Processing math: 100%

京津冀生态环境治理体系重构与协调发展思路

李琰, 刘铁军. 京津冀生态环境治理体系重构与协调发展思路[J]. 环境保护科学, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026
引用本文: 李琰, 刘铁军. 京津冀生态环境治理体系重构与协调发展思路[J]. 环境保护科学, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026
LI Yan, LIU Tiejun. Reconstruction of the Beijing-Tianjin-Hebei eco-environmental governance system and coordinated development ideas[J]. Environmental Protection Science, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026
Citation: LI Yan, LIU Tiejun. Reconstruction of the Beijing-Tianjin-Hebei eco-environmental governance system and coordinated development ideas[J]. Environmental Protection Science, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026

京津冀生态环境治理体系重构与协调发展思路

    作者简介: 李 琰(1979-),女,硕士、副教授。研究方向:高比能环保储能材料及政策。E-mail:21826702@qq.com
    通讯作者: 刘铁军(1979-),男,硕士、正高级工程师。研究方向:环境影响评价技术及政策。E-mail:13811991712@163.com
  • 基金项目:
    河北省社会科学基金项目(HB19YJ062)
  • 中图分类号: X321

Reconstruction of the Beijing-Tianjin-Hebei eco-environmental governance system and coordinated development ideas

    Corresponding author: LIU Tiejun, 13811991712@163.com
  • 摘要: 京津冀协同发展是党中央提出的国家重大战略,要求在生态环境保护等重点领域率先取得突破,构建三地协同的现代化生态环境治理体系倍显紧迫。文章分析了现阶段京津冀重大生态环境问题以及区域生态环境一体化治理的客观必要性,初步提出了京津冀生态环境治理体系现代化建设构想,主要包括高度协同的区域发展战略、基于“三线一单”的环境准入制度、全局性生态环境治理工程、协调联动的区域污染防治机制、全方位的环保监督考核问责制度和社会参与的市场调节体系,以期为生态环境保护领域的率先突破提供理论支撑。
  • 纳米银(silver nanoparticles, AgNPs)是三维空间中至少有一维处于1—100 nm的单质银颗粒[1],其拥有高效、广谱的杀菌性能,因此广泛应用于医药、食品、化妆品、纺织品等领域[2]. 随着近年来AgNPs技术的不断发展[3],越来越多的AgNPs产品在生产、使用和废弃过程中释放进入水环境[4-5],并对水生生物产生毒害[6],因此有必要深入了解其环境归宿及潜在危害.

    AgNPs化学性质活泼,进入水环境后很容易在氧气(O2)和质子(H+)的作用下发生氧化溶解,释放出银离子(silver ions, Ag+[7]. 由于银的氧化还原电位适中(Ψ(Ag+/Ag0=0.80 V)),自然界中Ag+也可被环境中普遍存在的天然有机质以及一些动物、植物和微生物等还原成零价的AgNPs[8-10]. 因此,水环境中AgNPs与Ag+会相互转化,呈高度动态性. 而由于形态不同,AgNPs和Ag+的毒性效应存在较大差异[11-12]. 例如,虽然AgNPs和Ag+都会对蚯蚓产生细胞毒性,但Ag+主要积聚在含胞质溶胶的部分,而AgNPs主要破坏细胞膜隔室[13]. 此外,AgNPs和Ag+的生物利用度及在生物体的富集过程也存在差异[14-15]. 因此,研究水环境中的AgNPs与Ag+的转化过程对评估AgNPs的生态风险具有重要意义.

    溶解性有机物(dissolved organic matter, DOM) 是一类广泛存在于自然水体,由各种活性有机物(如腐殖酸(humic acid, HA)和富里酸(fluvic acid, FA)、蛋白质、多糖和胞外聚合物(extracellular polymeric substances, EPS))组成的非均质复合物[16]. DOM具有多种活性官能团,如硫醇(—SH)、醇/酚羟基(—OH)、醛、羰基、酮、醚基、羧基(—COOH)、胺和甲氧基等,因此其具有较强的氧化还原性,能够介导水体中重金属的迁移转化、毒性和生物利用度的改变[17-18].

    现有研究表明,DOM是影响AgNPs和Ag+相互转化的重要因素之一[19-21]. 然而DOM对AgNPs/Ag+的氧化还原存在双面性[22-24],既可氧化AgNPs释放Ag+,又可还原Ag+生成AgNPs,因此,在含有DOM的水环境中AgNPs/Ag+如何转化,环境风险会有多大,目前仍难以预测.

    本文首先介绍了DOM促进/抑制AgNPs氧化溶解的机理,然后阐述了DOM还原Ag+形成AgNPs的机理,在此基础上总结了环境因素对DOM介导AgNPs与Ag+相互转化的影响. 最后提出了目前研究存在的不足,并为未来研究方向提供一定的建议.

    DOM可通过氢键、静电引力、疏水性作用、配体交换和离子架桥等方式吸附在无涂层AgNPs、聚乙烯吡咯烷酮包埋的AgNPs(PVP-AgNPs)或柠檬酸盐包埋的AgNPs(Cit-AgNPs)表面,改变其界面特性,进而影响AgNPs的溶解速率及溶解平衡[25-26]). 多数研究表明,DOM在AgNPs表面的吸附抑制了AgNPs的氧化溶解和Ag+的释放,其机理可总结为以下3点:

    (a)吸附在AgNPs表面的DOM会屏蔽AgNPs对光子的吸收,进而抑制AgNPs的氧化蚀刻及Ag+释放[27-28]. Zhang等[29]研究发现,由于光屏蔽效应,AgNPs在含有聚苯乙烯微塑料溶液中光氧化释放的Ag+浓度显著低于纯水环境.

    (b)阻塞AgNPs表面活性位点并降低其与水体氧化剂(如O2、H2O2和·OH)及H+的反应性[30],这是DOM抑制AgNPs氧化溶解的主要机理. Li等[31]发现,AgNPs的氧化与DOM在其表面的覆盖率呈反比,当全氟羧酸在Cit-AgNPs表面覆盖率为0、20%和50%时,Ag+释放量分别为35.5、31.4、18.8 µg·L−1.

    (c)形成物理屏障限制AgNPs表面的Ag+扩散到溶液中,并将氧化释放的Ag+还原为新的AgNPs[32-33]. Fernando等[34]研究发现,HA介导下AgNPs在短时间内释放大量的Ag+,然而在较长时间后,溶液中Ag+会被还原成AgNPs,导致溶液中Ag+浓度降低.

    DOM也可促进AgNPs氧化释放Ag+. 如Ostermeyer、Zhang和Yang [35-37]等研究发现,添加600 mg·L−1的牛血清白蛋白、10 mg·L−1的HA和总有机碳含量(Total Organic Carbon, TOC)为10 mg·L−1 C的EPS后,溶液中Ag+含量分别是未加DOM时的2倍、2.5倍和3倍. DOM促进AgNPs氧化溶解的机理可总结为以下3点:

    (a)DOM可通过官能团(如—COOH、—OH和—SH等)与AgNPs、Ag2O相互作用形成复合物,削弱Ag—Ag键和Ag—O键,从而促进Ag+的释放[38]. 而且,DOM还可以通过与吸附在AgNPs表面的Ag+络合,使反应(1)平衡右移,促进AgNPs氧化溶解[39].

    4Ag0+O2+4H+Ag++2H2O (1)

    Gondikas等[40]发现,半胱氨酸(cysteine, Cys)能通过—SH与AgNPs释放的Ag+配位结合,促进溶液中AgNPs的氧化溶解.

