-
生物质能作为世界能源消费体系中的第四大能源,仅次于煤炭、石油和天然气,近年来得到了国家的重点鼓励和扶持,在未来能源结构中,生物质能作为可再生能源将发挥不可替代的作用[1-2]。近十年来,我国畜禽粪便年产量基本稳定在37亿吨,畜禽粪便中含有丰富的水分(50.5%)、有机质(25.5%)、氮(1.63%)、磷(1.54%)、硫化氢以及大量的病原菌等,由于产量巨大且综合利用率不足,是造成环境污染的主要污染源之一[3],主要表现为易产生面源污染、粪便中病原体释放、气味恶劣等[4-5],存在分散性、累积性和模糊性等特点,控制难度较大[6]。然而其作为一种生物质能,得到有效利用可以缓解能源紧张带来的压力并减少其对环境造成的污染。厌氧消化作为畜禽粪便等有机污染物的处置方法之一,可以将有机物转化为CH4、CO2和各类小分子脂肪酸,实现资源的进一步利用[7]。
温度作为厌氧消化的主要影响因素之一,将厌氧消化划分为常温厌氧消化(15~25 ℃)、中温厌氧消化(30~40 ℃)和高温厌氧消化(50~60 ℃)[8],由于常温厌氧消化甲烷产量和有机物降解效率较低,中高温厌氧消化目前应用较为广泛。近年来很多研究表明,在高温厌氧消化过程中,有机物的降解效率、甲烷产量以及挥发性脂肪酸(VFAs)的去除率均高于中温厌氧消化[9-10]。KJERSTADIUS et al[11]通过在35、55和60 ℃下进行厌氧消化实验发现高温能够很好地减少沙门氏菌及大肠杆菌等病原体的释放。FERNÁNDEZ-RODRIGUEZ et al[12]利用Romero模型对中高温厌氧消化微生物最大生长速率(mu(MAX))进行拟合,结果表明高温过程生长速率较中温过程提高27%~60%,并在更短时间内实现相同水平有机物的降解;同时WANG et al[13]指出通过改变温度进而改变水解酸化细菌和产甲烷菌相对丰度来提高厌氧消化工艺性能。但高温厌氧消化中的菌群易受外部环境的影响,其在厌氧消化过程中的耐热机理及微生物调节机制还有待进一步研究。所以本研究通过对比中高温厌氧消化产气特性及微生物群落结构变化,从分子生物学角度分析其各自微生物调节机制以及高温厌氧消化耐热机理,为实际沼气工程提供理论指导,实现能源高效回收。
中高温鸡粪厌氧消化微生物调节机制对比及耐热机理研究
Comparison of microbial regulation mechanisms and heat-resistant mechanism of anaerobic digestion of chicken manure at medium and high temperature
-
摘要: 温度对厌氧消化系统内微生物调节机制的影响尚不清楚,通过对比中高温厌氧消化实验,分析了其各自微生物调节机制以及高温厌氧消化耐热机理。结果表明,在底物浓度相同的情况下高温厌氧消化比中温提前6天达到产甲烷峰值,高温条件能够缩短厌氧消化反应周期,更有利于有机物的水解酸化和甲烷的生成;Defluviitoga作为高温厌氧消化过程水解阶段优势菌种,对高温环境具有较好的抗逆性,可将大部分多糖类物质当作电子受体,并降解为醋酸盐、H2和CO2;Methanosarcina作为中高温厌氧消化产甲烷阶段优势菌种,能够适应中温高温两种不同环境,且可利用所有甲烷代谢途径(食乙酸、食氢、食甲基化合物),产甲烷潜力巨大。Abstract: The influence of temperature on the microbial regulation mechanism in the anaerobic digestion system is unclear. The microbial regulation mechanisms and the mechanism of heat resistance of high-temperature anaerobic digestion by comparing the anaerobic digestion experiments at medium and high temperatures were analyzed. The results showed that under the condition of the same substrate concentration, high-temperature anaerobic digestion reached the peak of methane production 6 days earlier than medium-temperature, and high-temperature conditions could shorten the reaction cycle, which was more conducive to the hydrolysis and acidification of organic matter and the formation of methane. Defluviitoga, as the dominant strain in the hydrolysis stage of the high-temperature anaerobic digestion process, had good stress resistance to high-temperature and could use most polysaccharides as electron acceptors and degrade them into acetate, H2 and CO2. Methanosarcina, as the dominant strain in the methanogenic stage of medium-high temperature anaerobic digestion, could adapt to two different environments, use all methane metabolic pathways (eating acetic acid, hydrogen, and methyl compounds), and has great potential for methane production.
