-
随着工业、经济发展和城市化进程的加快与人民生活水平的逐渐提高,我国水资源供需矛盾日益突出。我国水资源年平均总量大约为2.8亿m3,人均水资源量为2 200 m3,仅相当于世界人均水资源量的1/4,被列为世界上人均水资源量最匮乏的13个国家之一[1]。针对我国水资源短缺,污水资源丰富但污水再生利用量不足的现状,实行再生水循环利用是最有效的解决方法[2]。再生水不同利用途径对再生水质的要求不同[3],景观环境用水在城市用水中占较大比例[4],因此合理选择再生水处理技术使再生水回用于景观用水很有必要。
目前,再生水处理技术主要有混凝沉淀[5-6]、吸附[7-8]、臭氧氧化[9-10]、人工湿地[11-12]等。韩玉珠[13]等用混凝沉淀法处理二沉池出水时,发现在消石灰投加量为500 mg/L且三氯化铁投加量为15 mg/L,出水水质满足景观用水水质标准。李夏青[14]等用臭氧氧化法处理二级生化处理出水时,发现臭氧投加量为4.1 mg/L且反应时间为10 min时,出水水质满足景观环境用水水质标准。混凝沉淀法在混凝过程中易被混凝剂干扰,处理效果不稳定。臭氧氧化法与吸附法相比,经济成本较高。污水厂尾水B/C较低,不宜采用生化法。因此本实验选择吸附法处理污水厂尾水,吸附剂为活性炭,活性炭具有高比表面积[15]吸附性能好[16]且价格低廉等特点。
本研究首先采用单因素实验法,考察不同影响因素对活性炭吸附处理污水厂尾水效果,然后进一步研究活性炭吸附的动力学,最后通过采用三维荧光光谱法及荧光区域积分分析 (FRI)对二沉池出水进行定量分析,考察活性炭吸附效果,为活性炭吸附应用于尾水回用景观用水提供理论依据。
吸附法处理污水厂尾水的性能以及再生利用简析
Study on the effect and characteristics of tailwater recycling of sewage treatment plant by adsorption method
-
摘要: 水资源是制约经济发展的重要因素,再生水循环利用是解决这一问题的主要途径,再生水用于景观用水时,氨氮、总磷、总氮及化学需氧量指标常常成为限制因素。以某生活污水厂二沉池出水为处理对象,研究了活性炭投加量、吸附时间、初始pH和温度对吸附效率的影响,分别采用拟一级动力学方程和拟二级动力学方程对NH4+-N、TP、TN和COD吸附实验的动力学进行研究,通过采用三维荧光光谱法及荧光区域积分分析 (FRI)对二沉池出水进行定量分析,考察活性炭吸附效果。结果表明:在温度25 ℃,活性炭投加量1.5 g/L,吸附时间80 min,pH=7条件下,NH4+-N、TP、TN和COD去除率分别为98.01%、94.04%、32.40%和82.14%,处理效果良好,技术经济可行,满足再生水景观回用标准。动力学研究表明,Langergren准二级动力学方程能较好地反映出活性炭吸附NH4+-N、TP、TN和COD的动力学过程,吸附存在化学吸附。三维荧光光谱法研究表明,活性炭吸附对二沉池出水中有机物具有较好的降解作用。Abstract: Water resources is an important factor restricting economic development, reclaimed water recycling is the main way to solve this problem, reclaimed water used for landscape water, ammonia nitrogen, total phosphorus, total nitrogen and chemical oxygen demand indicators often become limiting factors. Taking the effluent of the second sedimentation tank of a domestic sewage plant as the treatment object, the effects of activated carbon dosage, adsorption time, initial pH value and temperature on the adsorption efficiency were studied, and the kinetics of NH4+-N, TP, TN and COD adsorption experiments were studied by quasi-first-order kinetic equations and quasi-second-order kinetic equations, and the effluent of the secondary sedimentation tank was quantitatively analyzed by three-dimensional fluorescence spectroscopy and fluorescence region integral analysis (FRI) to investigate the adsorption effect of activated carbon. The results showed that the removal rates of NH4+-N, TP, TN and COD were 98.01%, 94.04%, 32.40% and 82.14%, respectively, at a temperature of 25 °C, the dosage of activated carbon was 1.5 g/L, the adsorption time was 80 min, and the pH=7 conditions were 98.01%, 94.04%, 32.40% and 82.14%, respectively, with good treatment effect, technical and economic feasibility, and met the standards of reclaimed water landscape reuse. Kinetic studies show that the quasi-secondary kinetic equation of Langergren can better reflect the kinetic process of activated carbon adsorption of NH4+-N, TP, TN and COD, and the adsorption is chemically adsorbed. The three-dimensional fluorescence spectroscopy study showed that the adsorption of activated carbon had a good degradation effect on the organic matter in the effluent of the second sedimentation tank.