    (b)DOM中含量较多的酸性官能团(如羧基和酚羟基等)在水环境中会电离释放H+,较高的H+浓度会促进AgNPs表面氧化层的溶解,释放Ag+[41]. Zhang等[36]研究发现,HA在溶液中的酸释放促进了AgNPs的氧化溶解. 虽然吸附在AgNPs表面的DOM一定程度上阻碍了AgNPs与O2和H+的相互作用,但吸附层是可渗透的,AgNPs依然可与O2和H+反应[31].

    (c)DOM具有很强的光化学活性,其在光照下可生成H2O21O2和·OH等强氧化性的活性氧物质(reactive oxygen species, ROS),氧化AgNPs[42]. Tong等[43]证实了光照下聚苯乙烯微塑料产生的1O2和·OH可诱导AgNPs氧化溶解.

    DOM介导下促进/抑制AgNPs氧化释放Ag+的机理可总结为图1.

    图 1  DOM介导AgNPs转化为Ag+的机理
    Figure 1.  Mechanism of DOM mediated AgNPs transformation to Ag+

    DOM/Ag浓度(物质的量)比会影响DOM对AgNPs表面活性位点的占用以及DOM-Ag配体的形成,进而影响AgNPs的氧化溶解. 一般来说,当DOM/Ag较高时,DOM会占据AgNPs更多反应活性位点,抑制AgNPs与O2和H+作用,Ag+释放显著减少[44]. 当系统中萨旺尼河腐殖酸(Suwannee River humic acid, SRHA)的TOC浓度由0增加至6.6 mg·L−1C时,2.78 mg·L−1的AgNPs释放Ag+浓度由1383 µg·L−1降低至339 µg·L−1[45]. 同样,Ag+的释放也随其他组分DOM(如多糖、蛋白质和胞外聚合物等)浓度的增加而显著降低[46-48].

    而当DOM/Ag浓度比较低时,DOM占据AgNPs表面活性位点较少,其还可以通过鳌合Ag+而促进AgNPs氧化溶解[35]. Cáceres-Vélez等[49]研究发现,20 mg·L−1的HA促进了10 mg·L−1 AgNPs的溶解(DOM/Ag=2),而抑制了0.5、1、3 mg·L−1 AgNPs (DOM/Ag > 6)的溶解. Boehmler等[50]同样发现,当牛血清白蛋白浓度由0增加至2 nmol·L−1时,其可通过—SH鳌合Ag+使得粒径为10 nm的 Cit-AgNPs的溶解速率增加1.5倍.

    DOM是非均质的混合物,其种类复杂,性质多变,如元素含量、官能团和芳香性会存在差异. 因此不同DOM种类作用下,AgNPs的氧化溶解差异明显. Gunsolus等[51]研究发现,小马湖富里酸(Pony Lake fluvic acid, PLFA)对Cit-AgNPs氧化溶解的抑制作用强于同样浓度的SRHA和萨旺尼河富里酸(Suwannee River fluvic acid, SRFA),进一步探究发现DOM介导下Ag+释放量与DOM的S、N含量呈负相关. 高S、N元素的DOM对AgNPs/Ag+有很强的亲和性,因此会占据更多AgNPs表面活性位点进而抑制AgNPs氧化溶解[52]. 而对Ag+有强亲和力的官能团也可促进AgNPs的氧化溶解. Liu[39]和Gondikas[40]均研究发现,DOM可通过—SH络合Ag+从而促进AgNPs的氧化溶解. 芳香性较强的DOM不会占据太多AgNPs的活性位点,进而增强AgNPs的反应性. Pokhrel等[53]研究发现,溶液中较高芳香性的风化褐煤腐殖酸(Leonardite humic acid, LHA)作用下Ag+释放量是无LHA条件下的4—5倍.

    离子浓度会影响DOM的分子结构,改变DOM在AgNPs表面的吸附[54],进而影响DOM介导的AgNPs氧化释放Ag+. 较低离子浓度下,DOM分子结构较膨胀,DOM在AgNPs表面的吸附会占据更多氧化位点,且许多环境阴离子(CO23SO24、ClPO34)会与Ag+反应产生微溶或难溶性产物,覆盖在AgNPs表面,占据氧化位点,进一步抑制AgNPs的氧化溶解[55]. Zhao等[56]研究发现,在较低的离子浓度条件下(<0.01 mol·L−1 Cl),随着DOM浓度的增加,溶液中Ag+释放量显著降低.

    在较高离子浓度环境中,DOM分子结构紧凑,吸附在AgNPs表面的DOM占据表面氧化位点较少,并且与释放的Ag+络合促进AgNPs氧化溶解[49, 57]. 高浓度的Cl对AgNPs氧化溶解的影响最为显著[58]. 当Cl/Ag <26750时,反应主要生成AgCl(s)沉淀;当Cl/Ag ≥26750时,主要生成溶解性的配合物AgCl1xx(如AgCl2AgCl23AgCl34[59]. DOM会与AgCl1x络合,促进AgNPs的氧化溶解平衡右移[56]. Li等[57]研究发现Cit-AgNPs暴露的天然微咸水盐度越高,则水体DOM介导的Ag+释放量越大.

    阳离子(如Na+、Ca2+、Mg2+)会促使AgNPs聚集,减小比表面积,从而抑制AgNPs氧化释放Ag+[60]. 虽然有研究证明DOM抑制了AgNPs的聚集,但在二价阳离子(如Ca2+、Mg2+)作用下,吸附在AgNPs表面的DOM会通过络合Ca2+、Mg2+而桥连,发生更强烈的聚集,使Ag+释放量显著降低[61]. Huang等[62]研究发现, AgNPs在HA与Ca2+共同作用下氧化释放Ag+的浓度依次低于其在HA作用下、Ca2+作用下和纯水中的Ag+释放量.

    pH会影响AgNPs向Ag+的转化过程,且会改变DOM在水体中的分子结构,影响DOM的光化学反应,因此pH显然会影响DOM介导下AgNPs的氧化溶解. 在低pH条件下溶液中H+含量较高,会促进AgNPs的氧化溶解平衡(反应式1)右移[63];并且低pH时DOM的分子结构较紧凑,占据AgNPs氧化位点较少,削弱了其对Ag+释放的抑制作用[64];此外,相比碱性条件下,酸性溶液中DOM光生氧化性自由基显著增加[65]. 因此,低pH条件下促进了AgNPs的氧化溶解;反之,高pH条件下会抑制Ag+的释放.

    AgNPs具有很强的光吸收能力,短时间光照会促进AgNPs的光裂解及氧化蚀刻,迅速释放Ag+. Shi等[28]研究发现,光照下三磷酸腺苷包埋的AgNPs会在短时间内(≤1 h)迅速氧化,其Ag+释放量显著高于黑暗条件. 但长时间光照会破坏AgNPs表面涂层,使AgNPs失稳聚集,表面活性位点减少,进而氧化速率降低. Yu等[32]研究发现在短时间光照(≤ 12 h)下,Cit-AgNPs的平均溶解速率常数是长时间光照(70 h)下的4.5倍,且AgNPs发生明显聚集.

    光照会促进DOM介导的AgNPs氧化或降低DOM对AgNPs氧化溶解的抑制作用. Rong等[66]发现,当SRFA的浓度为0、5、10 mg·L−1时,10 min光照可使Cit-AgNPs氧化率分别比黑暗条件下提高了3.4%、4.6%和6.0%. Yu等[67]研究发现,黑暗条件下,TOC浓度为5 mg·L−1 C的SRHA使1.02 mg·L−1的AgNPs在20 h后的Ag+释放量由830 µg·L−1降至100 µg·L−1;而20 h的光照后,Ag+释放量由738 µg·L−1降至225 µg·L−1.

