-
党的二十大报告中明确指出,要推动绿色发展,促进人与自然和谐共生,加快发展方式绿色转型,深入推进环境污染防治,加强污染物协同控制,完善碳排放统计核算制度等内容。当前,中国生态文明建设进入了以降碳为重点战略方向、推动减污降碳协同增效、促进经济社会发展全面绿色转型、实现生态环境质量改善由量变到质变的关键时期,减污降碳协同增效成为促进经济社会发展全面绿色转型的总抓手[1-2]。
“十四五”时期,降碳成为中国生态文明建设重点发展方向之一[3]。2022年6月,生态环境部等7部委联合发布《减污降碳协同增效实施方案》,方案中将工业领域作为减污降碳协同增效的重点领域之一,提出要加快工业领域源头减排、过程控制、末端治理、综合利用全流程绿色发展。同时指出要开展产业园区减污降碳协同创新,鼓励各类产业园区根据自身主导产业和污染物、碳排放水平,积极探索推进减污降碳协同增效,优化园区空间布局,大力推广使用新能源,促进园区能源系统优化和梯级利用、水资源集约节约高效循环利用、废物综合利用,升级改造污水处理设施和垃圾焚烧设施,提升基础设施绿色低碳发展水平[4]。
中国工业园区发展四十余年,已成为经济和工业发展的重要载体,是温室气体和各类污染物排放的重要源头。在碳达峰、碳中和背景下[5],中国在工业园区已开展大量绿色低碳发展创建工作,部分试点园区在控制温室气体和污染物排放方面已取得显著成效,为园区减污降碳协同增效打下了一定基础。尽管如此,园区在落实减污降碳协同工作中仍面临较大挑战。一是缺乏系统的减污降碳全流程管控体系。如何从空间布局、源头管控、过程控制、末端治理、智慧化建设、绿色设计等方面开展系统性、整体性的减污降碳措施不够清晰,相应的政策引导、技术指导、资金支持等方式不够明确;二是缺乏污染物和二氧化碳排放相关的核算标准导致园区底数不清。当前,中国大部分企业还未建立完善的能耗和碳排放监测体系,且园区缺乏统一的数据收集和复核机制[6-7]。
本文以赤岸镇绿色低碳循环产业园案例为基础,全面分析案例园区减污降碳工作实施路径及主要成效,探索适合中国工业园区绿色发展转型的主要路径。
-
赤岸镇绿色低碳循环产业园位于浙江省义乌市,园区主导产业涵盖造纸、厨余垃圾和大件垃圾处理、污泥燃煤藕和热电联产、低品位能源利用、工业旅游等多个行业,形成纸业为主,多业并举的产业格局。园区以发展循环经济为主线,将生活垃圾处理及传统造纸、印染产业废弃物处置与能源供给需求相耦合,形成了固体废弃物—废水—废气协同处置和资源综合利用的“双循环”发展模式。
-
园区循环化改造是中国循环经济发展的重要举措之一,实现园区资源内外循环,要推动构建园区生态产业集群、大宗固废综合利用基地等;促进园区企业间积极协作,形成循环经济产业链和供应链;鼓励企业内部开展清洁生产改造和资源循环利用等[8]。
案例园区实现资源“双循环”:一是园区和城市间的资源外循环。以造纸为主业,主要产品有牛皮纸、瓦楞原纸及格拉辛原纸、食品包装纸等特种纸品,而回收利用的废纸是生产瓦楞原纸的主原材料之一。园区面向社会年回收利用废纸总量稳定在50多万吨,相当于节省木材15.5(利用1 000 kg废纸相当于节省木材310 kg)万吨。园区年处理生活垃圾超100万吨,可消纳义乌城乡全部垃圾,并将封存填埋场的垃圾挖出进行焚烧发电。对家具等大件垃圾进行破碎除铁后运送至煤场,与燃料煤掺烧后发电供热,可节煤2万吨,减碳排放3.8万余吨,还可减少SO2等大气污染物排放。二是园区层面的资源内循环。园区内实施固废、废水、废气等资源“内循环”利用,实现各类资源“零浪费”。造纸污泥经干化除水后,用于焚烧发电,每年可处理造纸污泥3万吨。垃圾焚烧产生的废渣,按工业固废和金属材料分类处理,用于生产建筑材料和回收利用。园区内建有日处理垃圾量3 000 t的焚烧炉,每天产生的炉渣约600余吨,为解决炉渣不规范堆放造成环境二次污染的问题,建设1条年处理约30万吨炉渣资源综合利用生产线项目,项目采用集水洗制砂、淘汰和摇床分选相结合的综合处理路线的炉渣预处理技术,对垃圾焚烧炉渣中的废金属过滤回收,再把过滤后的炉渣破碎成不同粒径的原料,制造环保建材加汽砖,最大限度达到对固体废物处理的无害化、减量化、资源化的目的。园区建设工业水站,取河水净化,把垃圾渗沥液水、化水制水与污水净化水混合,制成工业用水,替代原有自来水和部分水库直供水,并将电厂冷却塔的冷却水回用于生产,最大程度节约水资源,见图1。
-
案例园区以控制化石能源消费、提高能源利用效率为重点,从供给侧和消费侧共同发力,协同治理污染物和碳排放。一是在能源供给方面,实施煤炭消费减量。利用城市生活垃圾和城镇污泥,通过焚烧发电、生产蒸汽,为造纸等生产提供电力,同时也给周边100余家中小企业实施集中供热。同时,拟于2023—2025年建设屋顶光伏项目,预计减少4000 tCO2/年排放。二是在能源利用方面,2022年建成气冷电多联供技术工程,建设1座18 000 m3/h的冷却塔实现气冷电多联供,投运后实现年工业产值16 387万元,工业增加值5 361万元,可减碳6万余吨。计划2023年底,建成低品位能源梯级利用项目,将部分循环水用于原水制水,利用低品位热量,化水制水由清水改用循环水,利用30 ℃循环水回水直接与清水混合,使化水原水温度达到最佳运行温度25 ℃左右,从而节省原水加热器的低压蒸汽耗量。同时,用除盐水做压缩空气冷却介质,并回收烟囱余热。通过能量平衡综合核算,年可节省超15 000 tce/a,减少CO2排放约40 000 t。
-
案例园区在造纸、印染、热电等产业开展技术和装备升级,力争全产业实现生产绿色低碳化改造。
