-
水是江南园林的重要组成部分,素有“无水不成景、无水不成园”的说法[1]。水体水质好坏会在很大程度上影响到园林景观,但大多数园林水体的流动性较差、水域面积较小、自净能力偏弱,容易受到降雨径流等外源污染的冲击[2-3]。为提高水体自净效果,一般需要采取人工曝气、旁路过滤和生态浮床等强化措施。但这些方法普遍存在施工量较大、运行维护要求较高和对周边景观影响较大等问题[4–6]。
固定化生物膜技术是一种将微生物固定在一定载体上,通过增加单位水体生物量的方式,提高功能菌对污染物的降解效能的技术。该技术已被广泛应用于河湖水体的水质净化工程。WEN等[7]以玉米芯、麦秆和花生壳等为代表的生物质碳源作为固定化载体,形成的生物膜能释放有机物和氮磷等基质,促进微生物在其表面附着生长,但生物质碳源中有机物的释放速率呈现先快后慢的特点,不利于水体水质的长效治理[8];NI等[9]在纤维生物滤池 (Fiber Biofilter) 中将聚合物填料作为微生物的固定化载体,并将形成的生物膜用于水产养殖中将有机物降解,以及将氨氮转化为硝酸盐;TABASSUM等[10]以粉末状活性炭和水性聚氨酯凝胶包裹的硝化细菌作为固定化载体 (Mass Bio System) ,形成生物膜被用于快速提升水体硝化活性。
近年来,有研究者提出了一种将具有很高的生物亲和性,能以相对恒定的速率向水体释放碳源的新型生物蜡作为微生物固定化载体的技术。该生物蜡可促进生物膜的形成,适合用于治理微污染水体[11]。目前,将生物蜡技术用于封闭园林水体水质改善与长效保持的研究仍鲜有报道,生物膜的主要功能尚不清楚。为此,本研究选取典型的江南园林水体,通过对比投放生物蜡模块前后主要水质指标的统计学变化,从工程应用的角度论证新型固定化生物膜技术对小型半封闭水体的水质净化效能,并采用高通量测序技术,对水体、沉积物和生物膜中的菌群结构功能进行分析,系统阐述利用生物蜡技术实现水质净化的关键反应机制,以期为江南园林水体的原位净化与长效保持提供参考。
生物蜡技术用于江南园林水体水质净化的微生物反应机制
Study on the microbial reaction mechanism of bio-wax technology in purifying water bodies in Jiangnan gardens
-
摘要: 生物蜡是一种新型固定化生物膜技术,其能够通过富集水体土著微生物,有效提高水体自净能力。系统地考察了生物蜡对典型江南园林水体春夏季水质的净化效能。结果表明,每100 m2水面投放1块生物蜡,能够使水体在春夏季的COD、氨氮、总氮、总磷和叶绿素a均值分别降低24.12 %、42.11 %、47.25 %、23.53 %和17.90 %,透明度提高24.39 %,COD、总氮、氨氮和总磷的Ⅳ类水达标率分别提高154.55 %、71.43 %、11.11%和93.75 %。通过采用高通量测序和功能基因预测技术对水体净化的微生物反应机制进行分析,发现生物蜡表面生物膜中约82.4%的OTU来自于水体和沉积物中的土著微生物,尽管生物膜的微生物丰度和多样性指数均低于沉积物,但具备有机物和氮素降解能力的变形菌门 (Proteobacteria,相对丰度69.36 %) 占据主导地位,并形成了复杂的微生物共现网络,增强了光能自养、化能异养和亚硝酸盐去除等代谢功能。该研究结果表明,生物蜡技术为土著功能菌群的选择性富集提供了良好载体,在园林水体原位净化领域具有广阔的应用前景。Abstract: Bio-wax is a novel immobilized biofilm technology, which can effectively improve the self-purification ability of water bodies by enriching indigenous microorganisms. This study systematically investigated the purification effect of bio-wax on spring and summer water quality in typical Jiangnan garden water bodies. The results showed that adding one piece of bio-wax in 100 m2 water surface area can reduce the mean concentration of COD, ammonia nitrogen, total nitrogen, total phosphorus and chlorophyll a by 24.12 %,42.11 %, 47.25 %, and 17.90 %, respectively. It can also increase the transparency of water body by 24.39 % and increase the Class IV water compliance rate of COD, total nitrogen, ammonia nitrogen and total phosphorus by 154.55 %, 71.43 %, 11.11% and 93.75 %, respectively. By using high-throughput sequencing and functional gene prediction techniques, this study found that about 82.4 % OTUs in the surface biofilm of the bio-wax were derived from indigenous microorganisms in water bodies and sediments. It