-
黄河是我国第二大长河,全长5 464 km,流经青海、山东等9省区,是我国重要的生态安全屏障。黄河流域是人口活动和经济发展的重要区域。2021年,国务院将黄河流域的生态保护与高质量发展作为国家重要发展战略。重金属污染物进入水环境中,其中少部分重金属以溶解态形式存在于水体中,大部分则通过与水体中悬浮物作用,以不同形态存在于沉积物中[1],因此,沉积物既是重金属污染的汇,又成为了一个重要的污染源[2]。当水体环境发生变化,沉积物中以较强迁移形态存在的重金属可能会再度被释放,不仅会引发水体二次污染[3],同时也会通过食物链累积或其他暴露途径危害水生生态系统,进而威胁人类健康[4-5]。因此,针对沉积物中重金属的因赋存形态不同从而造成的生态风险与人类健康风险进行分析评价,对深入了解黄河流域重金属污染现状具有重要意义。
沉积物中重金属形态的风险评价主要包括生态风险和健康风险评价两大类。评价方法多基于重金属总量[6-8],这些方法一定程度上能反映该地区的重金属富集程度。但随着研究的深入,发现沉积物重金属的迁移释放能力和生物可利用性与其在沉积物中的赋存形态密切相关[9]。基于重金属形态的重金属风险评价标准[10-11] (Risk assessment code,RAC)、次生相与原生相分布比值[12]等生态风险评价方法可用以描述重金属的迁移能力大小与生物可利用性强弱,从而评估重金属对生态环境造成的危害。结合健康风险评价,可对人体因长期暴露于污染环境中所受到的损害进行定量计算。EMENIKE等[7]对干湿季的尼日利亚Atuwara河沉积物中重金属进行健康风险评价,结果显示2个季节中儿童经过口摄入As、Cd、Cr和Ni的非致癌风险均超过安全限值。WOJCIECHOWSKA等[5]对波兰北部两条河流的沉积物重金属进行非致癌健康风险分析发现,在皮肤接触暴露途径中Cr的非致癌健康风险值最高,但未超过人体可接受范围。LI等[13]在研究湘江流域表层沉积物样品时发现,S4和S5站点Pb对成人和儿童有潜在的非致癌健康风险。我国健康风险评价方法起步较晚,有关黄河流域重金属健康风险研究多集中于水体和灌溉农田土壤[14-15],对沉积物的健康风险评价较少。沉积物中重金属的残渣态主要存在于原生矿和次生矿的矿物晶格中,迁移性弱,对人体危害性小,若直接使用重金属总量指标进行评价,易造成风险值高于实际风险值的情况[16]。而针对黄河沉积物的可利用态重金属含量进行健康风险评估,能更客观地反映沉积物中重金属存在的健康风险。因此,将生态风险和健康风险评价相结合,以重金属不同赋存形态的含量为依据,定性定量的评估重金属污染对生态和人体造成的风险,可降低单一评价方式所产生的遗漏或误判的影响[17],从而对黄河干流表层沉积物中重金属污染进行综合评价。
本研究在黄河干流全流域内进行沉积物样品采集,重点分析表层沉积物样品中重金属的赋存形态及空间分布情况,通过计算重金属风险评价标准、次生相与原生相分布比值以及健康风险指数,对黄河干流沉积物中重金属各赋存形态的分布、生态风险及对人类对重金属暴露风险进行综合评估,为黄河流域重金属污染防治提供参考。
黄河干流表层沉积物中重金属形态分析与风险评价
Morphological analysis and risk assessment of heavy metals in surface sediments of the Yellow River mainstream
-
摘要: 对黄河全流域表层沉积物样品中重金属元素 (As、Cd、Cr、Cu、Ni、Pb、Zn、V、Co) 的赋存形态进行分析,发现Cd的可利用态占比较高,其余重金属以残渣态为主。基于可利用态重金属含量计算重金属风险评价标准、次生相和原生相分布比值,从而对表层沉积物中重金属的生态风险进行评估。结果表明,整个流域中Cd的生态风险最高。此外,Cd和Pb等重金属在M6点位迁移性较高,存在一定的生态风险。对可利用态重金属进行人体健康风险评价,发现M6点位儿童的致癌 (8.76×10−6) 和非致癌风险总值 (0.32) 最高。成人与儿童非致癌健康风险总值中As的贡献率最大 (61.28%和62.71%) ,致癌健康风险总值中As的贡献率也最大 (75.91%和75.98%) ,但总体均未超过美国环境总署推荐的人体最大可接受范围。本研究可为识别黄河干流表层沉积物中重金属风险及制定相应污染防控策略提供参考。Abstract: In the present work, the forms of heavy metals (As, Cd, Cr, Cu, Ni, Pb, Zn, V, Co) that appeared in the surface sediment of the Yellow River were analyzed. The results demonstrated that the available forms of Cd accounted for a relatively high proportion, whereas other heavy metals mainly appeared in the residual form. In addition, we evaluated the potential ecological risks of heavy metals in surface sediments by calculating of the Risk Assessment Code for heavy metals and the distribution ratio of the secondary phase and primary phase. Results showed that the ecological risk of Cd was the highest in the whole basin. Moreover, the metals such as Cd and Pb had higher migration at the M6 site, which posed certain ecological risks to the relevant river basin. On the other hand, the human health risk assessment of the available heavy metals demonstrated that the