    在黑暗/光照条件下,DOM均可介导Ag+还原成AgNPs,其还原机理可概括为以下3点,见图2

    图 2  DOM 介导下Ag+转化为AgNPs的机理
    Figure 2.  Mechanism of DOM mediated Ag+ transformation into AgNPs

    (1)黑暗条件下的自催化. 溶液中游离的Ag+通过沉积在Ag2O/AgNPs簇表面进而提高其氧化还原电位(游离状态:Ψ(Ag+/Ag0 = −1.8 V);吸附在固态表面的Ag+Ψ(Ag+/Ag0 = 0.7996 V),进而使DOM还原Ag+的反应在热力学上是可行的,如式(2,3)所示[68].

    Ag+Solidsurface+HA(red)Ag0+HA(ox)E0=∼0.1Vvs.NHE (2)
    Ag+Solidsurface+FA(red)Ag0+FA(ox)E0=∼0.3Vvs.NHE (3)

    自催化过程可以被描述为以下几个步骤[69]

    2Ag++2OHAg2O+H2Ofast (4)
    Ag2O+(Ag+)nAg2O(Ag+)nfast (5)
    Ag2O(Ag+)n+DOMAg2O(Ag+)nDOMKad (6)
    Ag2O(Ag+)nDOMAg2O(Ag+)n1+Ag0+DOM(ox)Kred (7)

    DOM首先发生脱质子化,然后通过静电作用/络合作用与Ag+结合[70-71],DOM-Ag复合物通过还原性官能团(如—COOH、—OH、—SH、醛基和酮基等)将e转移给Ag+,生成AgNPs[39, 72].

    (2)光照生成还原性自由基. 在光照条件下,DOM充当光吸收体,产生强还原性自由基(如eaqO2)使Ag+被迅速还原[73]. Yin等[74]研究发现,HA在Xe灯照射下产生的O2介导了Ag+还原成AgNPs;而在溶液中添加超氧化物歧化酶(superoxidase dismutase, SOD)去除O2后,溶液中没有生成AgNPs,证实了O2在Ag+还原过程中的重要作用.

    (3)光照条件下配体-金属电荷转移(ligand-to-metal charge transfer, LMCT). 当Ag+吸附到DOM表面后,光照促进DOM配体将e转移至Ag+,进而生成AgNPs[75]. Hou等[76]研究发现,HA光还原Ag+生成AgNPs的速率随着溶液中Na+浓度的增加而显著降低,证实了Na+通过竞争HA表面金属离子结合位点进而抑制了HA通过LMCT还原Ag+.

    DOM介导的AgNPs形成速率可由以下式子表示[74]

    r=k[Ag+][DOM] (8)
    r=(dA/dt)t0 (9)

    其中,r为AgNPs形成速率,单位h−1;[Ag+]为Ag+浓度,单位mg·L−1;[DOM]为DOM浓度,单位mg·L−1A为AgNPs表面等离子体共振(Surface Plasmon Resonance, SPR)峰吸光度.

    由于DOM介导的AgNPs/Ag+氧化还原是同时进行的,当DOM浓度一定时,需要足够的Ag+浓度才能实现AgNPs团簇的快速生长,这个浓度称为临界诱导浓度. 低于临界诱导浓度时,Ag+还原生成AgNPs不稳定,会马上被氧化,无法实现AgNPs团簇的生长[77];而高于该浓度时,AgNPs生成速率与DOM浓度呈正相关. Xiong等[78]研究发现,初始浓度为30 µg·L−1的Ag+无法被EPS被还原成AgNPs;而Yin等[79]研究发现,初始浓度为0.2 mmol·L−1的Ag+会随DOM浓度的升高而加速转化为AgNPs.

    不同组分DOM的性质差异(比如对Ag+的吸附能力、芳香性、分子量和官能团)会影响DOM介导的Ag+还原成AgNPs. 高Ag+吸附性的DOM能更好地通过LMCT还原Ag+. Liu等[75]比较了吸附性很强的溶解性黑炭和吸附性较弱的SRHA对Ag+的光还原能力,发现溶解性黑炭介导的AgNPs生成速率显著高于SRHA. Nie等[80]研究发现,DOM的芳香成分会限制Ag+与DOM的还原性官能团结合. 低芳香性的泥炭HA 和泥炭FA可在24 h内介导Ag+还原成AgNPs;而同等浓度的高芳香性商用HA需要120 h才能介导Ag+还原成AgNPs. 由于低分子量的DOM光屏蔽能力较弱,Guo等[81]研究发现,分子量<3 kDa的DOM作用下Ag+光还原效率远高于>3 kDa DOM. 此外,DOM官能团的还原性会影响Ag+的还原. Nie等[80]研究发现,酚基比羰基具有更强的还原性,其利用NaBH4将羰基转化为酚基后,发现DOM介导的AgNPs生成速率和浓度均显著增加.

    环境共存离子会影响Ag+还原为AgNPs. 其中环境中常见的阴离子如CO23SO24PO34、S2−和Cl均可与Ag+反应生成微溶或不溶性银盐(如Ag2SO4Ksp=1.4×10−5)、Ag2CO3Ksp=8.5×10−12)、Ag3PO4Ksp=8.9×10−17)、Ag2S (Ksp=6×10−51)和AgCl (Ksp=1.8×10−10)等). 微溶性的银盐可为AgNPs的生成提供成核位点,促进Ag+还原成AgNPs. 而难溶性的银盐(如Ag3PO4、Ag2S、AgCl)在黑暗条件下会迅速聚集沉淀,不利于AgNPs的生成. Dong等[82]研究发现相比于没有离子添加的条件下,SO24CO23促进了HA还原Ag+,而PO34、S2−和Cl与HA无法在黑暗条件下将Ag+还原成AgNPs.

    此外,一些具有光敏性的银盐(如AgCl)被认为是AgNPs的前体物质,在光照下其会激发出从价带跃迁到导带的电子e,e通过界面电子转移至AgCl表面的Ag+,从而生成AgNPs[83]. Cl介导下Ag+还原可以由以下式子表示[84]

    AgCl(aq)+hѵh++e (10)
    Ag++eAg0 (11)

    离子浓度对Ag+转化成AgNPs影响很大. 当离子浓度较低时(如Cl/Ag+ ≤5000),Cl与Ag+结合主要生成AgCl,在光照下可被还原成AgNPs;而在高离子浓度下(Cl/Ag+ > 1.8×105),则AgCl会转化为光活性较弱的AgCl1xx,难以生成AgNPs[84]. DOM可作为AgCl纳米晶体还原时的电子源,加速光照下AgNPs的生成并使AgNPs稳定. Xiong等[78]发现,光照下TOC浓度为12 mg·L−1 C的EPS在无Cl溶液中生成的AgNPs吸光度仅为0.15,当Cl浓度增加至10 mg·L−1,生成的AgNPs吸光度为0.3,而当Cl浓度高到150 mg·L−1时,AgNPs吸光度又降低至0.15.

    环境中常见的阳离子(如Ca2+、Mg2+、Na+、Fe2+和Fe3+)也会影响环境中Ag+转化为AgNPs. 如在光照下DOM会与Fe2+/Fe3+形成氧化还原循环,催化DOM对Ag+的还原,如化学式(12—14)所示[85]. Yin等[86]研究表明,添加10 µmol·L−1的Fe2+/Fe3+可使DOM-Ag+溶液中还原生成的AgNPs浓度显著增加.