(1)造纸产业。引进国际先进装备对原有瓦楞纸生产线进行节能降耗提升改造,同步对原有产品方案进行升级调整,对高温烘干废气进行余热利用;开展雨水收集系统建设,有效补充新鲜水量,污水处理回用率达到60%以上,进一步降低污水处理压力;2024年前,拟建成新型环保纸包装材料生产线技改项目,引进国际先进设备,形成年产4.6亿km2新型环保纸包装材料的生产能力;2025年前,拟建成低定量环保型箱纸板生产线技改项目、特种纸及生活用纸生产线技改项目,形成年产21.3万吨低定量环保型箱纸板、年产7.5万吨特种纸和生活用纸的生产能力。
(2)印染产业。2024年前,拟建成各类针织产品数字化提升集聚改造项目,淘汰原有部分印染生产线,购入低浴比、节能型设备,配套余热利用等设施,形成年印染56 099 t各类针织品的生产能力。通过印染机械设备定型设施改造,生产工艺改进及废气处理升级,有效提高主要产品生产效率,降低废气产生和排放量,提高中水回用率,实现“减污降碳”协同推进。按行业目前平均每吨染色产品碳排放约2.7 t、园区核定规模产能44 879 t进行核算,每年可减少CO2排放约14 540 t。
(3)热电产业。实施垃圾焚烧发电厂提升改造PPP项目,引进先进技术工艺,采用去工业化设计,建成浙江省第二大处置规模。焚烧垃圾产生的蒸气用于发电、供汽和供溴化锂等,实现能源梯级利用;垃圾焚烧后产生的炉渣用于环保砖、建筑骨料等;飞灰经螯合固化、检测合格后填埋处理。通过厂内工艺技术创新,实现烟气再循环,可减少每年CO2排放超40万吨。
-
案例园区在废水、废气和固废方面采用不同治理手段,达到多领域污染物治理和管控。
(1)废水方面。投资建成污水处理中心,并在此基础上进行多次技术改造,采用A/O工艺处理污水,后续接芬顿深度处理,近年来年处理废水300余万吨。
(2)废气方面。每台锅炉配置1套烟气净化系统,采用“SNCR+旋转喷雾半干法+干法脱酸+活性炭喷射吸附+布袋除尘器+湿法脱酸+GGH(烟气再加热)+SCR”组合工艺,尾气排放优于欧盟环保标准。
(3)固废方面。投资建设炉渣综合利用项目,包含2条日处理规模600 t的炉渣处理生产线和环保砖生产线,目前已建成炉渣预分选车间,对炉渣进行分选、预制,拟在“十四五”期间全部建成,助力义乌市“海绵城市”建设。
-
案例园区实施垃圾焚烧发电厂数字化管理,建立智慧化固废管理系统以及印染园区数字化改造,有效推动园区生态环境空间管控的智慧化。
垃圾焚烧发电厂数字化管理。(1)监管智能化。依托先进控制系统和WIS系统,通过视频轨迹报警,结合执法监管,每天减少混入垃圾100 t左右。(2)控制智能化。引进先进成像控制系统,通过在焚烧炉内的高温视频探头拍摄的图像,依据光谱分析出温度及燃烧充分情况,自动对燃烧情况进行优化调整,实现远程自动控制。(3)管理智能化。通过高清探头与管理系统,实现安保数字化系统生产车间。
智慧环卫建设。通过建设智慧环卫系统参与垃圾分类以及对垃圾进行分类运输,并运送到专业处理车间进行处理:常规垃圾四分法中的厨余垃圾送到餐厨利用项目;可回收物废纸箱送到造纸车间,废旧衣物送到化纤丝造粒项目,废塑料送到塑料颗粒项目;其他垃圾送到垃圾焚烧发电车间,真正做到集收、运、处置于一体。其中,废塑料送到塑料颗粒项目即是将废旧的塑料制品规模化回收,经过分拣—清洗—破碎—熔融造粒后,使其具有良好的综合性能,可满足吹膜、拉丝、拉管、注塑、挤出型材等技术要求,并可以重新用来生产塑料制品,比如塑料垃圾袋、塑料管道、大棚膜、鞋材、日用塑料品和建筑用材料等。
印染园区数字化改造。通过建立园区智慧能源平台和碳排放信息管理平台,为入园企业集中提供“水、电、汽、气”,并实时监测节能控制和余热回用系统,实现能源、水资源消耗动态过程的信息化、可视化、可控化管理。为印染行业从单一装备的智能化向整体工厂的智能化转变提供样本。
案例园区从资源内外循环、源头化石能源替代、生产过程技术和设备改造、末端全生产和全领域治理、数字化和智慧化建设等五大路径,实现了减污降碳协同增效,见表1。
-
通过案例分析,梳理出实现工业园区减污降碳协同增效的五大成功路径。
(1)开展源头管控,实施煤炭消费替代,提高能源利用效率[9-10]。
(2)开展工业生产过程减污降碳控制,加快绿色低碳转型。强化园区低碳化、循环化、清洁生产改造,通过原料替代,改善生产工艺,改进设备使用等措施提升企业清洁生产水平。
(3)注重园区污染末端治理,开展节能降碳改造。在污水处理方面,通过科学规划雨污管网、开展污废水分类收集、加强污水预处理等路径,采用节水工艺、优化污水调配、降低处理能耗、实现污泥资源化,推进污水处理减污降碳;在废气处理方面,通过技术优化、提高设备自动化水平、降低综合能耗,促进氮氧化物、挥发性有机物(VOCs)以及温室气体协同减排,助力废气治理减污降碳;在固废处理方面,推动固废源头减量及清洁生产工艺、构建固废资源化利用系统、加强危废精细化管理,推动固废处置减污降碳。
(4)推动园区内企业进行绿色低碳化、循环化改造,创新生产工艺、提升生产技术,加强企业内部清洁化生产和资源循环利用。促进园区企业间协作,鼓励就近匹配合作,形成稳定供应链和循环经济产业链。构建跨园区生态产业集群。
(5)推动园区智慧化和数字化建设。构建工业园区减污降碳智慧化管理平台,通过物联网、互联网和云计算等技术,推动工业园区减污降碳管理业务的信息化、现代化、专业化,统筹污染物与碳排放数据,探索数据协同增效分析,以更加精细、动态的方式推动工业园区生态环境空间管控的智慧化。
-
针对现阶段中国工业园区在减污降碳协同工作中面临的挑战和问题,结合案例园区案例实践,本文梳理出对中国工业园区降碳减污协同增效路径研究的对策建议。
(1)在源头管控方面应加大可再生能源利用,减少化石能源的依赖[11]。建议在园区内建设分布式屋顶光伏,在沿海园区建设风电站,加强生物质能、民用核能的研究和利用等。
