylphenol isomer in Metaphire guillelmi and its influence on growth[J]. Journal of Ecology and Rural Environment, 2015, 31(6):935-941(in Chinese)

    Ribera D, Narbonne J F, Arnaud C, et al. Biochemical responses of the earthworm Eisenia fetida andrei exposed to contaminated artificial soil, effects of carbaryl[J]. Soil Biology and Biochemistry, 2001, 33(7-8):1123-1130
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 1.8 %DOWNLOAD: 1.8 %HTML全文: 93.5 %HTML全文: 93.5 %摘要: 4.7 %摘要: 4.7 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.3 %其他: 95.3 %XX: 1.3 %XX: 1.3 %上海: 0.0 %上海: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 1.9 %北京: 1.9 %南充: 0.0 %南充: 0.0 %合肥: 0.0 %合肥: 0.0 %唐山: 0.0 %唐山: 0.0 %天津: 0.0 %天津: 0.0 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %徐州: 0.1 %徐州: 0.1 %新余: 0.0 %新余: 0.0 %昆明: 0.0 %昆明: 0.0 %昌吉: 0.0 %昌吉: 0.0 %杭州: 0.0 %杭州: 0.0 %济南: 0.0 %济南: 0.0 %海口: 0.0 %海口: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.0 %温州: 0.0 %滁州: 0.0 %滁州: 0.0 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.0 %牡丹江: 0.0 %玉林: 0.0 %玉林: 0.0 %盐城: 0.0 %盐城: 0.0 %绥化: 0.0 %绥化: 0.0 %荆州: 0.0 %荆州: 0.0 %贵阳: 0.0 %贵阳: 0.0 %连云港: 0.0 %连云港: 0.0 %重庆: 0.1 %重庆: 0.1 %长春: 0.0 %长春: 0.0 %阳江: 0.0 %阳江: 0.0 %阳泉: 0.1 %阳泉: 0.1 %黔东南: 0.0 %黔东南: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他XX上海内网IP北京南充合肥唐山天津宜春宣城徐州新余昆明昌吉杭州济南海口深圳温州滁州焦作牡丹江玉林盐城绥化荆州贵阳连云港重庆长春阳江阳泉黔东南龙岩Highcharts.com
计量
  • 文章访问数:  4761
  • HTML全文浏览数:  4761
  • PDF下载数:  52
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-07-09
熊张平, 周世萍, 解思达, 郭佳葳, 李惠娟, 陈修才. 不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性[J]. 生态毒理学报, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001
引用本文: 熊张平, 周世萍, 解思达, 郭佳葳, 李惠娟, 陈修才. 不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性[J]. 生态毒理学报, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001
Xiong Zhangping, Zhou Shiping, Xie Sida, Guo Jiawei, Li Huijuan, Chen Xiucai. Bioaccumulation of Cypermethrin in Earthworm and Its Effects on Earthworm Growth[J]. Asian journal of ecotoxicology, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001
Citation: Xiong Zhangping, Zhou Shiping, Xie Sida, Guo Jiawei, Li Huijuan, Chen Xiucai. Bioaccumulation of Cypermethrin in Earthworm and Its Effects on Earthworm Growth[J]. Asian journal of ecotoxicology, 2021, 16(1): 188-195. doi: 10.7524/AJE.1673-5897.20200709001

不同污染方式进入土壤的氯氰菊酯在蚯蚓体内的蓄积特征及其生长毒性

    通讯作者: 周世萍, E-mail: kmzhoushiping@163.com
    作者简介: 熊张平(1995-),男,硕士研究生,研究方向为生态毒理学,E-mail:xzp521821@dingtalk.com
  • 西南地区林业生物质资源高效利用国家林业与草原局重点实验室(西南林业大学), 昆明 650224
基金项目:

国家自然科学基金资助项目(31860155);云南省农业联合面上项目(2017FG001(-040));西南地区林业生物质资源高效利用国家林业和草原局重点实验室开放基金资助项目(2019-KF13)

摘要: 农药污染严重威胁我国的土壤生态系统安全。选择我国应用较广的氯氰菊酯为代表性农药污染物,采用一次和叠加的污染方式模拟氯氰菊酯进入土壤并逐渐累积的过程,以云南耕地常见的蚯蚓优势种——皮质远盲蚓(Amynthas corticis)为实验生物,研究了氯氰菊酯在土壤中的降解变化,以及蚯蚓对不同污染方式进入土壤的氯氰菊酯吸收蓄积的累积特征和生长毒性响应。结果显示,不同污染方式进入土壤的氯氰菊酯,在土壤中的降解均符合一级动力学特征c=c0e-kt,以一次污染方式进入土壤的氯氰菊酯降解半衰期为27.7~28.9 d;以叠加污染方式进入土壤的氯氰菊酯降解半衰期为25.7~26.6 d。氯氰菊酯浓度为4~6 mg·kg-1,暴露55 d时,蚯蚓对以一次污染方式进入土壤的氯氰菊酯蓄积量为0.34~0.73 mg·kg-1,生物-土壤蓄积因子(FBSA)为0.85~1.05;蚯蚓对以叠加污染方式进入土壤的氯氰菊酯蓄积量为0.86~1.51 mg·kg-1FBSA为1.16~1.42。与一次污染方式比较,以叠加污染方式进入土壤的氯氰菊酯,更有利于蚯蚓对其进行生物富集,从而表现出较强的生长毒性。研究结果可为土壤农药叠加污染累积的生态风险防治提供基础数据和理论依据。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回