    DOM+O2hѵDOM·++O·2 (12)
    Fe3++O·2Fe2++O2 (13)
    Fe2++Ag+Fe3++Ag0 (14)

    Ca2+、Mg2+和Na+等阳离子的存在会竞争DOM表面的吸附位点,抑制DOM对Ag+的吸附及还原,并且这些阳离子会压缩AgNPs表面的双电层,使其失稳聚集,导致溶液中AgNPs浓度降低[87]. Yin等[79]研究发现,溶液中 Ca2+浓度越高则DOM还原Ag+生成的AgNPs浓度越低,且AgNPs的粒径显著增大. 而其他贵重金属离子如(Au3+)对应的纳米粒子具有较高的内聚能,成核速率较快,因此这类金属会优先与DOM作用并生成相应的纳米粒子,吸附Ag+在其表面并提供成核位点,促进了Ag+转化为AgNPs[88].

    DOM还原Ag+受溶液pH影响显著. 随着pH的升高,DOM的氧化还原电位逐渐降低,这促进了Ag+转化为AgNPs[74];而且高pH条件下DOM的酸性官能团去质子化,其表面电性更负,带正电的Ag+与带负电的DOM之间的强静电引力增强了Ag+与DOM络合,促进了光照条件DOM通过LMCT途径还原Ag+或黑暗条件下DOM通过给电子官能团还原Ag+[76].

    黑暗条件下DOM还原Ag+需要很高的活化能,而光照可以加快DOM介导的Ag+还原生成AgNPs速率[89]. 光照可作为AgNPs生成的催化剂,既会诱导DOM产生O2eaq,又可激发AgNPs产生表面热电子,进而使Ag+快速转化为AgNPs[90]. Tan等[91]研究发现,模拟阳光照射下,90%以上的Ag+可在DOM介导下被还原成AgNPs,而在黑暗环境中Ag+还原率不到10%. Liu等[92]模拟了自然界的光暗交替环境,研究发现光照下HA可还原Ag+生成AgNPs,而黑暗中AgNPs则被氧化释放出Ag+. 但Dong等[82]的研究则表明,黑暗条件下DOM可还原Ag+生成AgNPs. 由此可见,环境中AgNPs与Ag+的相互转化是同时进行的,实验设置的差异导致Ag+还原速率与AgNPs氧化速率不一样,因此目前的研究结果常存在矛盾.

    鉴于研究DOM介导AgNPs/Ag+转化会得到DOM促进/抑制AgNPs氧化释放Ag+以及还原Ag+生成AgNPs 3种不同的结论,可能源于这些研究中设计的特定实验条件影响了DOM对Ag0Ag+的转化,如光照、pH、DOM种类、DOM/Ag物质的量比和电解质等. 现将这些研究中的反应条件展示于表1,以更好地看出先前研究中DOM介导AgNPs/Ag+不同转化的反应条件异同.

    表 1  DOM介导下的AgNPs氧化或Ag+还原条件汇总
    Table 1.  Summary of AgNPs oxidation or Ag+ reduction conditions mediated by DOM
    离子IonAg初始浓度Initial concentration of Ag speciesDOM种类及初始浓度DOM species and initial concentration光照Illumination statepH时间Time结果Result参考文献Reference
    0.08—16.67 mg·L−1 盐度天然水5 mg·L−1 AgNPs3.8—7.2 mg·L−1 C 天然水体DOM黑暗7 d高盐度↑低盐度↓Li et al., 2020[57]
    0、0.01、0.1、0.3 mol·L−1 NaCl1 mg·L−1 AgNPs1.5—2 mg·L−1 C 天然水体DOM5.5168 h↑/↓Zhao et al., 2021[56]
    20 mg·L−1 Ag+5—20 mg·L−1 C HA光暗交替796 h光: ←;暗:↑Liu et al., 2020[92]
    7 mmol·L−1 NaHCO310 mmol·L−1 NaNO38 µmol·L−1 AgNPs400 µmol·L−1 Cys7.5— 8.150 hGondikas et al., 2012[40]
    280 mg·L−1 CaCO310 mg·L−1 AgNPs2—20 mg·L−1 LHA74 hPokhrel et al., 2014[53]
    1.08 mg·L−1 AgNPs0—10 mg·L−1 C EPS132 W·m−2 Xe灯7.172 hYang et al., 2021[37]
    柠檬酸盐缓冲液1 mg·L−1 AgNPs0—2 nmol·L−1 BSA6.54 hBoehmler et al., 2020[50]
    硼酸盐、硝酸根20 mg·L−1 AgNPs20 mg·L−1 PS MPs550 W·m−2 Xe灯/黑暗5.572 hTong et al.,2022[43]
    硼酸盐、硝酸根20 mg·L−1 AgNPs20 mg·L−1 PS MPs550 W·m−2 Xe灯/黑暗8.524 hZhang et al.,2021[29]
    0.1 mmol·L−1 KH2PO4500 µg·L−1 AgNPs0.1—10 µmol·L−1 Cys772 hAfshinnia et al., 2018[52]
    人工介质ASW381 µg·L−1 AgNPs0—50 µmol·L−1 BSA自然光815 hLevak et al., 2017[47]
    1.02 mg·L−1 AgNPs5 mg·L−1 C SRHA550 W·m−2 Xe灯/黑暗5—8.348 hYu et al., 2014[67]
    0.1 mol·L−1 KH2PO45 mg·L−1 AgNPs10 mg·L−1 PLFA、SRHA、 SRFA75 hGunsolus et al., 2015[51]
    硼酸盐缓冲液1—1000 µg·L−1 Ag+25 mg·L−1 SRHA黑暗6—92 dDong et al., 2019[82]
    0—150 mg·L−1 NaCl5 mg·L−1 Ag+20、40 mg·L−1 EPS荧光灯/黑暗836 hXiong et al., 2021[78]
    0—10 µmol·L−1 Fe2+/Fe3+1 mmol·L−1 Ag+30 mg·L−1 DOM550 W·m−2Xe灯6.38 hYin et al., 2017[86]
    12.7 mg·L−1 NaCl10 mg·L−1 Ag+50 mg·L−1 DBC/SRHA50 W Xe灯7.32 hLiu et al., 2021[75]
    磷酸盐–硼酸盐缓冲液1 mmol·L−1 Ag+15—100 mg·L−1 HA黑暗85 dNie et al., 2020[80]
    0.2 mmol·L−1 Ag+20 mg·L−1 C EPSXe灯/黑暗7.616 hZhang et al., 2016[90]
      注:↑,↓分别表示促进和抑制Ag+释放;←表示促进Ag+还原生成AgNPs;-为文献未提及该因素;PS MPs代表聚苯乙烯微塑料;DBC代表溶解性黑炭;BSA代表牛血清白蛋白.
      Note:↑ and ↓ respectively promote and inhibit the release of Ag+;← means promoting Ag+ reduction to generate AgNPs; - is not mentioned in the literature; PS MPs stands for polystyrene microplastics; DBC stands for dissolved black carbon; BSA stands for bovine serum albumin.
     | Show Table
    DownLoad: CSV

    目前研究表明DOM可通过占据氧化位点、还原Ag+、光衰弱来抑制AgNPs氧化,或释放H+、络合Ag+和光生氧化性ROS来促进Ag+释放,还可以通过自催化、光生还原性ROS和LMCT等途径将Ag+还原成AgNPs. 而环境因素(如DOM组分及浓度、AgNPs/Ag+浓度、离子、光照和pH等)会影响AgNPs/Ag+的转化过程,因此判断真实环境中DOM介导下AgNPs/Ag+的转化方向是比较困难的. 鉴于目前银基抗菌产品的市场在世界范围内进一步扩大,这将导致AgNPs与Ag+释放到生态环境中,并对生态系统和人体健康造成潜在危害,因此迫切需要更科学的理论基础去预测和评估其环境及健康风险.