(2)建议园区全方位融入绿色发展理念。加快基础设施“七通一平”和公共服务配套[12]。推进工业园区绿色公共交通发展[13],开展园区绿色建筑运行标识、绿色工业建筑、老旧厂房、自备电厂绿色化改造等工作。加快推动园区绿色物流体系建设,促进园区物流“公转铁”“公转水”,提高铁路、水运在综合运输中的承运比例。同时,将绿色发展理念融入日常监管和运营工作,坚持走绿色低碳高质量发展之路,鼓励引导企业开展零碳工厂、绿色工程、绿色设计等,积极创建绿色园区、生态工业园区、申请循环化改造试点园区等,以评促建[14-15],全面推动园区整体绿色转型、提高绿色发展水平[16-17]。
(3)鼓励园区科学探索减污降碳路径。结合园区自身产业特色,加强与行业协会、科研院所、政府部门、金融机构等合作[18],从管理机制、政策体系、金融支持、产业转型、招商引资等多角度、多层面科学谋划具有园区特色、产业特色的减污降碳实施路径,打造覆盖“空间布局-源头减量-过程治理-末端减排-数字转型-绿色理念”的全流程系统化管理体系[19]。
(4)鼓励园区企业加快绿色低碳技术研发和推广应用。围绕碳达峰碳中和、污染防治、生态修复等应用需求,探索研发工业节能降碳和绿色低碳循环利用新技术,创新污染防治方法,研究应用新型环保材料。加大对碳中和基础前沿研究、关键核心技术攻关和场景应用研究。推动重点园区和企业绿色低碳技术应用示范,打造更多绿色低碳技术典型应用场景[20]。
本文主要是以循环经济发展为主题的工业园区在“减污降碳协同增效”方面的实践经验总结,其应用较有局限性,重点侧重为该类型的园区提供参考价值。
工业园区减污降碳协同增效路径的思考与实践
——以赤岸镇绿色低碳循环产业园为例Research on synergistic efficiency paths for reducing pollution and carbon in industrial parks
-
摘要: 工业园区减污降碳协同增效,既是工业园区高质量发展的内在要求,又是工业领域建设生态文明、深入打好污染防治攻坚战和实现“双碳”目标的重要抓手。文章选取赤岸镇绿色低碳循环产业园案例,分析其通过三废“双循环”发展模式,建设气冷电多联供技术工程、低品位能源梯级利用等项目,在造纸、印染、热电等产业开展技术和装备升级,优化污水和废气处理工艺,采用生态环境空间智慧化管控等手段,成功实现减污降碳的路径实践。同时,梳理出循环经济、源头化石能源管控、生产过程清洁低碳改造、末端污染治理、智慧化建设等五大减污降碳协同增效实施路径,并建议园区和企业还可以通过加强科技创新和技术研发、绿色基础设施建设、政企合作等方式全面提升整体绿色发展水平。Abstract: The synergistic effect of pollution reduction and carbon reduction in industrial parks is not only an inherent requirement for high-quality development, but also an important lever in building an ecological civilization, deepening the battle for pollution prevention and control, and achieving the "dual carbon" goal. By examining the Green and Low-Carbon Cycle Industrial Park in Chi'an Town as a case study, it is evident that the "double cycle" development model, the construction of gas cooling power multi-generation technology project, low-grade energy cascade utilization, the upgrading of technology and equipment in papermaking, printing and dyeing, thermal power and other industries, and the optimization of sewage and waste gas treatment processes have successfully achieved the goal of pollution reduction and carbon reduction. The study also identified five implementation paths for pollution reduction and carbon reduction synergy, including circular economy, source fossil energy control, the clean low-carbon transformation of production processes, end-point pollution control, and smart construction. Parks and enterprises could further improve the overall level of green development by strengthening scientific and technological innovation and technology research and development, green infrastructure construction, and government-enterprise cooperation were suggested.