is also found that although the microbial abundance and diversity indices of the biofilm were lower than those of the sediments, Proteobacteria (relative abundance 69.36 %), which have the ability of organic matter and nitrogen degradation, dominated the biofilm, and formed a complex microbial co-occurrence network with significantly enhanced metabolic functions of photoenergetic autotrophs, chemoenergetic heterotrophs, and nitrate nitrogen respiration. In conclusion, the bio-wax technology provides a good carrier for the selective enrichment of indigenous functional flora, and has a broad application prospect in the field of in situ purification of garden water.
-
-
[1] YU C, LI Z, XU Z, et al. Lake recovery from eutrophication: Quantitative response of trophic states to anthropogenic influences[J]. Ecological Engineering, 2020, 143: 105697. doi: 10.1016/j.ecoleng.2019.105697 [2] 许铭宇, 刘雯, 谭广文, 等. 生态净水系统对富营养化园林水体的净化效应研究[J]. 长江科学院院报, 2019, 36(4): 27-31. [3] 吴香香, 李大鹏, 贾海峰, 等. 江南地区缓流水体中微塑料的表现规律[J]. 中国给水排水, 2022, 38(3): 62-66. [4] 伍燕南, 王跃, 陈德超. 苏州园林水体生态化治理之路探讨[J]. 环境与可持续发展, 2012, 37(5): 87-91. [5] 王桢桢, 潘杨, 翟笑伟. 封闭景观水体的表观污染机制研究[J]. 环境工程, 2015, 33(4): 9-13. [6] 李飞鹏, 张海平, 陈玲. 小型封闭水体环境因子与叶绿素a的时空分布及相关性研究[J]. 环境科学, 2013, 34(10): 3854-3861. [7] WEN Y, CHEN Y, ZHENG N, et al. Effects of plant biomass on nitrate removal and transformation of carbon sources in subsurface-flow constructed wetlands[J]. Bioresource Technology, 2010, 101(19): 7286-7292. doi: 10.1016/j.biortech.2010.04.068 [8] 赵联芳, 朱伟, 高青. 补充植物碳源提高人工湿地脱氮效率[J]. 解放军理工大学学报(自然科学版), 2009, 10(6): 644-649. [9] NI Z, WU X, LI L, et al. Pollution control and in situ bioremediation for lake aquaculture using an ecological dam[J]. Journal of Cleaner Production, 2018, 172: 2256-2265. doi: 10.1016/j.jclepro.2017.11.185 [10] TABASSUM S, LI Y, CHI L, et al. Efficient nitrification treatment of comprehensive industrial wastewater by using Novel Mass Bio System[J]. Journal of Cleaner Production, 2018, 172: 368-384. doi: 10.1016/j.jclepro.2017.10.022 [11] RUIZ P, VIDAL J M, SEPÚLVEDA D, et al. Overview and future perspectives of nitrifying bacteria on biofilters for recirculating aquaculture systems[J]. Reviews in Aquaculture, 2020, 12(3): 1478-1494. doi: 10.1111/raq.12392 [12] 周朋. 蜡基多孔材料的制备及其微生物污水处理性能研究[D]. 长春: 长春工业大学, 2022. [13] WANG Y, ZHAO Y, JI M, et al. Nitrification recovery behavior by bio-accelerators in copper-inhibited activated sludge system[J]. Bioresource Technology, 2015, 192: 748-755. doi: 10.1016/j.biortech.2015.06.015 [14] 张睿婷, 胡昕欣, 金睿, 等. 2019年苏州市10处湿地中水体的透明度及其影响因素研究[J]. 