    目前DOM存在下AgNPs氧化/Ag+还原是AgNPs研究领域的热点之一,研究仍存在一些问题值得今后进一步研究:

    (1)从表1可以看出,反应条件会显著影响DOM介导的AgNPs氧化及Ag+还原过程,区分和量化各种反应条件对这些过程的影响[26],将有利于判定AgNPs与Ag+转化的进行.

    (2)光照对DOM介导的纳米银/银离子转化过程具有重要的影响,光照既可促进纳米银转化为银离子,也可促进Ag+还原生成纳米银,因此难以预测在现实环境中光暗交替下纳米银/银离子转化,未来可加强这方面的研究.

    (3)目前关于DOM与AgNPs相互作用的研究存在使用的DOM模型简单(常将HA/FA作为DOM模型)的问题[93]. 未来研究中应考虑研究其他DOM组分(如溶解性黑炭[94]和人工合成类DOM)与AgNPs/Ag+相互作用的效应及作用机理.

    (4)AgNPs粒径、形貌和表面包被等对AgNPs氧化溶解的影响已研究得较为透彻,但目前尚不清楚在DOM存在的条件下AgNPs粒径、形貌和表面包被会怎样影响DOM与AgNPs的相互作用及AgNPs的氧化溶解. 今后可研究上述因素与DOM耦合作用下的AgNPs氧化溶解,并深入探究其机理.

  • 图 1  京津冀生态环境现代化治理体系

    Figure 1.  Beijing-Tianjin-Hebei ecological environment modernization management system

  • [1] 程多威, 苏利阳. 关于主体功能区下构建现代环境治理体系的思考[J]. 环境保护, 2020, 48(22): 24 − 29. doi: 10.14026/j.cnki.0253-9705.2020.22.005
    [2] 陈晓红, 蔡思佳, 汪阳洁. 我国生态环境监管体系的制度变迁逻辑与启示[J]. 管理世界, 2020, 36(11): 160 − 172. doi: 10.3969/j.issn.1002-5502.2020.11.012
    [3] 胡中华. 自然资源调查制度的建构逻辑与路径[J]. 中国地质大学学报:社会科学版, 2020, 20(6): 27 − 41.
    [4] 蒋洪强, 程曦. 生态文明治理体系和治理能力现代化的几个核心问题研究[J]. 中国环境管理, 2020, 12(5): 36 − 41. doi: 10.16868/j.cnki.1674-6252.2020.05.036
    [5] 吕忠梅. 习近平法治思想的生态文明法治理论[J]. 中国法学, 2021, 38(1): 48 − 64. doi: 10.14111/j.cnki.zgfx.2021.01.005
    [6] 叶冬娜. 国家治理体系视域下生态文明制度创新探析[J]. 思想理论教育导刊, 2020(6): 85 − 90. doi: 10.16580/j.sxlljydk.2020.06.018
    [7] KRISTOF V A, RAOUL B, MONICA G, et al. Rethinking strategy in environmental governance[J]. Journal of Environmental Policy & Planning, 2020, 22(5): 695 − 708.
    [8] XU R, WANG Y R, WANG W B, et al. Evolutionary game analysis for third-party governance of environmental pollution[J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(8): 3143 − 3154. doi: 10.1007/s12652-018-1034-6
    [9] 郇庆治. “十四五”时期生态文明建设的新使命[J]. 人民论坛, 2020, 31(11): 42 − 45.
    [10] PILLAY P Y, BUSCHKE F T. Misaligned environmental governance indicators and the mismatch between government actions and positive environmental outcomes[J]. Environmental Science & Policy, 2020, 112(10): 374 − 380.
    [11] SWAIN R B, KAMBHAMPATI U S, KARIMU A. Regulation, governance and the role of the informal sector in influencing environmental quality?[J]. Ecological Economics, 2020, 173(7): 106649.
    [12] 张成岗, 李佩. 科技支撑社会治理现代化: 内涵、挑战及机遇[J]. 科技导报, 2020, 38(14): 134 − 141.
    [13] PARTELOW S, SCHLUTER A, ARMITAGE D, et al. Environmental governance theories: A review and application to coastal systems[J]. Ecology and Society, 2020, 25(4): 19. doi: 10.5751/ES-12067-250419
    [14] 董聪娜. 基于整体性治理的京津冀大气环境治理机制研究[D]. 秦皇岛: 燕山大学文法学院, 2016.
    [15] 刘晟东, 史君楠, 程勇, 等. 中国典型城市群PM2.5污染特征研究进展[J]. 环境科学研究, 2020, 33(2): 243 − 251.
    [16] 申伟宁, 李东松, 董葆茗. 京津冀经济发展与空气质量的耦合协调性研究[J]. 技术经济与管理研究, 2021, 41(1): 13 − 17.
    [17] 关攀博, 周颖, 程水源, 等. 典型重工业城市空气重污染过程特征与来源解析[J]. 中国环境科学, 2020, 40(1): 31 − 40. doi: 10.3969/j.issn.1000-6923.2020.01.004
    [18] 栗清亚, 裴亮, 孙莉英, 等. 京津冀区域产业用水时空变化规律及影响因素研究[J]. 生态经济, 2020, 36(10): 141 − 159.
    [19] 余灏哲, 李丽娟, 李九一. 基于量 - - -流的京津冀水资源承载力综合评价[J]. 资源科学, 2020, 42(2): 358 − 371. doi: 10.18402/resci.2020.02.14
    [20] ZHANG K, NIU Z G, LV Z W, et al. Occurrence and distribution of antibiotic resistance genes in water supply reservoirs in Jingjinji area, China[J]. Ecotoxicology, 2017, 26: 1284 − 1292. doi: 10.1007/s10646-017-1853-9
    [21] 张芸, 朱龙基. 京津冀出入境河流水质年内年际变化趋势分析和对策探讨[J]. 海河水利, 2020, 39(2): 19 − 22. doi: 10.3969/j.issn.1004-7328.2020.02.009
    [22] 孙越凡. 时间序列遥感技术支持的国土空间开发监测研究[D]. 南京: 南京大学地理与海洋科学学院, 2018.
    [23] 潘梅, 陈天伟, 黄麟, 等. 京津冀地区生态系统服务时空变化及驱动因素[J]. 生态学报, 2020, 40(15): 5151 − 5167.
    [24] 林刚, 江东, 付晶莹, 等. “三生”空间格局演化“碳流”分析——以唐山市为例[J]. 科技导报, 2020, 38(11): 107 − 114.
    [25] SONG X M, ZOU X J, ZHANG C H, et al. Multiscale spatio-temporal changes of precipitation extremes in Beijing-Tianjin-Hebei region, China during 1958–2017[J]. Atmosphere, 2019, 10(8): 462. doi: 10.3390/atmos10080462
    [26] 张恒, 陶胜利, 唐志尧, 等. 近30年京津冀地区湖泊面积的变化[J]. 北京大学学报:自然科学版, 2020, 52(2): 324 − 330.
    [27] 张蓬涛, 刘双嘉, 周智, 等. 京津冀地区生态系统服务供需测度及时空演变研究[J]. 生态学报, 2021, 41(9): 1 − 14.
    [28] 李琳琳, 王国清, 秦攀, 等. 白洋淀水环境状况与治理保护对策[J]. 科技导报, 2019, 37(21): 14 − 25.
    [29] LUO M, JI Y Y, REN Y Q, et al. Characteristics and health risk assessment of PM2.5-bound PAHs during heavy air pollution episodes in winter in urban area of Beijing, China[J]. Atmosphere, 2021, 12(3): 323. doi: 10.3390/atmos12030323
    [30] 海霞, 李伟峰, 王朝, 等. 京津冀城市群用水效率及其与城市化水平的关系[J]. 生态学报, 2018, 38(12): 4245 − 4256.
    [31] 王朝, 李伟峰, 韩立建. 京津冀城市群能源协同发展背景下能源生产结构变化探究[J]. 生态学报, 2019, 39(4): 1203 − 1211.
    [32] 孟庆瑜, 梁枫, 张思茵. 京津冀环保产业协同推进法律机制研究[J]. 河北大学学报:哲学社会科学版, 2019, 44(2): 50 − 56.
    [33] TIAN Y Y, JIANG G H, ZHOU D Y, et al. Regional industrial transfer in the Jingjinji urban agglomeration, China: An analysis based on a new “transferring area-undertaking area-dynamic process” model[J]. Journal of Cleaner Production, 2019, 235(20): 751 − 766.
    [34] 栾江, 马瑞. 京津冀地区经济协同发展程度的统计测度[J]. 统计与决策, 2020, 36(16): 50 − 54. doi: 10.13546/j.cnki.tjyjc.2020.16.011
    [35] 张小曳, 徐祥德, 丁一汇, 等. 2013~2017年气象条件变化对中国重点地区PM2.5质量浓度下降的影响[J]. 中国科学:地球科学, 2020, 50(4): 483 − 500.
    [36] 曹鹏, 王路光, 崔立昌, 等. 河北省大气污染状况分析及防治对策探讨[J]. 煤炭与化工, 2014, 37(8): 144 − 148.
    [37] GUAN L, LIANG Y L, TIAN Y Z, et al. Quantitatively analyzing effects of meteorology and PM2.5 sources on low visual distance[J]. Science of the Total Environment, 2019, 659(4): 764 − 772.
    [38] 王传达, 周颖, 程水源. 北京、石家庄2017―2018年PM2.5与SNA组分特征及典型重污染分析[J]. 环境科学学报, 2020, 40(4): 1340 − 1350.
    [39] 张洪. 京津冀地区空气质量时空分布特征及PM2.5浓度预测[D]. 哈尔滨: 哈尔滨师范大学, 2020.
    [40] 王博. 基于SWAT模型的京津冀地区地表水环境模拟研究[D]. 长春: 吉林大学, 2020.
    [41] 诸云强. 生态环境协同保护助力京津冀生态文明协同建设—评《京津冀生态环境协同保护研究》[J]. 生态经济, 2020, 36(4): 230 − 231.
    [42] 张会兴. 区域地下水污染健康风险评价研究[D]. 北京: 北京林业大学, 2013
    [43] 李江雪. 河北肺癌死亡率激增, 工业污染疑是主因[EB/OL]. http://m.cnr.cn/news/20160219/t20160219_521413546.html
    [44] 郇庆治. 环境政治学视角下的国家生态环境治理现代化[J]. 社会科学辑刊, 2021, 43(1): 5 − 13.
    [45] 毛春梅, 曹新富. 区域环境府际合作治理的实现机制[J]. 河海大学学报:哲学社会科学版, 2021, 23(1): 50 − 56.
    [46] 谢克昌. 因地制宜推进区域能源革命的战略思考和建议[J]. 中国工程科学, 2021, 23(1): 1 − 6.
  • 加载中
图( 1)
计量
  • 文章访问数:  3099
  • HTML全文浏览数:  3099
  • PDF下载数:  10
  • 施引文献:  0
出版历程
  • 收稿日期:  2022-06-15
  • 录用日期:  2022-07-14
  • 刊出日期:  2023-02-20
李琰, 刘铁军. 京津冀生态环境治理体系重构与协调发展思路[J]. 环境保护科学, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026
引用本文: 李琰, 刘铁军. 京津冀生态环境治理体系重构与协调发展思路[J]. 环境保护科学, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026
LI Yan, LIU Tiejun. Reconstruction of the Beijing-Tianjin-Hebei eco-environmental governance system and coordinated development ideas[J]. Environmental Protection Science, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026
Citation: LI Yan, LIU Tiejun. Reconstruction of the Beijing-Tianjin-Hebei eco-environmental governance system and coordinated development ideas[J]. Environmental Protection Science, 2023, 49(1): 52-57. doi: 10.16803/j.cnki.issn.1004-6216.2022060026