-
Key words:
- industrial parks /
- pollution and carbon reduction /
- synergy /
- path /
- practice
-
我国是世界上畜禽养殖第一大国,畜禽养殖业排放化学需氧量(chemical oxygen demand, COD)、氨氮和总氮的量占农业污染排放总量的比例分别达到了95.2%、76.8%和62.4%[1]。畜禽养殖过程产生大量高氨氮有机废水,已成为水体污染的最主要来源,对这部分废水的有效处理成为畜禽养殖业污染控制的关键[2]。对于畜禽养殖废水的处理通常采用除碳+脱氮的耦合工艺,其中除碳过程通过厌氧消化将有机物转化为甲烷回收,而脱氮过程往往采用生物脱氮方法。传统的生物脱氮技术需要结合自养菌的好氧硝化作用和异养菌的缺氧反硝化作用,但是,当硝化和反硝化在2个独立单元中进行时(如A/O工艺),需要进行混合液回流,通常具有占地面积大和建设投资成本高等缺点。虽然当硝化和反硝化在同一个反应器内(SBR工艺)进行时,能够节省占地和成本,但需要分时段控制曝气和投加碳源,增加了操作复杂性。在处理畜禽养殖废水的厌氧消化液时,一方面,高氨氮质量浓度易对自养硝化产生抑制;另一方面,厌氧消化处理后出水中仍会残留很多有机物,这将进一步抑制自养硝化效果。因此,十分有必要开发更适宜的高氨氮有机废水处理技术。
异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification, HN-AD)菌能够适应高质量浓度的氨氮和有机物,通过异养硝化与好氧反硝化作用的耦合,在好氧条件下能够将废水中的氨氮转化为氮气,实现高效脱氮,整个代谢过程几乎没有亚硝态氮/硝态氮的积累,同时有机物也得到了降解和去除。1984年,ROBERTSON等[3]将首株HN-AD菌Thiosphaera pantotropha从硫氧化脱硝废水处理装置中分离出来。近年来,越来越多的HN-AD菌被发现,它们大多具有世代时间短和耐受性强等优势,对高质量浓度的氨氮和有机物有较好的耐受和处理效果[4]。HN-AD菌Comamonas WXZ-17可耐受817 mg·L−1的氨氮质量浓度,Acinetobacter sp. TN-14能在氨氮质量浓度高达1 200 mg·L−1的环境下生长[5]。HN-AD菌耐受高氨氮的同时能实现对其转化脱除,如Thauera sp. SND5的平均氮去除速率约为2.85 mg·(L·h)−1[6];Bacillus methylotrophicus L7在初始氨氮质量浓度为1 121.2 mg·L−1的条件下,总氮去除速率可达3.8 mg·(L·h)−1[7]。因此,HN-AD技术可以适应高氨氮有机废水的脱氮处理,反应速率高、处理时间短,同时能够在同一个处理单元中在好氧条件下实现有机物和氨氮、总氮的同步去除,降低工艺复杂度,有望为高氨氮有机废水提供一种具有更高效率和更低成本的新技术。目前相关的研究以纯菌HN-AD系统较多,而实际工程中很难做到纯菌环境,那么具有HN-AD功能的污泥驯化就非常重要,是实现技术应用的关键,然而相关的研究仍然较为缺乏。SONG等[8]针对高盐榨菜废水的处理,经过105 d驯化建立了HN-AD混菌系统,COD和总氮去除率分别达到了93.2%和82.4%。但是,上述方法的驯化时间长,系统启动较慢,迫切需要一种在实际应用场景中低成本、快速、有效驯化具有HN-AD功能活性污泥的方法以及有机碳源对系统运行的影响及其优化相关的研究。
因此,本研究考察了在固定C/N比条件下驯化HN-AD活性污泥的方法,并进行了HN-AD效果验证,选择了3种碳源以探究碳源种类和C/N比对系统运行效果的影响,分析了系统中有机物降解和脱氮的动力学特征,揭示了系统中的优势功能菌,以期为实际工程中畜禽养殖废水厌氧消化液等高氨氮有机废水的高效处理提供技术支撑。
1. 材料与方法
1.1 实验装置与材料
本研究采用间歇式反应器,材质为有机玻璃,内径为150 mm,主体高170 mm,有效容积为3.0 L。在反应器底部放置曝气盘,外接空气曝气泵,同时,在反应器上方设搅拌桨充分混合活性污泥和废水,以确保溶解氧(DO)分布均匀。反应器中插有pH和DO电极,用于在线监测pH和DO。
实验用水选用模拟配水,以NH4Cl(100~600 mg·L−1, 以氮浓度计)作为氮源,添加KH2PO4(20 mg·L−1, 以磷浓度计)补充磷源,添加微量元素(1 mL·L−1),添加乙酸钠、柠檬酸钠、丁二酸钠的混合碳源(溶液中三者的COD比=1:1:1)作为生物可利用有机碳源(2 000~12 000 mg·L−1,以COD计)。通过调整进水碳源和氮源质量浓度以控制配水的碳氮比。
1.2 实验装置运行实验
反应器采用序批式运行模式,每个周期分为5个阶段:进水(10 min)、曝气加搅拌运行、沉降(20 min)、出水(10 min)、空闲(1 h)。反应在室温下运行,通过实时监测DO来控制曝气阶段的运行时长,采用蠕动泵进水和排水,出水阶段排水比为0.25。实验装置共运行175 d,设置了系统启动、进水负荷提升和C/N比优化3个阶段。
