-
水库大多作为城市生活饮用水水源地,受人类活动影响较大[1],其污染来源广、途径多、种类复杂,累积在水库沉积物中营养盐和重金属等污染物在适宜条件下可从沉积物中重新释放到上覆水体[2],将会威胁水库水质安全进而影响人体健康[3]。磷是湖库富营养化的限制因子,水库沉积物中磷的沉积总量及赋存形态[4],湖泊物理化学过程等[5],都对沉积物磷生物地球化学过程,对上覆水磷含量有着深远的影响[6]。因此,研究水库沉积物中磷的累积特征和赋存形态,评估其释放强度和影响,对于藻华发生风险防控和区域供水安全保障至关重要。
于桥水库是引滦入津最重要调蓄湖泊[7],也是天津市唯一的集中式饮用水水源[8],承担着天津千万人口的饮用水供给功能。于桥水库磷污染及富营养化问题对于供水安全的影响[9],受到广泛关注。自1997年于桥水库发生首次藻华事件以来[10],水库一直处于富营养化向重度营养化过渡、接近重度营养化边缘[11]。磷是于桥水库富营养化的限制性因子,水库TP浓度自2008~2016年呈现逐步上升的趋势[8],推测上游流域和沉积物内源是磷的主要来源。迄今为止,对于桥水库的研究报道主要集中在水质、水量和环境治理方面,而对其沉积物磷赋存形态历史分布特点,以及其释放潜势和贡献的研究较少,仅有部分学者对其表层沉积物中磷赋存形态分布进行了调查[12-13]。作为水环境组成的重要部分,对沉积物的研究尤其是磷累积历史、赋存形态和释放通量的评估是对于桥水库水环境质量评价研究不可或缺的组成部分。
随着于桥水库上游流域治理力度加大,上游磷输入负荷逐渐削减,但藻华现象仍时有发生[10],推测可能与水库沉积物内源磷释放有关。于桥水库建于1959年[8],经过50多年累积,水体中磷以颗粒态形式赋存及颗粒吸附的磷在库底聚集,沉积物中磷含量已趋于饱和[14]。鉴于此,采集于桥水库柱状沉积物,利用210Pb和137Cs放射性同位素方法,构建其沉积年代学,分析磷及其赋存形态的历史分布特征,计算其累计通量及演变过程,评估水库内源磷释放通量和对上覆水的贡献,探讨于桥水库藻华爆发的驱动因素,以期为藻华发生风险防控和水质管理提供支撑。
天津于桥水库沉积物磷累积特征及其释放潜势
The Accumulation Characteristic of Sedimentary Phosphorus and Its Release Potential in Yuqiao Reservoir
-
摘要: 于桥水库是天津市唯一的城市集中式饮用水水源,因其藻华影响供水安全,沉积物内源磷问题受到广泛关注。采集于桥水库柱状沉积物,利用210Pb和137Cs放射性同位素方法,构建其沉积年代学,分析磷及其赋存形态的历史分布特征,计算其累计通量及演变过程,评估水库内源磷释放通量和对上覆水的贡献。结果表明,于桥水库沉积物中总磷含量范围为364~837 mg/kg;1980年之前,水库沉积物中TP含量较为恒定,平均为(440±24.8)mg/kg,之后呈现明显的累积特征,均值上升为(579±136) mg/kg,最高达837 mg/kg。沉积物中可交换态磷(Ex-P)、铁铝结合态磷(Fe/Al-P)和有机磷(Org-P)在时间上均呈现与总磷类似的逐渐累积的变化特征,钙结合态磷和残渣磷是主要的成分。一维孔隙水扩散模型计算结果表明,于桥水库沉积物-水释放通量为1.130~3.665 mg/(m2·d),水库内源磷是藻华发生的重要物质来源。上述研究结果将为于桥水库藻华发生风险防控和水质管理提供支撑。Abstract: Yuqiao Reservoir is the only drinking water source for Tianjin City. The water quality in this reservoir is impacted by the algal blooms. Thus, the internal phosphorus of the sediment is widely concerned. In this study, the sediment cores were collected. The historical distribution characteristic of the total phosphorus (TP) and its formation were analyzed by the sedimentary chronology method with 210Pb and 137Cs. The accumulated flux and the evolution process were calculated. The release flux of the internal phosphorus and its contribution to the surface water were also evaluated. The results showed that the content range of sedimentary phosphorus in Yuqiao Reservoir was from 364 to 837 mg/kg. The TP content was relatively constant (440±24.8 mg/kg averagely) before 1980s. Then there was an obvious accumulation characteristic for the TP, the average value of the TP content increased to (579±136 mg/kg), the max value was 837 mg/kg-1. There was a similar accumulation trend between TP and the other fractions of phosphorus, including exchangeable phosphorus (Ex-P), phosphorus bounding to Fe and Al (Fe/Al-P), and organic phosphorus (Org-P). The calcite bounding phosphorus and residual phosphorus were the main components for the sedimentary phosphorus in this reservoir. The results calculated by the one dimensional holes diffusion of water model showed that the release flux of phosphate ranged from 1.130 to 3.665 mg/(m2·d). The internal phosphorus was an important contributor of the algal blooms in Yuqiao Reservoir. The findings in this study aims to provide a support on the risk prevention of the algal blooms in the reservoir and the water quality management.