京津冀生态环境治理体系重构与协调发展思路

    通讯作者: 刘铁军(1979-),男,硕士、正高级工程师。研究方向:环境影响评价技术及政策。E-mail:13811991712@163.com
    作者简介: 李 琰(1979-),女,硕士、副教授。研究方向:高比能环保储能材料及政策。E-mail:21826702@qq.com
  • 1. 河北化工医药职业技术学院化学与环境工程系,石家庄 050026
  • 2. 北京市环境影响评价评估中心,北京 100161
基金项目:
河北省社会科学基金项目(HB19YJ062)

摘要: 京津冀协同发展是党中央提出的国家重大战略,要求在生态环境保护等重点领域率先取得突破,构建三地协同的现代化生态环境治理体系倍显紧迫。文章分析了现阶段京津冀重大生态环境问题以及区域生态环境一体化治理的客观必要性,初步提出了京津冀生态环境治理体系现代化建设构想,主要包括高度协同的区域发展战略、基于“三线一单”的环境准入制度、全局性生态环境治理工程、协调联动的区域污染防治机制、全方位的环保监督考核问责制度和社会参与的市场调节体系,以期为生态环境保护领域的率先突破提供理论支撑。

English Abstract

  • 我国生态环境治理体系尚处于初级阶段,还存在环境政策体系缺乏统筹安排、生态环境保护责任清单尚未构建、统一的生态环境监测体系尚未形成[1]、跨域环境污染监管问题尚未解决[2]、自然资源调查制度不健全[3]、生态系统保护和修复的系统性不足[4]、法规标准有待加快完善[5]和生态文明建设的市场化运作欠缺[6]等问题。治理体系及其构成要素是不断发展的[7],发展趋势是体系化、专业化[8]和法治化,注重整体性、系统性、一体化、多维度、融合性发展[9],重点关注治理措施的有效性[10],同时,提高非政府组织在治理过程中的参与程度[11]

    京津冀地区是国家区域发展战略的重要指向区,随着京津冀协同发展等重大战略的实施,京津冀区域内开发规模与建设强度进一步加大,社会经济发展将面临更加紧迫的资源环境约束。然而,区域生态环境保护一体化管理体系尚未建立,单一的地区治理模式成为掣肘可持续发展的重要因素,亟需探索构建京津冀区域现代化的生态环境治理体系[12],促使形成生态环境保护和经济高质量发展之间的良性循环,促进以污染控制为基础的生态治理及保护模式转变。立足于京津冀区域整体性、一体化的生态环境治理体系现代化建设的研究成果未见报道,本文以整体性、一体化的视域,整合多中心性治理、网络治理、多层次治理、集体行动、政府治理、适应性治理、交互式治理理论(IGT)和进化治理理论(EGT)等多种理论[13]研究结果,提出了京津冀区域生态环境治理体系现代化建设初步构想,以期为京津冀协同发展提供新思路。