第Ⅰ阶段:启动HN-AD系统,将北京某污水厂二沉池的活性污泥投入反应器,通过定期排泥(污泥龄12~15 d)排出部分死菌和细胞分泌物,以维持微生物的新陈代谢活性。初始进水COD和氨氮质量浓度分别为2 000 mg·L−1 和100 mg·L−1。根据自养氨氧化过程,每氧化1 g氨氮需要消耗7.14 g碱度(以碳酸钙计),在进水中投加NaHCO3补充至所需碱度。保持C/N比为20,逐步提高进水氨氮质量浓度(每5个周期提升100 mg·L−1)来驯化HN-AD菌群。验证HN-AD系统,当系统启动成功后不再额外补充碱度。第Ⅱ阶段:HN-AD系统的进水氨氮质量浓度进一步提升到300 mg·L−1,待系统运行稳定后,每5个周期提升100 mg·L−1,逐步将进水氨氮提升至600 mg·L−1。第Ⅲ阶段:保持进水氨氮质量浓度为600 mg·L−1,探究不同C/N比(15、20、25)对HN-AD系统脱氮效率的影响,优化出最佳运行条件。
1.3 异养硝化-好氧反硝化验证实验
从反应器中取出50 mL活性污泥,移至250 mL锥形瓶,随后加入50 mL模拟配水进行实验。设置模拟配水中C/N=20,采用混合碳源(乙酸钠、丁二酸钠和柠檬酸钠的COD比=1:1:1)。模拟配水中进水氨氮质量浓度为100 mg·L−1。在实验组中添加自养硝化抑制剂3,4-二甲基吡唑磷酸盐(C5H8N2·H3O4P,DMPP),于25 ℃、160 r·min−1振荡培养36 h,每间隔一段时间取水样测试氨氮、硝态氮、亚硝态氮的质量浓度。
1.4 有机碳源影响实验
相比于糖类等大分子物质,乙酸钠、柠檬酸钠和丁二酸钠等小分子更容易被HN-AD菌所利用,能够直接参与三羧酸循环代谢过程。考虑到畜禽养殖废水厌氧消化液中常含有小分子挥发性脂肪酸的特点,因此,本研究选用乙酸钠、柠檬酸钠和丁二酸钠作为实验所用碳源,以研究碳源种类的影响。
从反应器中取出50 mL活性污泥,移至250 mL锥形瓶,随后加入50 mL模拟配水(含氨氮200 mg·L−1)进行实验。在模拟配水中,分别采用乙酸钠、丁二酸钠、柠檬酸钠及3种有机物作为混合碳源,以确保锥形瓶内在进水后的初始COD和氨氮质量浓度分别为2 000 mg·L−1和100 mg·L−1,于25 ℃、160 r·min−1振荡培养36 h,每间隔一段时间取水样测试氨氮、硝态氮、亚硝态氮的质量浓度。
1.5 氨氮和有机物去除动力学
HN-AD系统启动成功并稳定运行后,在初始有机物和氨氮质量浓度分别为3 000 mg·L−1和150 mg·L−1的单个周期,实时监测COD值、氮质量浓度变化。采用修正的Gompertz模型[9](式(1))对底物去除过程进行拟合,解析底物质量浓度与反应时间的关系。
stringUtils.convertMath(!{formula.content}) (1) 式中:S为t时刻底物质量浓度,mg·L−1;S0为初始底物质量浓度,mg·L−1;Rm为最大去除速率,mg·(L·h)−1;t0为迟滞时间,h。
1.6 分析检测方法
1)常规水质分析方法。COD值和各种氮化合物的质量浓度用标准方法测定。用纳氏分光光度法在425 nm处测定氨氮,用比色法在540 nm处测定亚硝态氮,用紫外分光光度法在220 nm和275 nm处测量硝态氮。用手持便携式分析仪测量pH和溶解氧(德国WTW Multi 3320)。铵(NH4+-N)由于水解反应会转化为分子态氨,也称为游离氨(free ammonia, FA),FA质量浓度由NH4+-N、pH和温度确定,根据式(2)[10]进行计算。
stringUtils.convertMath(!{formula.content}) (2) 式中:ρFA为游离氨质量浓度,mg·L−1;
为氨氮质量浓度,mg·L−1;pH为溶液的酸碱度;T为温度, ℃。CNH+4-N 2)微生物群落结构测定。从反应器中取一定量的活性污泥,根据E.Z.N.A.® soil DNA kit(Omega Bio-tek, Norcross,美国)说明书进行微生物群落总DNA抽提,用NanoDrop2000(赛默飞世尔科技,美国)测定DNA的浓度和纯度。使用引物338F(5’-ACTCCTACGGGAGGCAGCAG-3’)和806R(5’-GGACTACHVGGGTWTCTAAT-3’)对16S rRNA基因V3~V4可变区进行PCR扩增,并用琼脂糖凝胶电泳检测PCR结果。使用Illumina MiSeq平台(美吉生物医药科技有限公司,上海)对纯化的聚合酶链反应产物进行测序。
2. 结果与讨论
2.1 异养硝化系统的启动与验证