carcinogenic (8.76×10−6) and non-carcinogenic risk (0.32) of Children at M6 was the highest. The contribution rate of As in the total non-carcinogenic health risk of adults and children was the highest (61.28% and 62.71%), and the contribution rate of As in the total carcinogenic health risk was also the highest (75.91% and 75.98%). However, those values did not exceed the maximum acceptable range of humans recommended by the U.S. Environmental Protection Agency. The results of this study can provide a reference for identifying the risk of heavy metals in the surface sediment of the Yellow River and formulating corresponding pollution remediation strategies.
-
Key words:
- Yellow River mainstream /
- surface sediment /
- heavy metals /
- existing form /
- risk assessment
-
表 1 采样点名称与地理位置
Table 1. Sample point name and geographical location
编号 采样点名称 地理坐标 U1 刘家峡 35°56′13.22″N,103°20′51.06″E U2 银川 38°21′35.93″N,106°24′52.24″E U3 三盛公 40°18′34.88″N,107°1′49.9″E U4 画匠营子 40°31′52.55″N,109°55′28.49″E M1 神泉 40°11′11.62″N,111°12′45.33″E M2 河曲 39°21′10.27″N,111°10′57.27″E M3 府谷 38°57′47.06″N,110°59′30.3″E M4 永和 36°50′10.12″N,110°24′59.61″E M5 潼关 34°36′36.03″N,110°17′16.91″E M6 七里铺 34°51′33.08″N,113°5′32.42″E D1 封丘浮桥 34°54′21.41″N,114°16′19.67″E D2 泺口 36°43′31.8″N,116°59′18.74″E D3 滨州黄河浮桥 37°20′25.19″N,118°3′35.09″E D4 胜利 37°36′17.5″N,118°31′48.51″E D5 入海口浮桥 37°45′35.42″N,119°9′53.51″E 表 2 人体健康风险评价模型参数[6]
Table 2. Parameters of human health risk assessment model
参数 物理意义 单位 取值 成人 儿童 BW 体重 kg 70 15 CF 单位转化因子 kg·mg−1 10−6 10−6 IR1 土壤颗粒摄入量 mg·d−1 100 200 IR2 呼吸频率 mg·d−1 20 7.65 ED 土壤暴露持续时间 a 24 6 EF 土壤暴露频率 d·a−1 350 350 SA 暴露皮肤面积 cm2 5 700 2 800 AF 皮肤的粘附系数 mg·cm−1·d−1 7×10−2 2×10−1 ABS 皮肤吸收因子 无量纲 1×10−3 1×10−3 PEF 灰尘排放因子 m3·kg−1 1.36×10−9 1.36×10−9 AT 平均总暴露时间 d ED×365
(非致癌)ED×365
(非致癌)70×365 (致癌) 70×365 (致癌) 表 3 重金属参考剂量与致癌斜率因子[6, 15, 22-23]
Table 3. Reference values and carcinogenic slope factors of heavy metals
暴露途径 RfD/(mg·(kg·d)−1) CSF/(kg·(d·mg)−1) 口 呼吸 皮肤 口 呼吸 皮肤 As 3.00×10−4 3.01×10−4 1.23×10−4 1.50 1.50×101 3.66 Cd 1.00×10−3 1.00×10−3 1.00×10−5 1.8 6.30 3.80×10−1 Cr 3.00×10−3 2.86×10−5 6.00×10−5 5.00×10−1 4.20×101 1.00×10−3 Cu 4.00×10−2 4.02×10−2 1.20×10−2 / / / Ni 2.00×10−2 2.01×10−2 5.40×10−3 / 8.40×10−1 / Pb 3.50×10−3 3.52×10−3 5.25×10−4 / / / Zn 3.00×10−1 3.00×10−1 6.00×10−2 / / / V 5.00×10−3 / / / / / 表 4 表层沉积物中重金属RAC值
Table 4. RAC values of heavy metals in surface sediments
点位 As Cd Cr Cu Ni Pb Zn V Co U1 L M N N L L L N L U2 L H N L L L L N L U3 L M N N N N L N L U4 L M N N N N L N N M1 L M N L N N L N N M2 L H N N L N N N L M3 L M N L N N N N N M4 L M N N N N N N L M5 N L N N N N N N N M6 L H N L L N L N L D1 L H N L L L L N L D2 N VH N L N L L N L D3 N H N L N N L N N D4 L M N N N N L N N D5 N M N L N N L N L 注:N-没有风险; L-低风险; M-中等风险; H-高风险; VH-极高风险。 表 5 重金属非致癌健康风险平均值