湿地科学, 2021, 19(3): 331-341. [15] 昂安坤. 河道水感官品质分析与提升技术研究[D]. 上海: 上海交通大学, 2020. [16] 庄媛, 高宇, 姜财起, 等. 城市小型景观水体水环境质量评价[J]. 中国城市林业, 2023, 21(3): 133-138. [17] 吕晓冰, 李茹莹. 固定化微生物对低温河水脱氮效果的中试研究[J]. 环境科学学报, 2022, 42(7): 159-169. [18] JIANG B, LI Y, WANG H, et al. Application of a new type of Si–Al porous clay material as a solid phase support for immobilizing Acidovorax sp. PM3 to treat domestic sewage[J]. Adsorption Science & Technology, 2019, 37(9-10): 729-744. [19] 方玲, 陈敏, 林玉虎, 等. 十种常见园林树种凋落物分解特性[J]. 北方园艺, 2022(5): 75-82. [20] MEZITI A, TSEMENTZI D, KORMAS K Ar, et al. Anthropogenic effects on bacterial diversity and function along a river-to-estuary gradient in Northwest Greece revealed by metagenomics[J]. Environmental Microbiology, 2016, 18(12): 4640-4652. doi: 10.1111/1462-2920.13303 [21] CRUMP B C, PETERSON B J, RAYMOND P A, et al. Circumpolar synchrony in big river bacterioplankton[J]. Proceedings of the National Academy of Sciences, 2009, 106(50): 21208-21212. doi: 10.1073/pnas.0906149106 [22] 徐超, 张军毅, 朱冰川, 等. 夏季太湖梅梁湾水体中细菌的群落结构[J]. 环境监控与预警, 2015, 7(1): 37-40. [23] WANG P, ZHAO J, XIAO H, et al. Bacterial community composition shaped by water chemistry and geographic distance in an anthropogenically disturbed river[J]. Science of The Total Environment, 2019, 655: 61-69. doi: 10.1016/j.scitotenv.2018.11.234 [24] MAYER F, MÜLLER V. Adaptations of anaerobic archaea to life under extreme energy limitation[J]. FEMS Microbiology Reviews, 2014, 38(3): 449-472. doi: 10.1111/1574-6976.12043 [25] 薛银刚, 刘菲, 周璐璐, 等. 基于高通量测序的工业园区地下水和土壤细菌群落结构比较研究[J]. 生态毒理学报, 2017, 12(6): 107-115. [26] POWELL L C, PRITCHARD M F, FERGUSON E L, et al. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides[J]. npj Biofilms and Microbiomes, 2018, 4(1): 1-10. doi: 10.1038/s41522-017-0044-z [27] ZHANG L, HUANG X, ZHOU J, et al. Active predation, phylogenetic diversity, and global prevalence of myxobacteria in wastewater treatment plants[J]. The ISME Journal, 2023, 17(5): 671-681. doi: 10.1038/s41396-023-01378-0 [28] LIU M, CHEN Y, WU Y, et al. Synergistic Action of Plants and Microorganism in Integrated Floating Bed on Eutrophic Brackish Water Purification in Coastal Estuary Areas[J]. Frontiers in Marine Science, 2021, 8. [29] LINDH M V, LEFÉBURE R, DEGERMAN R, et al. Consequences of increased terrestrial dissolved organic matter and temperature on bacterioplankton community composition during a Baltic Sea mesocosm experiment[J]. AMBIO, 2015, 44(3): 402-412. [30] 王慎, 张思思, 许尤, 等. 