在C/N比为20的条件下,通过进水氨氮质量浓度的梯度提升来驯化活性污泥,增加HN-AD菌的相对丰度,进而构建HN-AD脱氮系统,结果如图1所示。结果表明,系统启动初始,进水氨氮质量浓度为100 mg·L−1,逐步提升进水氨氮质量浓度,在1~10周期(进水氨氮≤200 mg·L−1),氨氮去除率(>95%)较高,出水中亚硝态氮质量浓度(<0.1 mg·L−1)较低,但积累了一定质量浓度的硝态氮(>20 mg·L−1),推测系统中发生了以自养硝化为主的硝化过程,此时总氮去除率只有约38%。由图2(a)可见,在系统启动初期(第7周期)的反应过程可以看出,随着氨氧化的进行,亚硝态氮质量浓度先升高后降低,硝态氮质量浓度逐步升高并出现积累。在该周期的反应过程中,游离氨质量浓度在6 h时升至20 mg·L−1,高于抑制亚硝酸盐氧化菌(nitrite oxidizing bacteria, NOB)的FA阈值(0.1~5.0 mg·L−1),亚硝态氮出现积累且质量浓度到达峰值(9 mg·L−1),但随着反应的进行,FA质量浓度迅速降低至5 mg·L−1以下,亚硝态氮积累消失且硝态氮质量浓度不断上升。
由图1可见,在第11周期,将进水氨氮质量浓度提升至300 mg·L−1,对应进水FA达到76.8 mg·L−1,已高于大多数研究报道的自养氨氧化菌(ammonia oxidizing bacteria, AOB)和NOB的抑制阈值。虽然该周期氨氮去除率降低至76%,但出水中不再有硝态氮累积(<2 mg·L−1),总氮去除率达到67.8%,从这一周期开始,系统不再额外补充碱度。当FA质量浓度为20~40 mg·L−1时,自养AOB的氨氧化性能会受到严重影响[11],而HN-AD菌属,如Acinetobacter YB、Bacillus WXZ-8和Zobellella DN-7等,在较高质量浓度FA时(>100 mg·L−1)仍能正常发挥氨氧化功能[12-13]。由此可知,异养硝化菌对FA的耐受能力远高于自养硝化菌,推断此时系统中较高质量浓度的FA抑制了自养AOB,硝化作用主要由HN-AD菌贡献。随着反应器运行,HN-AD系统脱氮性能不断提升。由图2(b)可见,第15周期的氨氮去除率和总氮去除率分别提升至92%和83%,有机物和氨氮实现了同步降解,并且未出现硝态氮和亚硝态氮的积累。在该周期FA质量浓度始终维持在40 mg·L−1以上,且在6 h时达到70.5 mg·L−1,从而较稳定地实现对自养AOB和NOB的抑制,有利于HN-AD菌的富集。当第16周期进水氨氮质量浓度进一步提升至400 mg·L−1,氨氮去除率和总氮去除率依然保持在91%和85%,至此认为HN-AD系统启动成功。
通过投加抑制剂DMPP抑制自养硝化,根据氨氮转化性能验证了系统中发生的主要硝化反应类型。由图3(a)可知,驯化前,投加DMPP实验组氨氮质量浓度基本没有下降,而空白组则正常进行氨氧化过程,这表明抑制剂显著抑制了氨氮的转化。由图3(b)可知,驯化后,投加DMPP实验组与空白组的氨氮质量浓度呈现相似下降趋势,表明氨氧化过程并未受到抑制。综上所述,系统启动成功后,体系中硝化反应的主要类型是异养硝化。
2.2 有机碳源对异养硝化脱氮的影响
选择合适的碳源有利于实现最佳的菌体生长和脱氮性能,可以提高反应效率并缩短反应时间。本研究选用乙酸钠、柠檬酸钠和丁二酸钠作为实验所用碳源,在混菌系统中研究了有机碳源种类的影响。从图4可以看出,用乙酸钠、柠檬酸钠、丁二酸钠作唯一碳源时,48 h的氨氮去除率分别达到了79.5%、83.3%和87.9%;而将上述3种碳源混合使用时,48 h的氨氮去除率达到了96.1%。不同种类碳源的分子构成和氧化还原电位存在差异,因此,HN-AD菌对他们的利用程度各不相同[13]。有研究表明,以丁二酸钠为碳源时,Thauera sp. SND5菌株对氮的去除效果较好[6];利用柠檬酸钠为碳源时,Alcaligenes faecalis C16菌株的脱氮效率最高[14];而对于Paracoccus pantotrophus菌株,乙酸钠是发挥最佳脱氮性能的碳源[15]。因此,在本研究的HN-AD系统中,不同的单一碳源会表现出脱氮性能的差异,而混合碳源可以更好地满足混菌体系中不同种HN-AD菌属的需求,从而使系统具有更好的脱氮性能。由于畜禽养殖废水中存在大量乙酸等小分子有机酸,所以当用HN-AD系统处理该类废水时,有望能够保证较高的脱氮效率。
2.3 C/N比对异养硝化脱氮的影响
在HN-AD系统采用混合碳源的基础上,进一步研究了系统进水C/N比的影响。结果表明,C/N比对HN-AD菌的脱氮效率有显著影响。
如图5(a)所示,当C/N比为15时,系统的氨氮去除率为80.3%,同时出水中几乎没有硝态氮或亚硝态氮积累;将C/N比提升为20后,HN-AD系统脱氮效率明显上升,随着系统运行,HN-AD系统运行稳定,氨氮去除率提高到了95%;将C/N比提高到25后,脱氮性能有所下降,氨氮去除率降低为90%。总氮的去除率也随着C/N比的优化而发生变化,在C/N比为20时,总氮去除率达到了89.6%,之后继续提升C/N比并不能显著提升总氮去除率。不同HN-AD菌的最优C/N比不同,Aliidiomarina在C/N比为9时,氨氮去除率达到93.7%[16];Thauera sp.TN9在C/N比为22时氮去除效率最高,达到99.2%[17];Paracoccus versutus LYM在C/N比为20时,氮去除率达到97.09%[18]。一方面,C/N比过低会导致碳源不足,使得细胞生长受限以及缺乏电子供体,进而导致脱氮效率下降;另一方面,C/N比过高可在一定程度上抑制脱氮效果[19]。因此,合适的C/N比对于HN-AD系统的低耗高效运行至关重要,后续可将C/N比设为20~25进一步优化,以确定HN-AD系统的最佳C/N比。