Table 5. Average non-carcinogenic health risk of heavy metals
重金属与
数据名称口 皮肤 呼吸 HI 成人 儿童 成人 儿童 成人 儿童 成人 儿童 As 7.16×10−3 6.68×10−2 6.97×10−5 4.56×10−4 1.05×10−6 1.87×10−6 7.23×10−3 6.73×10−2 Cd 1.38×10−4 1.29×10−3 5.51×10−5 3.61×10−4 2.03×10−8 3.63×10−8 1.93×10−4 1.65×10−3 Cr 5.16×10−4 4.82×10−3 1.03×10−4 6.76×10−4 7.97×10−6 1.42×10−5 6.28×10−4 5.51×10−3 Cu 7.41×10−5 6.92×10−4 9.86×10−7 6.46×10−6 1.08×10−8 1.94×10−8 7.51×10−5 6.98×10−4 Ni 1.29×10−4 1.20×10−3 1.90×10−6 1.24×10−5 1.88×10−8 3.36×10−8 1.31×10−4 1.21×10−3 Pb 2.33×10−3 2.17×10−2 6.19×10−5 4.05×10−4 3.40×10−7 6.07×10−7 2.39×10−3 2.21×10−2 Zn 6.58×10−5 6.14×10−4 1.31×10−6 8.60×10−6 9.68×10−9 1.73×10−8 6.71×10−5 6.23×10−4 V 9.14×10−4 8.53×10−3 / / / / 9.14×10−4 8.53×10−3 总HI 1.18×10−2 1.07×10−1 表 6 重金属致癌健康风险平均值
Table 6. Average carcinogenic health risk of heavy metals
口 皮肤 呼吸 TCR 成人 儿童 成人 儿童 成人 儿童 成人 儿童 As 1.10×10−6 2.58×10−6 1.07×10−8 1.76×10−8 1.62×10−9 7.25×10−10 1.12×10−6 2.59×10−6 Cd 8.53×10−8 1.99×10−7 7.18×10−11 1.18×10−10 4.39×10−11 1.96×10−11 8.54×10−8 1.99×10−7 Cr 2.66×10−7 6.20×10−7 2.12×10−12 3.47×10−12 3.28×10−9 1.46×10−9 2.69×10−7 6.21×10−7 Ni / / / / 1.09×10−10 4.86×10−11 1.09×10−10 4.86×10−11 总TCR 1.47×10−6 3.42×10−6 -
[1] BAHADOR A K, FEIZNIA S, ALEALI M, et al. Impact of river sediments on contamination of shallow marine deposits in the South part Caspian Sea, Iran[J]. International Journal of Environmental Science and Technology, 2021, 18(11): 3503-3514. doi: 10.1007/s13762-021-03358-3 [2] AHN J M, KIM S, Kim Y S. Selection of priority management of rivers by assessing heavy metal pollution and ecological risk of surface sediments[J]. Environ Geochem Health, 2020, 42(6): 1657-1669. doi: 10.1007/s10653-019-00284-9 [3] LIN S, LIU X, ZHANG Z, et al. Speciation characteristics and ecological risk assessment of heavy metals in sediments from Caohai Lake, Guizhou Province[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36(11): 3929-3944. doi: 10.1007/s00477-022-02236-9 [4] LI M Y, ZHANG Q G, SUN X J, et al. Heavy metals in surface sediments in the trans-Himalayan Koshi river catchment: Distribution, source identification and pollution assessment[J]. Chemosphere, 2019, 244(4): 125410. [5] WOJCIECHOWSKA E, NAWROT N, WALKUSZ-MIOTK J, et al. Heavy metals in Sediments of Urban Streams: Contamination and Health Risk Assessment of influencing factors[J]. Sustainability, 2019, 11(3): 563. doi: 10.3390/su11030563 [6] 朱成斌, 胡菁, 龙云川, 等. 贵州草海沉积物重金属元素分布特征及健康风险评价[J]. 