-
Key words:
- reclaimed water /
- activated carbon /
- adsorption /
- single factor /
- domestic sewage treatment plant
-
表 1 实验用水水质参数
Table 1. Experimental water quality parameters mg·L−1
NH4+-N TN TP COD ≤5 ≤10 ≤0.5 ≤50 表 2 吸附动力学拟合结果
Table 2. Adsorption kinetics fitting results
水质指标 C0/mg·L−1 qe,exp/mg·g−11 拟一阶动力学模型 拟二阶动力学模型 qe,cal/mg·g−11 R2 k1/min−11 qe,cal/mg·g−11 R2 k2/g·(mg·min)−11 NH4+-N 1.41 0.833 3 0.426 3 0.830 1 0.032 7 0.861 0 0.998 7 0.196 9 TP 0.49 0.266 7 0.431 1 0.784 3 0.052 9 0.283 5 0.996 7 0.296 2 TN 14.75 3.226 7 8.167 8 0.864 6 0.075 0 3.647 0 0.977 7 0.014 4 COD 28.00 14.666 7 45.768 7 0.779 7 0.078 7 15.600 6 0.998 5 0.006 4 -
[1] 李一, 刘宏权, 陈任强, 等. 再生水灌溉对作物和土壤的影响[J]. 灌溉排水学报, 2022, 41(增1): 26 − 33. doi: 10.13522/j.cnki.ggps.2022084 [2] CAO Y Q, FU X P, WANG H, et al. Discussion on ecological system management of urban reclaimed water environment-a case study of Xihua Park in Kunming[J]. IOP conference series:Earth and environmental science, 2021, 772(1): 12 − 86. [3] 张庆康, 郝瑞霞, 刘峰, 等. 不同再生水处理工艺出水水质回用途径适应性分析[J]. 环境工程学报, 2013, 7(1): 91 − 96. [4] 宋永会, 郑丙辉, 刘佑华, 等. 水生植物法再生景观回用水水质稳定技术研究[J]. 环境科学研究, 2007(1): 80 − 84. doi: 10.3321/j.issn:1001-6929.2007.01.015 [5] 吴江伟, 楚金喜, 吕丹. 基于混凝沉淀工艺的城市污水处理厂尾水深度脱色技术研究[J]. 工业安全与环保, 2021, 47(11): 99 − 102. doi: 10.3969/j.issn.1001-425X.2021.11.023 [6] WANG Y X, DUAN J M, LIU S X, et al. Removal of As(III) and As(V) by ferric salts coagulation – Implications of particle size and zeta potential of precipitates[J]. Separation & purification technology, 2014, 135: 64 − 71. [7] 杨沙沙. 城市污水处理厂污水深度处理工艺研究[D]. 济南: 山东大学, 2012. [8] LIU L, LI C, LAI R T, et al. Perturbation and strengthening effects of DOM on the biochar adsorption pathway[J]. Ecotoxicology and environmental safety, 2022, 245: 113 − 114. [9] 郑晓英, 王俭龙, 李鑫玮, 等. 臭氧氧化深度处理二级处理出水的研究[J]. 中国环境科学, 2014, 34(05): 1159 − 1165. [10] WANG Y F, WANG N, LI M, et al. Potassium ferrate enhances ozone treatment of pharmaceutical wastewaters: Oxidation and catalysis[J]. Journal of water process engineering, 2022, 49: 55 − 103. [11] 王翔, 朱召军, 尹敏敏, 等. 