如图5(b)所示,随着进水C/N比的提高,系统出水的COD值不断增加,由于出水中没有检测到进水所用碳源,因此推测出水中的COD来源于微生物的细胞分泌物。对出水进行三维荧光测试,结果显示较明显的荧光峰(Ex/Em=260~300 nm/300~370 nm)为色氨酸荧光蛋白峰,同时,另一个较明显的荧光峰(Ex/Em=330~370 nm/400~475 nm)为类腐殖酸的峰,表明蛋白质和腐殖酸是出水中有机物的组成部分。这可能是由于高C、N质量浓度环境刺激了微生物产生大量细胞代谢产物,形成高浓度的胞外聚合物(extracellular polymeric substances, EPS),EPS主要由多糖和蛋白质组成,可分为溶解态和结合态2种形态,其中大部分溶解态EPS可以随出水排出系统[20]。WANG等[21]研究表明,在微生物处于极端的生存环境时,EPS中色氨酸和芳香类蛋白荧光强度会显著增强。
本研究进一步对出水中的蛋白质和多糖进行了测定,结果如图6(b)所示,发现其含量随着C/N比提高而不断增加,换算成COD当量后发现,蛋白质和多糖分别占出水总COD的60%~70%。当对高碳质量浓度有机废水进行脱氮处理时,HN-AD菌的繁殖速度远远快于自养硝化菌,但其生长过程产生的大量溶解态EPS很可能导致出水有机物超标,后续可以通过增加膜组件构成膜-生物反应器对这些大分子物质截留,从而保证出水水质达到排放标准。
2.4 异养硝化系统的动力学研究
HN-AD系统具有同步除碳脱氮的特性,通过修正的Gompertz模型[9]来进一步解析底物去除过程。针对典型周期,分别对COD和氨氮质量浓度随时间的变化进行动力学拟合,结果如图7所示。COD的最大去除速率为174.1 mg·(L·h)−1(R2=0.992),氨氮的最大去除速率为8.66 mg·(L·h)−1 (R2=0.999)。已有研究[22]表明,大部分HN-AD纯菌的氨氮去除速率为3~8 mg·(L·h)−1,而本研究所构建HN-AD系统显示出比纯菌体系更高的氨氮去除速率。此外,对典型周期各时间点的COD和氨氮质量浓度进行相关性拟合。如图7(c)所示,反应过程中两者呈现出较好的相关性(R2=0.997),从而间接证明了HN-AD过程氨氮转化需要碳源,有助于实现碳氮协同降解。上述拟合结果有助于深入了解系统性能,并优化HN-AD系统在实际应用时的设计和运行参数,以实现高质量浓度含氮有机废水处理过程高效稳定的除碳脱氮。
2.5 微生物群落结构分析
在属水平上的污泥物种组成分析结果如图8所示,HN-AD系统中的优势菌为Thauera(69.7%),而自养硝化菌的丰度较低(<1%)。已有研究[6,17]表明,Thauera细菌可以参与氮循环过程,具有异养硝化-好氧反硝化功能,通常存在于极端环境中,对高COD和高氨氮环境具有较强的适应能力,Thauera细菌具有降解有机物的能力,特别是一些具有环境污染潜力的有机污染物,如芳香烃类化合物和氯化有机化合物,其代谢能力可以用于生物修复和废水处理等环境应用。相对丰度第2高的Propioniciclava(8.3%),该菌属是一种潜在聚磷菌,能够在厌氧阶段完成聚磷代谢[23]。属水平微生物群落分析结果表明,在驯化过程中,Thauera相对丰度显著增加,成为主导性的菌种。以上结果对于深入了解HN-AD系统的微生物群落动态和功能特性具有重要意义。
3. 结论
1)通过逐渐提升进水COD和氨氮质量浓度的方法可以快速实现HN-AD污泥的驯化,并通过单个周期的COD和氨氮质量浓度监测证实了HN-AD功能的启动。
2)有机碳源对系统的脱氮效果有重要影响,柠檬酸钠、乙酸钠和丁二酸钠的混合碳源更有利于异养硝化脱氮,当C/N比为20时,HN-AD系统的脱氮效率最高。采用Gompertz动力学模型分别拟合了氨氮和COD底物的去除过程,模型相关系数R2均在0.9以上,证实了氨氮去除和有机物去除的相关性。
3)在优化条件下,HN-AD系统实现了95%的氨氮去除率、89.6%的总氮去除效率和92%的COD去除率,这表明该工艺可同步实现高效脱氮和有机物的去除。高通量分析结果表明,Thauera相对丰度显著增加,并成为了HN-AD系统中的优势菌种。
-
表 1 案例园区2019—2021年主要能源消耗情况
Table 1. Case Park’s main energy consumption from 2019 to 2021
t/a 一般烟煤/t 柴油/t 电力/MW·h 综合能源消费量*/tce 万元产值能耗/tce 万元增加值能耗/tce 2019 325 834 1 066 1 307.47 221 317.21 1.18 5.25 2020 315 897 1 367 2 056.74 243 792.64 0.91 4.05 2021 388 326 1 143 1 510.38 299 906.47 0.83 3.47 注:*表示能源消费量计算一次能源消费以及电力购进部分,其中一次能源包括城市生活垃圾及污泥等废弃物综合利用资源,电力折标系数采用等价值系数。 -