环境科学学报, 2021, 41(6): 2212-2221. doi: 10.13671/j.hjkxxb.2020.0455 [7] EMENIKE P C, TENEBE I T, NERIS J B, et al. An integrated assessment of land-use change impact, seasonal variation of pollution indices and human health risk of selected toxic elements in sediments of River Atuwara, Nigeria[J]. Environmental Pollution, 2020, 265: 114795. doi: 10.1016/j.envpol.2020.114795 [8] 潘辉, 郑开基, 游巍斌, 等. 不同起源秋茄林湿地沉积物重金属污染与健康风险评价[J]. 广西植物, 2022, 42(3): 470-478. doi: 10.11931/guihaia.gxzw202104057 [9] AL-MUR B A. Geochemical fractionation of heavy metals in sediments of the Red Sea, Saudi Arabia[J]. Oceanologia, 2019, 62(1): 31-44. [10] KAVITAVERM, PANDEY J. Heavy metal accumulation in surface sediments of the Ganga River (India): speciation, fractionation, toxicity, and risk assessment[J]. Environmental Monitoring Assessment, 2019, 191(7): 414. doi: 10.1007/s10661-019-7552-7 [11] GUSIATIN Z M, KULIKOWSKA D. The usability of the IR, RAC and MRI indices of heavy metal distribution to assess the environmental quality of sewage sludge composts[J]. Waste Management, 2014, 34(7): 1227-1236. doi: 10.1016/j.wasman.2014.04.005 [12] LI J, ZHAO A, XUAN H, et al. Speciation Distribution Characteristic and Ecological Risk of Heavy Metals in Surface Sediments of Cascading Hydropower Dams in Lancang River[J]. Water, 2022, 14(20): 3248. doi: 10.3390/w14203248 [13] LI H, CHAI L Y, YANG A H, et al. Systematic Assessment of Health Risk from metals in Surface Sediment of the Xiangjiang river, China[J]. International Journal of Environmental Research and Public Health, 2020, 17(5): 1677. doi: 10.3390/ijerph17051677 [14] ZHAO Q, DING S, GENG Z, et al. Concentration, Health Risk, and Hydrological Forcing of Heavy Metals in Surface Water Following Water-Sediment Regulation of the Xiaolangdi Dam in the Yellow River[J]. International Journal of Environmental Research and Public Health, 2022, 19(9): 5713. doi: 10.3390/ijerph19095713 [15] SHEN W, HU Y, ZHANG J, et al. Spatial distribution and human health risk assessment of soil heavy metals based on sequential Gaussian simulation and positive matrix factorization model: A case study in irrigation area of the Yellow River[J]. Ecotoxicology and Environmental Safety, 2021, 225: 112752. doi: 10.1016/j.ecoenv.2021.112752 [16] 王蕊, 陈明, 陈楠, 等. 基于总量及形态的土壤重金属生态风险评价对比: 以龙岩市适中镇为例[J]. 环境科学, 2017, 38(10): 4348-4359. [17] 周亚龙, 郭志娟, 王成文, 等. 云南省镇雄县土壤重金属污染及潜在生态风险评估[J]. 物探与化探, 2019, 43(6): 1358-1366. [18] NEMATI K, BAKAR N K A, ABAS M R, et al. Speciation of heavy metals by modified BCR sequential extraction procedure in different depths of sediments from Sungai Buloh, Selangor, Malaysia[J]. Journal of Hazardous Materials, 2011, 192(1): 402-410. [19] LIANG B C, QIAN X, PENG S, et al. Speciation Variation and Comprehensive Risk Assessment of Metal(loid)s in Surface sediments of Intertidal Zones[J]. International Journal of Environmental Research and Public Health, 2018, 15(10): 2125. doi: 