    • 京津冀区域面积218 000 km2,占国土面积2.3%,人口约1.1亿[14],占全国总人口的8%,由于自然环境容量小、产业能源结构布局不合理和开发建设方式粗放等原因,区域生态环境问题突出。从京津冀全域来看,能源消耗总量增长迅速,且过度依赖煤炭,PM2.5源解析结果显示燃煤占比高达34%以上;工业污染物排放量大,主要集中于钢铁、电力、石化和建材4大产业;交通源污染分担率日益增长,货运交通NOx排放量大,天津海域船舶排放占比较高[15]。虽然自“大气十条”实施以来,区域大气环境质量得到持续改善,但改善程度未达到预期效果[16],常规污染依然较重,以PM2.5、O3为特征的复合型污染最为突出[17]

    • 区域水资源供给难以自足,地下水开发利用率为120%~160%,地下漏斗区面积超过50 000 km2。津冀地区工农业用水量大,北京市生活用水占比最高[18],南水北调工程较大程度缓解了区域水资源短缺的问题,但生态用水不足[19],仅占用水总量的7%左右。水系季节性断流问题严峻,海河流域中下游地区4 000 km以上的河道发生断流,断流300 d以上的占65%,部分河段全年断流,沿海地区地下水超采引起海水倒灌。劣V类河流长度占比高达40%,城市下游河道水质污染较重,廊坊、沧州等地区“有河皆污”现象仍然突出,部分湖库存在不同程度的富营养化[20];集中式地表水饮用水水源水质整体较好,部分水源存在一定风险[21];地下水受到不同程度的污染,对农村分散式供水构成威胁;受陆源污染影响,近岸海域水质普遍较差。

    • 京津冀区域国土开发模式较为粗放,建设用地挤占耕地[22],1984年至今,累计12 066 km2农田转变成城镇生态系统,城镇建设快速扩张危及重要生态廊道,天然林面积锐减[23],生态用地呈现破碎化[24],以北京为中心半径30 km范围内,开发建设强度达到57.6%,中心城区四环内植被占比仅为5.8%。近50年区域内所有观测点降水量均减少,北京及周边减少最快[25],加上地下水超采及生活生产耗水,致部分河道干枯断流,平原湖泊退化,水生态功能下降[26],缺水状态难以及时改善[27],京津冀地区湿地面积(2009~2013年)比第一次调查(1995~2003年)减少46%,植物群落、野生鱼蟹和鸟类等生物量锐减甚至灭绝或消失。流域生态安全格局遭到破坏,大量构筑水库闸坝[28],入海河流径流量减少,河口区发生海相淤积,导致入海河流泄洪能力削弱,海洋生态用水减少;沿海自然岸线、滩涂湿地损失,造成近岸海域生态系统退化,近20年,优质经济鱼类产量减少了90%。区域灰霾天频发,居民的大气暴露健康风险突出[29];人居环境安全不容乐观,产城关系混杂,“工业围城”“垃圾围城”现象仍然存在;工业污染场地转为建设用地,如土壤未得到有效治理,将长期威胁人居健康。

    • 京津冀区域内资源利用效率有待提高[30],京津两市能源利用效率高于全国水平,而河北省万元GDP能耗约为全国万元GDP能耗的15倍,还有较大提升空间[31]。重点行业污染治理效率较低,地区间和行业内部差异较大,钢铁、化工行业效率差异最为突出,污染治理水平及环保产业关联度有待提升[32]。与其他区域相比,京津冀区域内各地区的环保标准和准入要求差异巨大,北京市各行业的地方污染物排放控制标准体系基本形成,污染物排放限值居全国前列,部分标准达到国际先进水平,天津市和河北省环境质量标准相对较低,部分流域上下游河段因流经城市差异而导致功能区水质标准不统一。北京市非首都功能疏解和产业结构调整持续推进,使部分工业企业向津冀转移[33],若执行当地较低污染排放控制标准,区域污染压力将进一步加大。但是京津冀区域有3个省级行政主体,行政区域分属增加了环境保护政策统一的难度,同时又缺乏相应的预警及防范体系,造成生态系统破碎化程度较高,三地生态协同发展不均衡。

    • 社会经济发展是造成生态环境问题的直接原因,京津冀地方分权、地区间产业结构的差异对协同发展产生了显著的负面影响,而区域生态环境自然本底的统一性[34]客观要求开展一体化的协同治理。

    • 虽然随着大气、水、土壤污染治理和生态保护力度的加大,京津冀区域生态环境质量实现部分改善,但持续改善的任务仍十分艰巨,局部地区、重点行业生态环境问题和污染风险依然突出,资源能源利用结构性矛盾长期存在,复合型大气污染协同控制难度不断加大,流域性水环境污染问题难以消除,布局性、累积性和突发性环境风险隐患日趋复杂。从2015年《京津冀协同发展规划纲要》将“京津冀协同发展”上升为“重大国家战略”,到2021年“十四五”规划为“京津冀协同发展”指明方向,生态修复环境改善示范区是重要定位之一,国家对京津冀协同发展的要求不断升级,并且要求在生态环境保护等重点领域率先取得突破。

    • 京津冀区域位于华北平原北部,北靠燕山,西倚太行山,东临渤海。地势自西北向东南阶梯下降,由于西北部巨大的山体阻隔,大气污染物很难扩散。冬季受青藏高原大地形“背风坡”效应导致的下沉气流和“弱风效应”[35],近地面逆温现象频发[36],污染物更易聚集,仅因气象条件不利导致PM2.5浓度较其他季节上升约40%~100%。另外,大气环境污染存在显著的相互跨界传输效应,重污染情况下区域传输更显著。北京、天津、唐山、石家庄、保定、邢台和邯郸市为京津冀内部主要输送源区,还存在与京津冀之外省市的相互传输。例如,北京地区春、夏、秋季的污染逐渐向“偏东风型”发展,“二次转化”增加[37],但冬季一直保持“偏南风型”污染,西南和东南路径为典型的污染传输通道[38],污染物浓度均由唐山、石家庄、邢台和邯郸市向外逐渐降低[39]。因此,区域大气污染治理必须实行联防联控。

      京津冀地处海河流域,上下游污染联系紧密,北京市既是张家口、承德地区的下游,又是雄安新区、廊坊市和天津市的上游,区域内水污染程度总体表现出北低南高,山区低平原高的态势[40]。随着对工业污染排放的严格管控,以点源为主要排放源的氨氮及COD的污染防控已见成效,而以非点源为主要排放源的总磷污染来源多样、时空分布不均且污染范围大,成为区域水体污染防控的难点。借鉴发达国家相关治理非点源污染的经验,京津冀必须开展水环境协同治理。

    • 京津冀地处中纬度,由太行山和燕山山地、张北高原和海河平原组成,属暖温带、半湿润大陆性季风气候,气候温暖、四季分明、水热同期,区域生态系统相互依存度较高。京津冀区域经济社会快速发展,但区域内发展水平严重失衡,空间差异显著。京津地区人口产业高度集聚、第三产业发达,河北整体发展水平相对落后,工业重型化特点突出。加之区域内城镇化进程加剧,导致耕地面积减少、水资源短缺、大气污染严重、城市热岛和植被退化等生态环境问题;而生态环境的恶化严重威胁人居安全,反而限制了城镇化的进一步发展,缺水少绿成为制约京津冀协同发展的一块短板。区域生态环境的治理和改善是多要素综合作用的结果,要综合区域内大气环境、水资源、土地资源、气象气候、生态、能源、人口、经济、工业、社会和民生等多要素,坚持从区域生态系统整体性[9]和流域系统性出发,增强各项措施的关联性和耦合性,打破行政藩篱,将生态环境协同保护作为区域重要公共事务[41]