[1] 中华人民共和国生态环境部. 中国应对气候变化的政策与行动2020年度报告[R/OL]. [2023-04-06]. https://www.mee.gov.cn/ywgz/ydqhbh/syqhbh/202107/W020210713306911348109.pdf. [2] 中华人民共和国生态环境部. 关于统筹和加强应对气候变化与生态环境保护相关工作的指导意见[EB/OL]. [2023-04-06]. https://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202101/t20210113_817221.html. [3] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[Z/OL]. [2023-04-06]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. [4] 郭扬, 吕一铮, 严坤, 等. 中国工业园区低碳发展路径研究[J]. 中国环境管理, 2021, 13(1): 49 − 58. doi: 10.16868/j.cnki.1674-6252.2021.01.049 [5] IPCC. Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems[R]. Cambridge: Cambridge University Press. IPCC, 2019. [6] 费伟良, 李奕杰, 杨铭, 等. 碳达峰和碳中和目标下工业园区减污降碳路径探析[J]. 环境保护, 2021, 49(8): 61 − 63. [7] 郑逸璇, 宋晓晖, 周佳, 等. 减污降碳协同增效的关键路径与政策研究[J]. 中国环境管理, 2021, 13(5): 45 − 51. [8] 国务院办公厅. 国务院办公厅关于印发“无废城市”建设试点工作方案的通知[EB/OL]. [2023-04-09]. https://www.gov.cn/gongbao/content/2019/content_5363069.htm. [9] 蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径[J]. 中国人口·资源与环境, 2021, 31(1): 7 − 14. [10] 吴茵茵, 齐杰, 鲜琴, 等. 中国碳市场的碳减排效应研究: 基于市场机制与行政干预的协同作用视角[J]. 中国工业经济, 2021(8): 114 − 132. [11] 熊华文. 减污降碳协同增效的能源转型路径研究[J]. 环境保护, 2022, 50(增1): 35 − 40. [12] GUO Y, TIAN J P, CHERTOW M, et al. Greenhouse gas mitigation in Chinese eco-industrial parks by targeting energy infrastructure: a vintage stock model[J]. Environmental Science & Technology, 2016, 50(20): 11403 − 11413. [13] 张立, 谢紫璇, 曹丽斌, 等. 中国城市碳达峰评估方法初探[J]. 环境工程, 2020, 38(11): 1 − 5. [14] 周迪, 周丰年, 王雪芹. 低碳试点政策对城市碳排放绩效的影响评估及机制分析[J]. 资源科学, 2019, 41(3): 546 − 556. [15] 田云, 陈池波. 中国碳减排成效评估、后进地区识别与路径优化[J]. 经济管理, 2019, 41(6): 22 − 37. [16] 赵若楠, 马中, 乔琦, 等. 中国工业园区绿色发展政策对比分析及对策研究[J]. 环境科学研究, 2020, 33(2): 511 − 518. [17] 李杨, 陈何潇, 杨子杰, 等. 生态工业园区绿色发展与环境管理实践分析[J]. 中国资源综合利用, 2020(6): 138 − 140. [18] 高谋洲. 生态工业园区建设中政府与市场作用之辩证[J]. 北方经贸, 2021(9): 116 − 119. [19] 范晓鹏. 生态工业园区建设的环境管理模式浅析[J]. 中国资源综合利用, 2020(5): 120 − 122. doi: 10.3969/j.issn.1008-9500.2020.05.037 [20] 徐宜雪, 崔长颢, 陈坤, 等. 工业园区绿色发展国际经验及对我国的启示[J]. 环境保护, 2019, 47(21): 69 − 72. doi: 10.14026/j.cnki.0253-9705.2019.21.016 -