组合人工湿地用于城市污水处理厂尾水深度处理[J]. 中国给水排水, 2020, 36(06): 97 − 101. doi: 10.19853/j.zgjsps.1000-4602.2020.06.019 [12] Lei Y, WAGNER T, RIGNAARTS H, et al. The removal of micropollutants from treated effluent by batch-operated pilot-scale constructed wetlands[J]. Water research, 2023, 230: 119 − 494. [13] 韩玉珠, 马青兰. 混凝沉淀法污水深度处理条件优化[J]. 净水技术, 2011, 30(01): 42 − 44. doi: 10.3969/j.issn.1009-0177.2011.01.011 [14] 李夏青, 赵新华. 臭氧氧化法用于再生水回用的研究[J]. 安徽农业科学, 2011, 39(22): 13681 − 13682. doi: 10.3969/j.issn.0517-6611.2011.22.152 [15] 关永年, 刘洪波, 黄剑虹, 等. 污水处理厂二级出水粉末活性炭深度处理试验[J]. 净水技术, 2022, 41(04): 61 − 65. doi: 10.15890/j.cnki.jsjs.2022.04.010 [16] 魏俊起, 颜小星. 粉末活性炭去除污水处理厂二沉池出水中难降解COD的试验研究[J]. 城市住宅, 2015(08): 106 − 108. [17] 刘寒冰, 杨兵, 薛南冬. 酸碱改性活性炭及其对甲苯吸附的影响[J]. 环境科学, 2016, 37(09): 3670 − 3678. doi: 10.13227/j.hjkx.2016.09.051 [18] 唐安琪. 吸附及臭氧氧化联用处理煤化工废水生化出水试验研究[D]. 哈尔滨: 哈尔滨工业大学, 2014. [19] 张存芳, 王鹏程, 吕斯濠, 等. 活性炭吸附法去除废水COD的研究[J]. 广东化工, 2018, 45(02): 29 − 30. doi: 10.3969/j.issn.1007-1865.2018.02.012 [20] 李玉, 刘俊, 陆英, 等. 改性活性炭吸附处理含铅废水的研究[J]. 广东化工, 2022, 49(01): 147 − 149. doi: 10.3969/j.issn.1007-1865.2022.01.048 [21] 殷玉蓉, 凌琪, 伍昌年. 改性活性炭对污水厂尾水深度处理的实验研究[J]. 中国西部科技, 2013, 12(03): 19 − 21. [22] 马留可, 詹福如. 活性炭对水中亚甲基蓝的吸附性能研究[J]. 化学工程, 2016, 44(01): 28 − 32. doi: 10.3969/j.issn.1005-9954.2016.01.007 [23] 周强, 段钰锋, 冒咏秋, 等. 活性炭汞吸附动力学及吸附机制研究[J]. 中国电机工程学报, 2013, 33(29): 10 − 17. doi: 10.13334/j.0258-8013.pcsee.2013.29.002 [24] 王芳. 改性活性炭吸附污水中氨氮的性能[J]. 应用化工, 2015, 44(05): 874 − 877. doi: 10.16581/j.cnki.issn1671-3206.2015.05.025 [25] Chen W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental science & technology, 2003, 37(24): 5701 − 5710. [26] He X S, Xi B D, Wei Z M, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing composition and transformation of dissolved organic matter in landfill leachates[J]. Journal of hazardous materials, 2011, 190(1-3): 293 − 299. doi: 10.1016/j.jhazmat.2011.03.047