-
表 1 鸡粪与接种污泥的性质
Table 1. Properties of chicken manure and inoculated sludge
% 实验
材料TS VS pH C N 粗蛋白 粗脂肪 粗纤维 钙 鸡粪 27.29 23.33 − 46.07 4.73 22.34 2.44 10.72 10.00 接种
污泥18.12 8.36 6.41 − − − − − − 表 2 中高温厌氧消化水解酸化细菌α多样性变化
Table 2. Changes in the α diversity of acidified bacteria during mid-high temperature anaerobic digestion
组数 物种数/个 均匀度指数 多样性指数 生物覆盖率 Shannon Simpson Chao1 ACE M1 1593 6.432 0.934 1816.911 1898.458 0.993 M2 1742 7.819 0.987 1946.074 2056.014 0.993 M3 1293 7.341 0.984 1460.754 1564.026 0.994 M4 1848 7.876 0.983 2075.346 2171.558 0.992 M5 1758 7.461 0.970 2013.739 2124.699 0.992 M6 1857 7.474 0.968 2108.730 2193.657 0.992 M7 1756 6.936 0.962 2059.034 2163.817 0.991 M8 1869 7.331 0.973 2125.733 2238.300 0.992 H1 2245 8.053 0.979 2538.160 2607.659 0.991 H2 2056 7.666 0.980 2365.965 2487.267 0.990 H3 1921 7.275 0.976 2232.204 02382.96 0.990 H4 2391 8.597 0.991 2650.590 2772.402 0.990 H5 1897 6.837 0.961 2194.613 2335.348 0.990 H6 1615 7.161 0.978 1880.154 2005.092 0.992 H7 1769 6.784 0.898 1964.061 2037.415 0.992 H8 1634 6.802 0.968 1905.350 2043.547 0.991 表 3 中高温厌氧消化产甲烷古菌α多样性变化
Table 3. Variation of alpha diversity of methanogenic archaea during mid-high temperature anaerobic digestion
组数 物种数/个 均匀度指数 多样性指数 生物覆盖率 Shannon Simpson Chao1 ACE M1 533 4.109 0.822 602.843 620.164 0.998 M2 584 5.413 0.946 631.616 644.214 0.999 M3 544 5.315 0.947 602.235 611.049 0.999 M4 514 5.456 0.951 569.836 573.337 0.999 M5 624 5.742 0.962 669.764 685.770 0.999 M6 316 4.421 0.854 341.161 339.959 0.999 M7 191 3.617 0.812 217.400 218.061 1.000 M8 189 3.780 0.847 204.750 209.107 1.000 H1 446 5.027 0.932 497.679 528.585 0.999 H2 553 5.184 0.939 613.061 633.953 0.998 H3 483 5.244 0.946 516.514 527.499 0.999 H4 664 5.414 0.943 758.897 757.104 0.998 H5 530 5.322 0.941 587.554 588.961 0.999 H6 276 2.899 0.681 298.000 308.641 0.999 H7 162 2.984 0.786 193.231 183.107 1.000 H8 191 3.153 0.805 204.034 211.344 1.000 -
[1] 袁惊柱, 朱彤. 生物质能利用技术与政策研究综述[J]. 中国能源, 2018, 40(6): 16 − 20. [2] ZHANG LB, YANG T. The Evaluation and Selection of Renewable Energy Technologies in China[J]. Energy Procedia, 2014, 61: 2554 − 2557. doi: 10.1016/j.egypro.2014.12.044 [3] YAO Y, HUANG G, AN C, et al. Anaerobic digestion of livestock manure in cold regions: Technological advancements and global impacts[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109494. doi: 10.1016/j.rser.2019.109494 [4] LIU WR, ZENG D, SHE L, et al. Comparisons of pollution characteristics, emission situations, and mass loads for heavy metals in the manures of different livestock and poultry in China[J]. Science of The Total Environment, 2020, 734: 139023. doi: 10.1016/j.scitotenv.2020.139023 [5] 唐涛涛, 李江, 杨爱江, 等. 秸秆类型及配比变化对污泥厌氧消化中微生物群落的影响[J]. 化工进展, 2020, 39(2): 667 − 678. doi: 10.16085/j.issn.1000-6613.2019-0777 [6] 李霞. 当前我国畜牧养殖对生态环境的影响[J]. 农业与技术, 2016, 36(14): 239. [7] PONSA S, FERRER I, VAZQUEZ F, et al. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55°C) of sewage sludge: Influence of pH and solid content[J]. Water Research, 2008, 42(14): 3972 − 3980. doi: 10.1016/j.watres.2008.07.002 [8] 张文哲, 陈静, 刘玉, 等. 中温和高温厌氧消化的比较[J]. 化工进展, 2018, 37(12): 4853 − 4861. doi: 10.16085/j.issn.1000-6613.2018-0599 [9] 曲艺源, 张景新, 何义亮. 铁电极辅助餐厨垃圾高温厌氧消化及微生物的耐盐机理[J]. 化工进展, 2022, 41(4): 8. doi: 10.16085/j.issn.1000-6613.2021-0819 [10] MICOLUCCI F, GOTTARDO M , PAVAN P , et al. Pilot scale comparison of single and double-stage thermophilic anaerobic digestion of food waste[J]. Journal of Cleaner Production, 2017: 1376-1385. [11] KJERSTADIUS. H, JANSEN JL, DE V, et al. Hygienization of sludge through anaerobic digestion at 35, 55 and 60 degrees C[J]. Water Science and Technology, 2013, 68(10): 2234 − 2239. doi: 10.2166/wst.2013.486 [12] FERNANDEZRODRIGUEZ J, PEREZ M, ROMERO LI, et al. Comparison of mesophilic and thermophilic dry anaerobic digestion of OFMSW: Kinetic analysis[J]. Chemical Engineering Journal, 2013(232): 59 − 64. [13] WANG Z, MA T, XING L. Process performance and microbial interaction in two-stage continuously stirred tank reactors for sludge anaerobic digestion operated at different temperatures[J]. Biochemical Engineering Journal, 2020, 161: 107682. doi: 10.1016/j.bej.2020.107682 [14] 李金璐, 王硕, 于婧, 等. 2013. 一种改良的植物 DNA提取方法[J]. 植物学报, 2013, 48(1): 72 − 78. [15] KIM M S, KIM D H, YUN Y M. Effect of operation temperature on anaerobic digestion of food waste: performance and microbial analysis[J]. Fuel, 2017, 209: 598 − 605. doi: 10.1016/j.fuel.2017.08.033 [16] NGES I A, JING L. Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions[J]. Renewable Energy, 2010, 35(10): 2200 − 2206. doi: 10.1016/j.renene.2010.02.022 [17] YANG Z Y, WANG W, ZHANG SY, et al. Comparison of the methane production potential and biodegradability of kitchen waste from different sources under mesophilic and thermophilic conditions[J]. Water Science And Technology. 2017, 75(7), 1607-1616. [18] FOUNTOULAKIS M S, DRAKOPOULOU S, TERZAKIS S, et al. Potential for methane production from typical Mediterranean agro-industrial by-products[J]. Biomass & Bioenergy, 2008, 32(2): 155 − 161. [19] ALMEIDA S D. Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness[J]. Bioresource Technology, 2017, 241: 985. doi: 10.1016/j.biortech.2017.06.006 [20] ZHAO Y, SUN F, YU J, et al. Co-digestion of oat straw and cow manure during anaerobic digestion: Stimulative and inhibitory effects on fermentation[J]. Bioresource Technology, 2018, 269: 143 − 152. doi: 10.1016/j.biortech.2018.08.040 [21] DUAN N, ZHANG D J, LIN C, et al. Effect of organic loading rate on anaerobic digestion of pig manure: Methane production, mass flow, reactor scale and heating scenarios[J]. Journal of Environmental Management, 2019, 231: 646 − 652. doi: 10.1016/j.jenvman.2018.10.062 [22] HIDAKA T, WANG F, TOGARI T, et al. Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge[J]. Bioresource Technology, 2013, 149(12): 177 − 183. [23] GARCIA M L, ANGENENT L T. Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment[J]. Water Research, 2009, 43(9): 2373 − 2382. doi: 10.1016/j.watres.2009.02.036 [24] 郭香麟, 左剑恶, 史绪川, 等. 餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J]. 环境科学, 2017, 38(7): 3070 − 3077. doi: 10.13227/j.hjkx.201612267 [25] 宋壮壮, 吕爽, 刘哲, 等. 厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J]. 环境科学, 2019, 40(11): 5057 − 5065. doi: 10.13227/j.hjkx.201905223 [26] BAKER A B, TAWABINI B, NAZAL M, et al. Efficiency of Thermophilic Bacteria in Wastewater Treatment[J]. Arabian Journal for Science and Engineering, 2021, 46(1): 123 − 128. doi: 10.1007/s13369-020-04830-x [27] HE C. , ZHANG BG, YAN WY, et al. Enhanced Microbial Chromate Reduction Using Hydrogen and Methane as Joint Electron Donors[J]. Journal of Hazardous Materials, 2020(395): 122648. [28] PENG X, ZHANG S, LI L, et al. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community[J]. Bioresource Technology, 2018, 262: 148 − 158. doi: 10.1016/j.biortech.2018.04.076 [29] 李旭, 冯磊, 甄箫斐, 等. 基于CSTR反应器鸡粪秸秆共消化产甲烷特性及菌群变化研究[J]. 环境科学学报, 2021, 41(08): 3312 − 3323. doi: 10.13671/j.hjkxxb.2021.0036 [30] LIN L, YU Z, LI Y. Sequential batch thermophilic solid-state anaerobic digestion of lignocellulosic biomass via recirculating digestate as inoculum – Part II: Microbial diversity and succession[J]. Bioresource Technology, 2017, 241: 1027 − 1035. doi: 10.1016/j.biortech.2017.06.011 [31] SUN LW, TOYONAGA M, OHASHI A, et al. Lentimicrobium saccharophilum gen. nov., sp nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(7): 2635 − 2642. doi: 10.1099/ijsem.0.001103 [32] HANIA W B, GODBANE R, POSTEC A, et al. Defluviitoga tunisiensis gen. nov. sp. nov. a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62: 1377 − 1382. doi: 10.1099/ijs.0.033720-0 [33] MAUS I. , KOECK D. E., CIBIS K. G., et al. Unraveling the microbiome of a thermophilic biogas plant by metagenome and metatranscriptome analysis complemented by characterization of bacterial and archaeal isolates[J]. Biotechnology for Biofuels, 2016, 9: 171. doi: 10.1186/s13068-016-0581-3 [34] WU ZY. , NGUYEN D., LAM TY., et al. Synergistic association between cytochrome bd-enSCODed Proteiniphilum and reactive oxygen species (ROS)-scavenging methanogens in microaerobic-anaerobic digestion of lignocellulosic biomass[J]. Water Research, 2021, 190: 116721. doi: 10.1016/j.watres.2020.116721 [35] KOECK D E., HAHNKE S., ZVERLOV VV. Herbinix luporum sp nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(10): 4132 − 4137. doi: 10.1099/ijsem.0.001324 [36] ESQUIVEL-ELIZONDO S. , BAGIC C., TEMOVSKA M., et al. The Isolate Caproiciproducens sp. 7D4C2 Produces n-Caproate at Mildly Acidic Conditions From Hexoses: Genome and rBOX Comparison With Related Strains and Chain-Elongating Bacteria[J]. Frontiers in Microbiology, 2021, 11: 594524. doi: 10.3389/fmicb.2020.594524 [37] TIAN GL, YANG B, DONG MH, et al. The effect of temperature on the microbial communities of peak biogas production in batch biogas reactors[J]. Renewable Energy, 2018, 123: 15 − 25. doi: 10.1016/j.renene.2018.01.119 [38] KRAUSE L. , DIAZ N N, EDWARDS R A, et al. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor[J]. Journal and Biotechnology, 2008, 136(1-2): 91 − 101. doi: 10.1016/j.jbiotec.2008.06.003 [39] 杨冰, 卢向阳, 田云. 甲烷八叠球菌研究进展[J]. 化学与生物工程, 2012, 29(12): 7 − 11. doi: 10.3969/j.issn.1672-5425.2012.12.002 [40] MBADINGA SM. , LI KP., ZHOU L. Analysis of alkane-dependent methanogenic community derived from production water of a high-temperature petroleum reservoir[J]. Applied Microbiology and Biotechnology, 2012, 96(2): 531 − 542. doi: 10.1007/s00253-011-3828-8 [41] 麻婷婷, 承磊, 刘来雁, 等. 不同抑制剂对乙酸降解产甲烷及产甲烷菌群结构的影响[J]. 微生物学报, 2015, 55(5): 587 − 597. doi: 10.13343/j.cnki.wsxb.20140499 [42] 盛多红. 超嗜热古菌基因组的热稳定性[J]. 生命科学, 2014, 26(1): 64 − 71. doi: 10.13376/j.cbls/2014010 [43] SUTER B, GRAHAM C, STAGLJAR I. Exploring protein phosphorylation in response to DNA damage using differentially tagged yeast arrays[J]. Biotechniques, 2008, 45(5): 581 − 584. doi: 10.2144/000112949 [44] DAI Y, GRANT S. New insights into checkpoint kinase 1 (Chk1) in the DNA damage response (DDR) signaling network: Rationale for employing Chk1 inhibitors in cancer therapeutics[J]. Clin Cancer Res, 2010, 16(2): 376 − 383. doi: 10.1158/1078-0432.CCR-09-1029 [45] KUNDU K, SHARMA S, SREEKRISHNAN T R. Changes in microbial communities in a hybrid anaerobic reactor with organic loading rate and temperature[J]. Bioresource Technology, 2013, 129(2): 538 − 547. [46] GAO W J, LEUNG K T, QIN W S, et al. Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor[J]. Bioresource Technology, 2011, 102(19): 8733 − 8740. doi: 10.1016/j.biortech.2011.07.095 [47] LIN Q, HE GH, RUI JP. , et al. Microorganism-regulated mechanisms of temperature effects on the performance of anaerobic digestion[J]. Microbal Cell Factories, 2016, 15: 96. doi: 10.1186/s12934-016-0491-x [48] WITTEBOLLE L, MARZORA TI M, CLEMENT L, et al. Initial community evenness favours functionality under selective stress[J]. Nature, 2009, 458(7238): 623. doi: 10.1038/nature07840 [49] 潘婧冉, 高苏, 赵国柱, 等. 餐厨垃圾厌氧消化处理主要过程的微生物群落结构分析[J]. 微生物学通报, 2019, 46(11): 2886 − 2899. doi: 10.13344/j.microbiol.china.181016 [50] ROS M. , OLIVEIRA JD., MURCIA MDP, et al. Mesophilic anaerobic digestion of pig slurry and fruit and vegetable waste: Dissection of the microbial community structure[J]. Journal of Cleaner Production, 2017, 156: 757 − 765. doi: 10.1016/j.jclepro.2017.04.110 [51] GUO X, CHENG W, SUN F, et al. A comparison of microbial characteristics between the thermophilic and mesophilic anaerobic digesters exposed to elevated food waste loadings[J]. Bioresource Technology, 2014, 152: 420. doi: 10.1016/j.biortech.2013.11.012