不同水温分层水库沉积物间隙水营养盐垂向分布与细菌群落结构的关系[J]. 环境科学, 2019, 40(6): 2753-2763. [31] 张菲, 田伟, 孙峰, 等. 丹江口库区表层浮游细菌群落组成与PICRUSt功能预测分析[J]. 环境科学, 2019, 40(3): 1252-1260. [32] ZHANG Q, FU J J, WU Q Y, et al. Build the expressway for the salt-tolerant anammox process: Acclimation strategy tells the story[J]. Journal of Cleaner Production, 2021, 278: 123921. doi: 10.1016/j.jclepro.2020.123921 [33] 鲁翠翠, 蔡文倩, 张翠霞, 等. 植物与微生物协同净化黑臭水体的脱氮性能[J]. 环境科学与技术, 2022, 45(12): 78-88. [34] 李娜英, 韩智勇, 王双超, 等. 多污染源作用下填埋场地下水微生物群落分析[J]. 中国环境科学, 2020, 40(11): 4900-4910. [35] YANG B, WANG Y, LU Y, et al. Effects of simultaneous denitrification and desulfurization and changes of microbial community structure with corncob solid slow-release carbon source under different S/N ratios[J]. Journal of Water Process Engineering, 2022, 47: 102737. doi: 10.1016/j.jwpe.2022.102737 [36] YUAN M M, GUO X, WU L, et al. Climate warming enhances microbial network complexity and stability[J]. Nature Climate Change, 2021, 11(4): 343-348. doi: 10.1038/s41558-021-00989-9 [37] BANERJEE S, SCHLAEPPI K, HEIJDEN M G A van der. Keystone taxa as drivers of microbiome structure and functioning[J]. Nature Reviews Microbiology, 2018, 16(9): 567-576. doi: 10.1038/s41579-018-0024-1 [38] SHAO Q, LIN Z, ZHOU C, et al. Succession of bacterioplankton communities over complete Gymnodinium-diatom bloom cycles[J]. Science of The Total Environment, 2020, 709: 135951. doi: 10.1016/j.scitotenv.2019.135951 [39] 张雅洁, 李珂, 朱浩然, 等. 北海湖微生物群落结构随季节变化特征[J]. 环境科学, 2017, 38(8): 3319-3329. [40] KESHRI J, PRADEEP RAM A S, SIME-NGANDO T. Distinctive patterns in the taxonomical resolution of bacterioplankton in the sediment and pore waters of contrasted freshwater lakes[J]. Microbial Ecology, 2018, 75(3): 662-673. doi: 10.1007/s00248-017-1074-z [41] 朱金山, 秦海兰, 孙启耀, 等. 冬季小流域水体微生物多样性及影响因素[J]. 环境科学, 2020, 41(11): 5016-5026. [42] 杨艳, 王浩, 李凯航, 等. 长江三峡上游水域细菌群落结构与功能预测[J]. 微生物学报, 2022, 62(4): 1401-1415. [43] ZHANG M, LI Y, SUN Q, et al. Correlations of functional genes involved in methane, nitrogen and sulfur cycling in river sediments[J]. Ecological Indicators, 2020, 115: 106411. doi: 10.1016/j.ecolind.2020.106411 [44] FERNANDES S, MAZUMDAR A, BHATTACHARYA S, et al. Enhanced carbon-sulfur cycling in the sediments of Arabian Sea oxygen minimum zone center[J]. Scientific Reports, 2018, 8(1): 8665. doi: 10.1038/s41598-018-27002-2 [45] 杨婉静, 潘杨, 陈越, 等. 胞外聚合物在生物膜同步去除/富集磷酸盐系统中的作用[J]. 环境科学学报, 2021, 41(9): 3437-3445. doi: 10.13671/j.hjkxxb.2021.0086