-
Key words:
- Yuqiao Reservoir /
- Sediment /
- Phosphorus /
- Release Flux /
- Watershed Management
-
表 1 于桥水库水-沉积物界面PO43−P的扩散通量
采样点 dc/dx/mg·(L·cm)−1 γ0/% D0×10−6/cm2·s−1 Ds×10−6/cm2·s−1 F/mg·(m2·d)−1 YQ-1 0.81 86.7±3.19 6.12 4.60 2.791 YQ-2 0.98 89.1±1.05 6.12 4.86 3.665 YQ-3 0.372 81.4±1.24 6.12 4.06 1.130 注:1)D0、Ds的含义同上;2)dc/dx和F的数值为正表示磷酸盐由孔隙水向上覆水扩散。 -
[1] 丁越岿, 张洪, 单保庆. 海河流域河流空间分布特征及演变趋势[J]. 环境科学学报, 2016, 36(1): 47 − 54. [2] ZHANG H, PERNETCOUDRIER B, WEN S, et al. Budget and Fate of Phosphorus and Trace Metals in a Heavily Loaded Shallow Reservoir (Shahe, Beijing City)[J]. Clean-Soil Air Water, 2015, 43(2): 210 − 216. doi: 10.1002/clen.201300231 [3] 张伯镇, 王丹, 张洪, 等. 官厅水库沉积物重金属沉积通量及沉积物记录的生态风险变化规律[J]. 环境科学学报, 2016, 36(2): 458 − 465. [4] ZHANG H, SHAN B. Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze-Huaihe region, China[J]. Science of the Total Environment, 2008, 399(1): 113 − 120. [5] 孙小静, 秦伯强, 朱广伟, 等. 风浪对太湖水体中胶体态营养盐和浮游植物的影响[J]. 环境科学, 2007, 28(3): 506 − 511. doi: 10.3321/j.issn:0250-3301.2007.03.011 [6] 狄贞珍, 张洪, 单保庆. 太湖内源营养盐负荷状况及其对上覆水水质的影响[J]. 环境科学学报, 2015, 35(12): 3872 − 3882. [7] 张晨, 陈孝军, 王立义, 等. 于桥水库菹草过度生长对水质的影响及成因分析[J]. 天津大学学报(自然科学与工程技术版), 2011, 44(1): 1 − 6. [8] 岳昂, 戢运峰, 刘红磊, 等. 基于Landsat8影像的于桥水库藻华分布反演及其影响因素分析[J]. 安全与环境学报, 2019, 19(4): 1448 − 1455. [9] 陆海明, 尹澄清, 王夏晖, 等. 于桥水库周边农业小流域氮素流失浓度特征[J]. 环境科学学报, 2008, 28(2): 349 − 355. doi: 10.3321/j.issn:0253-2468.2008.02.020 [10] 徐媛, 谢汝芹, 卢蔚, 等. 于桥水库富营养化评价及空间分布特征研究[J]. 水资源与水工程学报, 2014, 25(1): 1 − 6. [11] 李玉英, 侯任合. 于桥水库富营养化趋势及成因[J]. 水利水电技术, 2001, 32(8): 61 − 63. doi: 10.3969/j.issn.1000-0860.2001.08.022 [12] 朱兴旺, 刘光逊, 梁丽君, 等. 天津于桥水库沉积物理化特征及磷赋存形态研究[J]. 农业环境科学学报, 2010, 29(1): 168 − 173. [13] 江雪, 文帅龙, 姚书春, 等. 天津于桥水库沉积物磷赋存特征及其环境意义[J]. 湖泊科学, 2018, 30(3): 50 − 61. [14] 文帅龙, 龚琬晴, 吴涛, 等. 于桥水库沉积物-水界面氮磷剖面特征及交换通量[J]. 环境科学, 2018, 39(5): 2154 − 2164. [15] LI J, LU Y, SHIM H,et al. Use of the BCR sequential extraction procedure for the study of metal availability to plants[J]. Journal of Environmental Monitoring, 2010, 12(2): 466 − 471. doi: 10.1039/B916389A [16] ZHANG H, SHAN B. Historical Distribution and Partitioning of Phosphorus in Sediments in an Agricultural Watershed in the Yangtze-Huaihe Region, China[J]. Environmental Science & Technology, 2008, 42(7): 2328 − 2333. [17] DITORO D M, PEIFFER S. Book Reviews: Sediment Flux Modeling[J]. Journal of Soils & Sediments, 2001, 1(3): 197. [18] LU Y, ZHANG Y, CAO X, et al. Forty years of reform and opening up: China's progress toward a sustainable path[J]. Science Advances, 2019, 5(8): eaau9413. doi: 10.1126/sciadv.aau9413 [19] 胡晓芳, 王祖伟, 宋晓旭, 等. 于桥水库上游支流沉积物重金属含量及生态风险评价[J]. 农业环境科学学报, 2013, 32(6): 1210 − 1218. [20] 张含笑, 霍守亮, 张靖天, 等. 于桥水库藻类群落演替过程及影响因素[J/OL]. 环境科学研究: 1-10[2020-07-21]. https://doi.org/10.13198/j.issn.1001-6929.2020.05.06. [21] REDDY K R, DIAZ O, SCINTO L J, et al. Phosphorus dynamics in selected wetlands and streams of the lake Okeechobee Basin[J]. Ecological Engineering, 1995, 5(2/3): 183 − 207. [22] 潘延安, 雷沛, 张洪, 等. 重庆园博园龙景湖新建初期内源氮磷分布特征及扩散通量估算[J]. 环境科学, 2014, 35(5): 1727 − 1734. [23] TANG W, ZHANG H, ZHANG W, et al. Biological invasions induced phosphorus release from sediments in freshwater ecosystems[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2013, 436: 873 − 880.