    • 生态环境恶化会诱发许多疾病,威胁人居健康。疾病的产生与饮用水密切相关[42],京津冀区域内水质污染严重,居民皮肤病、肠炎、肝肿大和癌症的发病率很高。而且,区域内部分城市饮用水对外调水的依赖程度很高,长距离输送,一旦突发水污染事故,可能影响区域内2 400多万人口的安全。《全球疾病负担研究》表明,我国约20%的肺癌与大气PM2.5污染有关。京津冀区域是大气污染的重灾区,河北省肿瘤研究所研究表明,河北省肺癌死亡率1973~2012年间上涨306%,居肿瘤死亡率第一位[43],地区肺癌发病率及死亡率的增长与居民长期暴露在污染的空气中有密不可分的联系。区域内土壤累积性污染问题突出,影响粮食和饮水安全;产城关系混杂,“工业围城”“垃圾围城”现象凸显,严重影响居民健康安全。

    • 生态环境治理体系现代化建设不简单是一种政府公共政策层面上的渐进调整,更需要强化与创新体制机制[44],克服理念冲突、利益矛盾与信息壁垒[45],探索生态环境治理新模式,见图1,以改善环境质量为核心,以确保人居环境安全为目标,以经济社会发展与资源环境矛盾最突出的关键区域、行业和单元为重点,落实“三线一单”约束,建设导向清晰、决策科学、执行有力、激励有效、多元参与、良性互动的生态环境治理现代化体系,以能源技术革命为抓手[46],推动形成有利于节约资源和保护环境的空间格局、产业结构、生产方式和生活方式,将京津冀区域建设成为我国生态修复环境改善的示范区。

    • 京津冀区域要立足长远,统筹制定高度协同的发展战略。一是建立统筹联动的决策机制。系统性协调各决策主体要素间的关系,主要包括统筹北京城市副中心规划建设,执行统一的规划管控;统一规划沿海地区发展,制定有序的围填海计划,合理控制港口规模;形成以河长制为核心的流域治水责任体系,推行“林长制”,构建全域覆盖的林草资源保护长效机制。二是建立一体化的环境治理体系。推动区域环保标准一体化,加强京津转移产业承接地的环境准入要求。

    • 落实“生态保护红线、环境质量底线、资源利用上线和环境准入负面清单”(简称“三线一单”)的生态环境硬约束制度,是京津冀环境保护一体化建设的重要任务。一是完善基于生态环境功能定位的空间管控体系,落实主体功能区战略,严守生态保护红线,实施差异化的生态环境分区管控制度。二是试行基于环境质量的污染物总量管理机制,实行大气环境污染物总量控制,强化存量工业污染物减排措施,加强交通污染排放管理;实行基于流域单元的水环境污染物总量管控,加快京津污水厂提标改造和河北省畜禽禁限养。三是试行基于资源利用上线的效率评估制度,实现资源总量管理和全面节约制度,加强再生水利用基础设施建设,强化清洁生产管理,建立行业、企业能源消耗、资源利用水平台账。四是严格环境准入清单管理制度,列入清单的行业在规定区域不得建设,现有企业按计划退出。五是建立“三线一单”区域生态环境管理大数据平台,实现京津冀污染源管理精细化、动态化和可视化。

    • 统筹山水林田湖草沙一体化治理,以保护生态系统完整性为基础,立足各生态系统自身条件,以江河湖流域、山体山脉等相对完整的自然地理单元为基础,科学开展生态保护与建设;推进生态空间数字化管控,科学利用监测数据,开展山水林田湖草沙生命共同体敏感性、脆弱性、适应性、承载能力等生态系统健康状况评价,增加可持续的生态网络管理。整合京津冀现有自然保护地,在城市间、城市与功能区之间,构建绿色生态隔离区;开展“京北风沙区”生态恢复,在燕山-太行山一线迎风坡地带加强森林抚育和林相林种改造,建设几条连接生态屏障和生态带的南北廊道,形成“屏障-带-廊道”网络化的生态安全格局;加强陆海整体统筹的海岸带生态保护修复。在大气污染治理方面,重点推动冀中南等地区重污染企业淘汰搬迁和沿海地区重化工行业改造提升,逐步统一区域大气环境污染防治的制度和标准体系。在水污染治理方面,重点推动京津廊地区水系、白洋淀流域水环境综合治理,以及衡水湖周边农业“面源治理示范工程”;提高水资源利用效率,建立主要河流的清洁补水机制;完善城镇污水管网建设,开展城市黑臭水体治理,建设农村生活污水处理设施。在重点地区人居安全保障方面,优化京津两地核心圈层工业企业布局,改善唐山、石家庄等工业城市“产城混杂”现状,重视对污染场地的风险评价和治理修复。

    • 一是完善大气环境预警、应急联动机制,加强区域环境空气质量监管体系建设,完善京津冀区域大气污染预警会商和应急联动协调机构,实现预警等级标准、应急措施力度的统一,建立大气污染联防联控常态化机制。试建设碳排放交易体系,推动温室气体和大气污染物减排相协同、PM2.5和O3污染治理相协同、本地治污和区域共治相协同;二是统筹流域水资源与水环境协同管理体系,推进海河流域建立海陆统筹的水资源保护及污染防治制度,实施联合监测、联合执法、应急联动和信息共享,生态用水量纳入考核指标,实行水量、水质双考核的水环境质量排名制度;三是开展自然资产审计和构建生态预警机制,明确产权与监管归属,加强自然资源资产监管,完善生态文明建设目标评价考核体系,把生态效益纳入经济社会发展评价体系。

    • 一是完善基础能力建设,加快建立“源头严防、过程严管、后果严惩”为基础,以“经济调节、公众参与、体制保障”为配套的环境保护制度体系;调整环境保护系统内部的管理机构设置,完善行政规章制度和工作流程优化,加强环保科技、监测和队伍能力建设。二是加大环保督查执法力度,依法严肃查处环境违法行为,完善执法后督查制度,推广网格化的执法手段,强化问责机制,提高环境执法水平。三是创新环保监管体制,建立体现环保工作实绩的干部政绩评价考核制度,推行生态环境审计和终身责任追究制度,推行生态环境损害赔偿和刑事责任追究制度,推动信息公开及公众参与,加强舆论监督,搭建公众和政府良性互动平台。

    • 一是推进资源有偿使用和生态补偿机制,逐步建立水资源费征收标准动态调整机制,对重点功能区进行生态补偿,建立京津冀生态环境保护专项资金。二是合理推行排污许可和交易制度,作为固定点源环境管理的核心制度,实行“一证式”管理,排污权交易分行业、分地区进行,符合条件的严于许可证排放的单位可享优惠政策。三是积极推进政府和社会资本合作(PPP)模式,建立环境保护项目储备库并予以优先支持,建立项目绿色通道、部门联批联审一站式服务,制定支持性政策措施。

    • 京津冀协同发展是国家重大战略目标,各种重大生态环境问题是区域发展面临的核心矛盾,破解社会经济发展与资源环境保护的矛盾是实现国家战略目标的基本前提。通过破除行政藩篱,促进区域协同发展的改革措施,在区域生态环境问题治理方面进行先行先试,以有序疏解北京非首都功能为核心,以京津冀城市群建设为载体,以优化区域分工和产业布局为重点,以资源环境要素统筹规划利用为主线,通过调整经济结构和空间结构,推进产业升级转移,形成目标同向、措施一体、优势互补、互利共赢的环保一体化制度,建立从“末端生态治理”走向“前端生态管理”的生态环境安全新格局,科学构建京津冀大区域生态环境现代化治理体系,是率先取得生态环境领域突破、支撑京津冀协同发展战略实施的必然选择。

    参考文献 (46)

返回顶部

目录

/

返回文章
返回