10.3390/ijerph15102125 [20] HE X, LI F L, DOMINECH S, et al. Heavy metals of surface sediments in the Changjiang (Yangtze River) Estuary: Distribution, speciation and environmental risks[J]. Journal of Geochemical Exploration, 2019, 198: 18-28. doi: 10.1016/j.gexplo.2018.12.015 [21] ADEDEJI O H, OLAYINKA O O, TOPE-AJAYI O O. Spatial Distribution and Health Risk Assessment of Soil Pollution by Heavy Metals in Ijebu-Ode, Nigeria[J]. Journal of Health and Pollution, 2019, 9(22): 190601. doi: 10.5696/2156-9614-9.22.190601 [22] 李嘉蕊. 基于土壤-作物-人体系统的耕地重金属污染评价和健康风险评估[D]. 杭州: 浙江大学, 2019. [23] 杨学福. 渭河陕西段重金属的污染特征及风险研究[D]. 西安: 西安建筑科技大学, 2015. [24] SUN C Y, ZHANG Z X, CAO H N, et al. Concentrations, speciation, and ecological risk of heavy metals in the sediment of the Songhua river in an urban area with petrochemical industries[J]. Chemosphere, 2019, 219(3): 538-545. [25] 林承奇, 胡恭任, 于瑞莲, 等. 九龙江表层沉积物重金属赋存形态及生态风险[J]. 环境科学, 2017, 38(3): 1002-1009. doi: 10.13227/j.hjkx.201607087 [26] 袁浩, 王雨春, 顾尚义, 等. 黄河水系沉积物重金属赋存形态及污染特征[J]. 生态学杂志, 2008, 27(11): 1966-1971. doi: 10.13292/j.1000-4890.2008.0355 [27] 庞阔, 李敏, 刘璐, 等. 基于蒙特卡洛模拟与PMF模型的黄河流域沉积物重金属污染评价及源解析[J]. 环境科学, 2022, 43(8): 4008-4017. [28] XIE F Y, YU M C, YUAN Q K, et al. Spatial distribution, pollution assessment, and source identification of heavy metals in the yellow river[J]. Journal of Hazardous Materials, 2022, 436: 129309. doi: 10.1016/j.jhazmat.2022.129309 [29] 燕婷, 刘恩峰, 张恩楼, 等. 抚仙湖沉积物重金属时空变化与人为污染评价[J]. 湖泊科学, 2016, 28(1): 50-58. doi: 10.18307/2016.0106 [30] LU Q Q, BAI J H, GAO Z Q, et al. Spatial and seasonal distribution and risk assessments for metals in a tamarix chinensis wetland, China[J]. Wetlands, 2014, 36(11): 125-136. [31] LIU G N, WAN J, ZHANG E X, et al. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China[J]. Environmental Science and Pollution Ressearch, 2016, 23(9): 8709-8720. doi: 10.1007/s11356-016-6114-6 [32] PAN L B, FANG G L, WANG Y, et al. Potentially toxic element pollution levels and risk assessment of soils and sediments in the upstream river, Miyun Reservoir, China[J]. International Journal of Environmental Research and Public Health, 2018, 15(11): 2364. doi: 10.3390/ijerph15112364 [33] RINKLEBE J, ANTONIADIS V, SHAHEEN S M, et al. Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany[J]. Environment International, 2019, 126: 76-88. doi: 10.1016/j.envint.2019.02.011 [34] 张佳森. Cd污染土壤暴露风险评估及污染治理现状[J]. 农业与技术, 2021, 41(12): 96-99. doi: 10.19754/j.nyyjs.20210630024 [35] 王海珍, 谢浩然, 俞昊良, 等. 关注沉积物污染“隐疾”, 维护黄河环境健康[J]. 水利发展研究. 2021, 21(5): 49-51. [36] 李俊红, 田文仲, 张洁, 等. 黄河流域农业生态资源高效利用途径与对策[J]. 耕作与栽培. 2022, 42(5): 138-140. [37] 康国华, 张鹏岩, 李颜颜, 等. 黄河下游开封段引黄灌区小麦中重金属污染特征及健康风险评价[J]. 环境科学, 2018, 39(8): 3917-3926. doi: 10.13227/j.hjkx.201709198